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Ab8tract 

Several dynamical models of the Slater K.D.P. model of a ferroelectric are 
studied and, following Glauber, master equations are derived for the time development 
of these models. A computer simulation of the models is used to study the solutions 
to these equations, and to compare the equilibrium results with Lieb's exact solution 
of the equilibrium case. Excellent agreement is obtained in one case. 

1. INTRODUCTION 

Recently, Lieb (1967a, 1967b, 1967c, 1967d) obtained an exact solution to the 
2D Slater K.D.P. ferroelectric problem, along with the related ice and Rys F model 
problems. These solutions, together with the classic Ising model solution of Onsager 
(1944), provide very interesting information on some reasonably realistic, if simplified, 
models which undergo order-disorder phase transitions. However, the exact solutions 
describe only the equilibrium behaviour, and some effort has been put into obtaining 
information on the non-equilibrium behaviour of these systems. Glauber (1963), 
Kawasaki and Yamada (1967), and others have studied the time-dependent Ising 
model by analytic methods, while Ogita et al. (1969) report on a computer simulation 
of an order-disorder transition. While Ogita et al. apply their results to K.D.P., 
Frohlich and Fisher (quoted from Ogita et al. 1969) have pointed out correctly that 
although the results apply to the Ising model, the K.D.P. model cannot be reduced 
to an Ising-type model, because of the so-called "ice rules" of hydrogen bonding. 

Onsager and Dupuis (1960,1962) and Onsager and Runnels (personal communica­
tion) have discussed a model for the dynamical behaviour of the hydrogen-bonded 
models, involving the diffusion of defects. In the present paper, results are reported 
of a computer simulation of this model and of an approximation of this introduced by 
Onsager and Runnels (personal communication). The exact Onsager-Slater model 
shows the correct transition point, predicted in Lieb's solution, and confirms the 
existence of an anomalously slow relaxation phenomenon near the transition point, 
similar to that in the results of Ogita et al. (1969) for the Ising model. However, in 
other ways the transition differs markedly from the Ising transition; in particular 
there is no simple nearest-neighbour correlation or "clustering" for the Slater model 
as there was for the Ising model. 

The behaviour in an electric field is quite different, the Slater model having a 
metastable state at low temperatures and low fields. The Onsager-Runnels approx­
imation is unsatisfactory for K.D.P. at low temperatures, and does not show a 
transition to an ordered state at any temperature. 
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II. SLATER K.D.P. MODEL 

The Slater K.D.P. model was proposed by Slater (1941) to account for the 
ferroelectric behaviour of potassium dihydrogen phosphate (K.D.P.). This compound 
consists of phosphate radicals hydrogen-bonded to each other in a diamond-like 
lattice. Thus each phosphate group is surrounded by four hydrogen bonds. In common 
with the other hydrogen-bonded models for ice and the Rys F antiferroelectric, the 
proton forming the hydrogen bond is considered to be near one end or other of the 
bond. Further, the "ice rule" states that ionization of a phosphate group is very 
unlikely, and therefore each phosphate group has exactly two protons near it. This 
reduces the possible arrangements around a lattice point (phosphate group) to six. 
Slater proposed that if the resultant dipole was lined up parallel or antiparallel to a 
particular axis, the c axis, it would have a lower energy than if it were perpendicular 
to that axis. The 2D model is produced by projecting the 3D lattice onto a plane 
perpendicular to the c axis. This produces a square lattice with vertical and horizontal 
bonds connecting all vertices. The allowed vertex configurations and their energies 
are shown in Figure 1. 

Vertex No. 2 3 4 5 6 

++++++ 
Energy o o 

Polarization +D +D o o -D -D 

Fig. I.-Slater K.D.P. lattice configurations. 

Slater (1941) correctly predicted a first-order (latent heat) transition at the 
critical temperature Tc = Ejkln2, where E is the vertex energy in Figure 1 and k is 
Boltzmann's constant. Lieb (1967a, 1967b, 1967c, 1967d) confirmed this in his exact 
solution, as well as giving the specific heat and polarizability. The model is inter­
esting in that, below the critical point, the lattice is completely polarized. The 
lattice remains in one of the two ground states until the critical point, where there 
is a latent heat !N E, N being the number of lattice sites. The polarization as a 
function of electric field below T c is a step function, with complete polarization in the 
direction of the field for arbitrary small fields. 

III. ON SAGER-SLATER DYNAMICAL MODEL 

It should be noted that the Slater model by itself provides no means of transition 
from one state of the lattice to any other. Any "flipping" of a lattice point from one 
vertex configuration to a different one will violate one or other of the assumptions of 
hydrogen bonding: (1) that there is exactly one proton per bond, and (2) that there 
are exactly two protons near each vertex. In order to allow transitions to occur, 
relaxations must be made on these restrictions. Much research has gone into the 
dynamical behaviour of ice, which has very similar hydrogen bonding, and the 
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mechanisms devised by Bjerrum (1951) and discussed by Onsager and Dupuis (1960, 
1962) and Onsager and Runnels (personal communication) have proved very success­
ful in that case. 

The mechanisms consist of allowing a very small number of defects to occur in 
the lattice. The first type of defect, the Bjerrum defect, consists of a bond with two, 
or no, protons. Each bond has two associated vertices and either of these can rotate 
(in the three-dimensional sense) to correct the defective bond, at the same time 
moving the defect to another bond attached to the same vertex. Thus the Bjerrum 
defect "migrates" through the lattice, leaving a trail of "flipped" vertices behind, 
each vertex still obeying the rules of hydrogen bonding. This Bjerrum defect migration 
is illustrated in Figure 2(a). 

The second type of defect breaks rule (2) of hydrogen bonding: there are three, 
or one, protons near a vertex. Thus the vertex is "ionized" in the sense that it contains 
one excess or one too few protons. One of the protons on the bonds surrounding a 
vertex may "flip" to correct the number of protons on that vertex, and the defect is 
moved to a neighbouring vertex. The "ion" defect thus also migrates through the 
lattice. This is illustrated in Figure 2(b). 

/ , 
f , 
f I 
I I 

\ / . , 
,~ .,/ 

(a) (b) 

Fig. 2.-Illustrating the migration of (a) a Bjerrum defect and (b) an ionic defect. 

Both types of defect, of course, must exist in pairs of positive (two protons per 
bond or three per vertex) and negative (no protons per bond, or one per vertex) 
defects, and the present theory allows pair creation and annihilation. The probability 
of creation is kept sufficiently small to allow all other defect-defect interaction to be 
ignored. 

For convenience in the analytical treatment of this model, in the case of 
electrical relaxation in ice Onsager and Runnels (personal communication) have used 
an approximation to Bjerrum migration which removes the dependence of the 
migration of the Bjerrum defects on the actual neighbouring bond configurations by 
replacing the actual transition probabilities with a "mean" value of the transition 
probability. This has the effect of allowing "forbidden" transitions to occur, and 
the defect migrates leaving a trail of defective bonds in its wake. This approximation 
has given some useful results in the ice problem, which has no critical point, and it is 
of interest to see whether the approximation preserves the characteristics of, the 
transition in models with order-disorder transitions, since it is very much easier to 
handle analytically. 
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IV. FORMULATION OF THE TIME-DEPENDENT MODEL 

Following Glauber (1963), we now attempt to set up a master equation which 
will describe the time-dependent development of the models described. The Slater 
model, as originally formulated, has no time development, so the first model con­
sidered will be the Onsager-Slater version. 

There are two ways of transforming the lattice into a set of spins. The first 
represents each lattice point by a spin variable 8ii which can take any of six values, 
corresponding to the six different vertex configurations. This representation is 
suitable for considering Bjerrum defects, since this type of defect is essentially a 
defectiVe bond while all vertices are correct. The alternate, and far simpler, repre­
sentation transforms the lattice into a set of spins afi with each spin representing a 
bond and taking only two values (±1). This is suitable for considering ion defects, 
which are vertex defects, the bonds being correct. In order to avoid the complexity 
of a six-valued spin variable, we will consider the latter representation. 

a 1=1 '- -' a=-l us=-l 

u2= 1 u4= 1 

Fig. 3.-Typical ionic defect transition. 

The K.D.P. model in two dimensions is represented as a set of spins afi (i,j = 
1,1, .. . ,M,N; IX = 0,1) where each spin a'li represents a bond on the MxN square 
lattice leading from the point (i,j) to the point (i+IX,j+1-ac), with IX = 0 for vertical 
bonds and 1 for horizontal bonds. 

The ground state of the lattice is then represented by a set of spins {aM all of 
which are equal to + 1. A bond that has "flipped" has afi = -1. The "ice condition" 
becomes 

o I I 0 & II ai:l+aU-at-I,i-at,i-1 = 0 ~or a i,j (1) 

Using the cyclic boundary conditions 

" " aM+I,i = ali, " " at,N+I = an, (2) 

and writing the probability of a particular spin configuration a~l"'" a~N; 
ail>' .. , a1N at time t as 

o I P(all, . . . ,aMN,t), 

we can write, as in Glauber (1963), 

:t(P(a~t, . .. , a1N,t)) = (~ wfi(-afi)P(a~], . .. , -afi,· . . ,a1N,t)) 

- (~ wfi(afi )) P(a~t, ... , a1N, t), (3) 
ti" 

where wfi(a) is the probability of a flip from a to -a at the site (fi). 
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Using the conventional K.D.P. lattice energies and putting y = tanh{Ej2kT), we 
can write down the transition probability wiJ{a) for any given arrangement of the 
neighbouring spins, for which we introduce the notation 

a 
al = ai-a.j-l+a , 

I-a 
a4 = ai-l+2a,j+1-2a , 

I-a 
a2 = ai-l+a,j-a' 

I-a 
as = aij , 

I-a 
a6 = ai+a,j+l-a' 

For example, in the case illustrated in Figure 3, we have IX = 1, a = -1, 
al = a2 = as = a4 = a6 = 1, and a5 = -1. There is a negative defect at the 
vertex (ij). The defect will be corrected by a transition at the bond (}j)' with a 
transition energy of -E. Hence in this case we can write the transition probability 

where K is an arbitrary rate term. Hence the contribution of this configuration of 
neighbouring spins is given by 

By calculating these terms for all possible neighbouring configurations and summing, 
we can write wiJ{a) in the form 

(4) 

where Band C are sixth-order polynomials in the six neighbouring spins aI, ... , a6: 

B = {IS-6(al a2 +a5 a6)-2{as a4 +al a5 +al a6 +a2 a5 +a2 a6) 

+2{al a4 +a2a4 +asa5 +asa6)+6{al as +a2as +a4a5 +a4a6) 

+6{al a2 aa a4 +as a4 a5 a6)+2{al a2 a5 a6 +al as a4 a5 +al as a4 a6 

+a2 as a4 a5 +a2 as a4 a6)-2{al a2 a4a5 +al a2 a4 a6 +al as a5 a6 +a2 as a5 a6) 

-6{al a2 as a5 +al a2 as a6 +al a4 a5 a6 +a2 a4 a5 a6)-ISal a2 as a4 a5 a6}. (5a) 

+2{al as +a2 as +a4 a5 +a4 a6)-2{al a4 +al a5 +al a6 +a2 a4 +a2 a5 

+a2 a6 +as a5 +as a6)+4{al a2 a5 +al a2 a6 +al as a6 +a2 a5 a6) 

-4{al as a4 +a2 as a4 +as a4 a5 +as a4 a6)-1O{al a2 as a4 +as a4a5 a6) 

-6al a2 a5 a6- 2 {al a2 as a5 +al a2 as a6 +al a4 a5 a6 +a2 a4 a5 a6) 

+2{al a2a4 a5 +al a2 a4 a6 +al as a4 a5 +al as a4a6 +al a4 a5 a6 +a2 as a4 a5 

+a2 as a4 a6 +a2 as a5 a6)+4{al a2 as a4 a5 +al a2 as a4 a6 +al as a4 a5 a6 

+a2 as a4 a5 a6)+S{al a2 as a5 a6 +al a2 a4 a5 a6)+6al a2 as a4 a5 a6}. (5b) 

The form of this dependence on nearest neighbours is far from the simple form 
of the Ising model, and does not easily lend itself to an approach such as Glauber's, 
but it does have a similarly simple interpretation. The function B is zero for forbidden 
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transitions (i.e. bonds between normal vertices) and unity for allowed defect 
migration (Le. bonds on a defective vertex). The function 0 is again zero for all 
forbidden transitions, and for allowed transitions it takes values that produce the 
appropriate Maxwell-Boltzmann factors. Thus for allowed transitions, corresponding 
to lattice points with a defect, equation (4) reduces to a form similar to that of 
Glauber. 

For simplicity, equation (4) does not include probabilities for creation and 
annihilation of defects, but these can be included with no difficulty by means of a 
third term, 

(4a) 

where A is the appropriate Maxwell-Boltzmann factor for the (large) pair creation 
energy and D is a similar polynomial to Band C, taking nonzero values for forbidden 
transitions (non-defective, or doubly defective bonds). 

We will try to write the migration of Bjerrum faults in a similar form. We now 
have a six-valued spin St1 (representing the six different vertex configurations) but 
only four neighbours, St-l,], St,1-1, SHl,j, and St,1+1. The master equation becomes 

dd(p(Sll," .,SMN,t)) = (~ ~ [Jt1(Si],Stt)P(Sll, ... ,Si1," "SMN,t)) 
t t,} S t,1 

- (~ ~ [Jtt(Stj, Si1)) P(Sll, ... , SMN, t), (6) 
t1 S'ij 

where [Jt1(S',S) is the probability of a flip from S' to S at site (i,j). Thus, [J11(S',S) is 
a 6 X 6 matrix. 

Each of the 36 terms of [J11(S',S) is a function of the four neighbours St-l,1, 
S1,1-1, SHl,1, St,1+1, and thus each term of [J is a 6 X 6 X 6 X 6 "matrix". Moreover, we 
no longer have the simplicity of the two-valued spin notation, which allowed us to 
use the simple 0 functions l(l+a) and l(l-a). Hence, although the value of [J is 
quite obvious in each case, to write out all 66 terms would be both tedious and meaning­
less. 

However, we can indicate that equations (3) and (6) are essentially equivalent. 
Obviously, for any lattice with no defects, represented by the bond notation {afJ}, we 
can construct an equivalent lattice, using the vertex notation {Si1}, which is equivalent 
at each lattice site in an obvious way. Similarly, for low defect concentrations, for 
any lattice represented in bond notation, we can construct an "equivalent" lattice 
in the vertex notation, in which the equivalence relation maps non-defective lattice 
sites in the obvious manner, and maps ionic defects to Bjerrum defects where the 
lattice is defective. This equivalence relation, at least for low enough defect con­
centrations, maps the possible sets {afJ} onto the possible sets {St1}' To show the 
equivalence of equations (3) and (6), we need only show that the ionic and Bjerrum 
defects traverse the "same" path through their respective lattices and leave the 
lattices in the "same" final state. This is assured by the way we constructed the 
transition probabilities wfJ(a) and [Jtj(S,S'), depending only on the state of the lattice 
before and after the transition and not on any defect properties, and by choosing the 
correct mapping from ionic defects to Bjerrum defects. 
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This "equivalence" emphasizes the point that the BjeITiml and Onsager 
theories of defect migration provide a catalyst for transitions in the Slater K.D.P. 
model, but in no way influence the critical point or equilibrium behaviour of the 
model. 

4 
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I 

3 

Fig. 4.-Allowed transitions in 
the Onsager-Runnels approx. 
imation. Bjerrum defect 
migrations produce transitions 
between states joined by an 
edge of the octahedral diagram. 

The approximation introduced by Onsager and Runnels (personal communica­
tion) removes the dependence of.Q on the neighbouring spins. If we let 8'j = 1,2, ... , 6, 
and associate vertex configurations as numbered in Figure 1, then it can be seen that, 
if we ignore neighbouring spins, a vertex in state 8 can rotate to any of four different 
configurations (Fig. 4). Mter taking into account the energies of the various con­
figurations, we can write the transition matrix as 

(" 
1 1 1 ,!,) 1+1' 0 l-y 1-y 0 

.Q =! l+y 1-y 0 0 1-y l+y 
1+y 1-y 0 0 1-y l+y • 
1+y 0 l-y l-y 0 l+y 

o 1 1 1 1 0 

However, to write the transition probabilities in this form amounts to an 
almost total relaxation of the first rule of hydrogen bonding. No account is taken 
of the configuration of the neighbouring vertices, and hence the migration of the 
defect proceeds leaving in its wake a trail of mismatched bonds, which constitute 
a host of new defects. This approximation is therefore expected to have an appreciable 
effect on the equilibrium of the system, since the defects can no longer be considered 
a negligible part of the lattice, and do not act merely as a catalyst. 

Another approximation that springs to mind would be to introduce a similar 
relaxation of the second hydrogen-bonding rule, by considering a lattice of bonds 
with no constraints at the vertices. Such a system no longer bears any resemblance 
to the Slater K.D.P. model, since, as any lattice configuration is allowed, the six 
vertex energies prescribed by Slater can no longer be used to determine the state of 
the system. There are a further lO possible configurations for which no value of 
energy is specified. 

Ogita et al. (1969) attempted to compensate for this by introducing bond 
interaction with nearest and next-nearest neighbours, but this is an Ising-type model, 
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with very different characteristics. In Ising models, a short-range force "encourages" 
neighbouring spins to line up, and hence spread ordering through the lattice. This 
is not so in the hydrogen-bonded lattice models. Here the flipping of one bond 
requires the flipping of an entire chain of bonds, thus achieving long-range results 
from a short-range force. 

In fact, the nature of the K.D.P. transition is not so much an order-disorder 
tral1Sition as a ground state to excited state transition. The lowest energy has just 
two states, afJ = 1 for all i,j, IX and ufJ = -1 for all i,j, IX. The next lowest energy is 
that of those states with the smallest possible chain of flipped bonds, which, in an 
NxN lattice, is of length N and hence energy N€. For large N, this energy gap is 
large compared with the individual energy associated with spin alignment. 

V. COMPUTER SIMULATION 

The method used was essentially similar to that employed by Ogita et al. (1969). 
Temperature and external field are read in as data. The lattice is set up as an array 
of spins in the computer, initially in a completely ordered state. A spin is chosen at 
random and a pair of defects is created at this point. Then, at each cycle of the 
program, the computer randomly decides to create another defect pair or to displace 
an existing defect from its present site to an adjacent site. Occasionally, a defect will 
meet an opposite defect and the two are annihilated. The number of defects present 
in the lattice at the same time thus reaches an equilibrium which is controlled by a 
probability parameter, preset to ensure that the number is small. If the computer 
decides to displace a defect, the defect is chosen .at random from a list of those in the 
lattice, and the direction in which the defect is to migrate is also selected at random, 
with a probability weighting depending on the state of the adjacent spins. After each 
cycle, the new state of the lattice is stored along with a list of all defects and their 
positions. 

Mter a large number of cycles have elapsed, the energy, polarization, and 
pattern of the bond configuration are output. This is repeated until the system 
attains equilibrium. The lattice size was usually chosen to be 100 X 100 with periodic 
boundary conditions, although a few runs with a 128 X 128 lattice were carried out. 
The number of program cycles required to bring the system to equilibrium varied 
from less than 5 X 105 for temperatures far from the critical point to up to 2 X 107 for 
temperatures very near the critical point. For these long runs, the system had still 
not reached a steady final energy and had very large fluctuations, so it was not easy 
to determine if "equilibrium" had been reached. The computer used was a CDC 6400 
at the University of Adelaide Computing Centre. 

VI. RESULTS 

(a) Equilibrium Behaviour 

Computer runs were done at various temperatures ranging from kT/€ = 0·5 to 
10·0, concentrating near the critical point at kTc/€ = (ln2)-1 = 1·44265 .... The 
equilibrium values of energy and polarization as a function of temperature are shown 
in Figures 5(a) and 5(b). The solid curve is the solution given by Lieb (1967a, 1967b, 
1967c, 1967d). Points are plotted for the simulation of both the exact Slater-Onsager 
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model and the Onsager-Runnels approximation. The error bars represent the 
accuracy with which the mean value was determined, and not the fluctuation size. 
The errors in the mean values of the exact model are due to the long runs necessary 
to reach equilibrium and the large fluctuations that necessitated extremely long runs 
to achieve any sort of accuracy. The extent of the fluctuations of the exact model 
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is shown in Figure 5(c). It can be seen that the exact model fits Lieb's solution 
extremely well throughout the range. The half-width of the transition point is 
I1TjTc ""'-' 1 X 10-2, which is reasonably sharp considering the number of lattice 
points is 104 . This close fit to Lieb's static solution confirms the validity of our model, 
and our computer simulation. 

In fact, we can calculate the expected width of the transition region for a 
finite system. Using simple statistical mechanics, we have I1EjE = j-!, where j is 
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the number of degrees of freedom and is of the order of 104• Hence 

Il.EjE = 10-2 • 

We also have 
BEjBT = E2jkT2j, 

and hence 
Il.TjT = (Il.EjE)(jkTjE). 

Near (and above) the critical temperature, kTjE is of order 10-4• Hence 
Il.T jT = 10-2 and the width of the critical region in the computer simulation is 
comparable with the expected temperature resolution of the finite lattice. 

Since Il.TjT = j-i ,..., N-l, where N is the numbe~ of lattice points, to achieve 
an accuracy one order better than these results we would need N = 106• Thus, using 
a 128 X 128 lattice (N = 16384) could not be expected to give appreciably better 
results. In fact, the present results with a 128 X 128 lattice were not noticeably 
different from the results with a 100 X 100 lattice. To use a 1000 X 1000 lattice (N = 106) 

would use more storage than exists in available computers, and would take many 
hours to reach equilibrium even with the fastest available com:guter. 

The Onsager-Runnels approximation, on the other hand, gives very different 
results. There is no transition point at any temperature, both energy and polarization 
varying continuously. The high temperature limit of energy and polarization is the 
same as the exact solution. 

0: 
. .8 
.~ .s 0·1 

l 

0-03 

120 140 160 

Fig. 6.-Time variation of polarization at 
various temperatures. 

• 
0·01 0·1 1·0 10 

(T-TdjTc 

Fig. 7.-Log-Iog plot of relaxation time 
against (T-Tcl/Tc. 

(b) Relaxation Phenomena 

Figure 6 shows the time variation of polarization when the lattice is released 
from its ground state (i.e. zero temperature) and allowed to come to equilibrium at 
various temperatures. It can be seen that for all temperatures above the critical 
temperature, the polarization decays exponentially towards zero, until the equilibrium 
fluctuations in the polarization start to become dominant. The extent of the equilib­
rium fluctuations is shown in Figure 5(c). 

Figure 7 shows a log-log plot of the relaxation time of polarization versus 
(T-Tc}jTc. This is approximately a straight line with a gradient of about -;. 
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Changes in relaxation times of more than two orders of magnitude, over the range of 
temperatures from kT/€ = 10 to 1·443 were obtained, dramatically demonstrating 
the critical slowing down of the model. The exponent -~ was smaller in magnitude 
than the result (-n of Ogita et al. (1969) for the 2D Ising model. 

(d) 

(e) (I) 

Fig. 8.-Examples of patterns showing polarization of the whole system for kT/€ = 1·470 after 
various time intervals: 

(a) after 6 X 105 cycles, 

(d) after 4 X 106 cycles, 

(b) after 1·2x 106 cycles, 

(e) after 8 X 106 cycles, 

(c) after 2 X 106 cycles, 

(f) at equilibrium. 

The dots represent positive polarization and the blank areas, negative polarization. 

A very clear understanding of the microscopic mechanism responsible for the 
critical slowing-down phenomenon can be had by studying the bond configurations of 
the lattice as it proceeds towards equilibrium. A typical series of such diagrams is 
shown in Figure 8. Here the dots represent positive polarization and the blank areas, 
negative polarization. By studying series of these diagrams at various temperatures, 
it could be seen that, at high temperatures, defects propagated reasonably efficiently 
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through the ground state lattice. As the temperature approached the critical tem­
perature, the defect propagating in the ground state lattice became more and more 
likely to jump one step back, "unflipping" a bond it had previously "flipped". The 
probability of unflipping a previously flipped bond became equal to the probability of 
flipping a new bond at the critical temperature. Thus the mean velocity of the 
defect through the ground state lattice became zero at T = T c. For T < T c, the 
mean velocity was negative and defects always retraced their paths to annihilate 
with their antidefects. For T > T c, the mean velocity was positive in the ground 
state and defects propagated freely until the lattice was in a totally disordered state. 
In fact, the mean velocity of propagation varies continuously and smoothly ')'ith 
temperature. The relaxation time, which one expects to be proportional to the 
inverse of the mean velocity, has a singularity at T = T c. Since the temperature 
gradient of the mean velocity is finite for T = T c, we expect the relaxation time to 
vary as {(T-Tc)jTc}-l near the critical point. The variation of mean velocity with 
temperature in the ground state is shown in Figure 9, and the relaxation times 
derived from this curve are shown as a solid line in Figure 7. 

+1 I 

1 Fig. 9.-Variation of the mean 
e- velocity of defect propagation 
.~ plotted against temperature in 
! or-----,~"/""'--!;-----!;---~4 the ground state. The relaxa· 

Tc kTj€ tion times derived from this 
curve are shown as a solid line 
in Figure 7. 
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The Onsager-Runnels approximation had no anomalous dynamic behaviour. 
The propagation of defects in the ground state lattice occurred with a positive, 
nonzero, mean velocity at all temperatures, giving this model all the characteristics of 
the exact model in the limit of high temperatures. 

VII. DISCUSSION 

The present dynamical model of the Slater K.D.P. model gives excellent 
agreement with the static exact solution of Lieb, as well as giving an insight into the 
nature of the critical transition. The computer simulation demonstrates the relation­
ship between microscopic behaviour and the macroscopic results, particularly in 
showing the way small smooth microscopic changes can lead to the large discontinuous 
changes associated with critical phenomena. Although the formalism of the exact 
macroscopic system is formidable, approximations introduced to simplify the macro­
scopic system change the microscopic behaviour and destroy the nature of the 
transition. 

Although the model was adapted to include an external electric field and 
results were obtained, they are not included here, as the external field does not play 
any great role in the critical phenomena and does not contribute to the clarification of 
the nature of the transition. 
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