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Abstract 

Describing the hadrons by a relativistic independent quark model, using the 
Dirac equation with a scalar potential for the effective interaction, the range of the 
quark-quark interaction is found to lie between O· 3 and 0·4 fm. The hadronic 
spectrum is shown to be independent of the quark mass and the form of the 
quark-quark interaction. 

I. INTRODUCTION 

In Part I (Smith and Tassie 1970; present issue, pp. 615-25) we estimated the 
quark mass and the root-mean-square separation distance of quarks in the hadronic 
core when the quark-quark interaction was assumed to be a vector-type interaction. 
It has been suggested (Lipkin and Tavkhelidze 1965) that magnetic moment con­
siderations imply a scalar-type quark-quark interaction, rather than vector. 
However, this is not certain (Kokkedee 1969) as these considerations assume that the 
quark magnetic moment is a function of the quark binding rather than of the meson 
cloud surrounding it. 

In the present paper we assume that the quark-quark interaction is a scalar­
type interaction and use the Dirac equation for the dynamical description of the 
hadrons. 

II. DYNAMICAL DESCRIPTION 

As in Part I, we use an independent quark model of both mesons and baryons 
and consider only states which differ from the ground state by a change in the 
quantum numbers of one quark. The quark wavefunction tPnlj is an eigenfunction 
of the Dirac equation 

(ca.p +(3mc2+(3V)tPnlj = EnljtPnlj, (1) 

where m is the reduced mass of the quark and the spherically symmetric static scalar 
potential V is taken to have the same form for both baryons and ll,lesons. As for the 
static vector potential the eigenvalues of (1) are bounded as 

-mc2 < E nlj < +mc2. 

However, unlike the vector case, as the potential strength is increased an eigenvalue 
whose energy is positive for a weak potential strength has positive energy for any 
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potential strength. * We interpret the state with the lowest possible eigenvalue 
Enl1 = 0 as a hadron of zero rest mass. Then the hadron mass Mnl1 corresponding 
to a bound state at energy Enl1 will be 

As for the vector case (Rose 1961), the solution of equation (1) in a spherically 
symmetric scalar potential is 

.1. _ (g(r) X~k) '/'n11 - , 

if(r) X~k 

where X~k are two component spinors and j and g are the solutions of 

dp.2 Kp.2 
dx - x+(E-V-l)p.l = 0, (2) 

where 1£1 = rg, 1£2 = rj, x = rmc/Ii, E = E/mc2, and v = V/mc2• 

Eigenvalues of equations (2) were found numerically (for V as a square well, a 
cut-off harmonic oscillator, a Woods-Saxon potential, a Gaussian potential, and an 
exponential potential) in an analogous manner to the eigenvalues of equations (12) 
in Part I. 

III. BOUND STATES AND BOUND STATE WAVEFUNCTIONS 

Bound states of the Dirac equation for a scalar interaction are quite dissimilar 
to their vector counterparts. Bound states of equations (2) are symmetric in E. If 
p.t and ILt are the bound state wavefunctions for E = EO > 0 then 1£1 and J£i are bound 
state wavefunctions at E = -EO where 

1£1 = (Eo-v-l)p.t, (3) 

As ,the strength of the scalar interaction increases the bound states do not 
necessarily become more tightly bound. This can be demonstrated by writing 
equations (2) as a second-order differential equation in 1£1: 

d2p.l_ dv/dx dp.l_ K(K+l) +{ 2_(1+ )2} _ K dv/dx _ 0 (4) 
dx2 E+v+l dx x2 1£1 E V 1£1 X E+v+l 1£1 - . 

For a square well potential dv/dx = 0, and the only term of equation (4) containing 
the potential is {E2-(I+v)2}p.l which is symmetric about v = -1. The two 
potentials VI = -1+8 and V2 = -1-8, 0 < 8 < 1, act the same in equation (4). 
In essence the part of the potential deeper than v = -1 acts as a repulsion in this 
term. 

'" Adjusting the strength of '/) in equations (3), Section III, such that £0 -+- 0 we see that 
J.Ll ~ J.Lt and 1-'2- ~ J.Lt for an arbitrary form of v. Therefore an eigenfunction at £ > 0 cannot 
become an eigenfunction at £ < 0 and vice versa. 



I 

PROPERTIES OF QUARKS. II 629 

It should be noted that even though VI and V2 act the same in equation (4) this 
does not mean that their eigenvalues are the same. Eigenvalues are determined by 
matching fLl and fL2 at the edge of the square well potential and 

is not the same for VI and V2. In general for slowly varying potentials the part of the 
potential V < -1 acts as a r(:)pulsion and, for a potential like a Gaussian for example, 
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Fig. I.-Large component of the s-state 
Dirac scalar wavefunction for a W oods­
Saxon potential (equation (5)) at four 

potential strengths Vo. 
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Fig. 2.-Bound state energy E and root-mean­
square radius <R2>! of a Woods-Saxon wavefunction 
plotted against potential strength Vo: A, 1 = 0, 

j = 1/2; B, 1 = 1, j = 1/2; C, 1 = 1, j = 3/2. 

acts as a repulsive core. This can be seen in Figure 1, where the large component of 
the wavefunction g = fLl/r for a Woods-Saxon potential 

v = - Vo/[l+exp{-13·2(I-x/40)}] (5) 

is plotted for four values of Vo. The effect also shows up in the bound state energy 
and the root-mean-square radius of the wavefunction. For a potential (5) these are 
shown in Figure 2. For.i = l-!, K = l (Rose 1961) and we see that bound states 
are not necessarily more tightly bound as the potential strength increases. 
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IV. QUARK PARAMETERS 

In Part I, independently of the dynamical description, we obtained the result 
that the root-mean-square separation distance <R2)1 of the quarks in the core is 

0·1 fm ;:; <R2)! ;:; 1·0 fm. (6) 

Further, we estimated from the hadronic spectra the mass ranges in which the bound 
state energies of the Dirac equation must lie, namely 
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Fig. 3,-Variation of the (a) IPlj2-ls1j2 and (b) IP3j2-ls1j2 energy spacings of Dirac scalar bound 
states as a function of the root-mean-square radius of the s-state wavefunction. 

Adjusting the strength of the scalar potential to fit the 1St bound state of 
equations (3) to the value of M(ls.) given in (7a), we find that over the ranges (6) and 
(7) and for all potentials considered E(lp3/2)-E(ls.) and E(lPI)-E(ls.) are indepen­
dent of the quark mass. Further, we find for a given <R2)! that E(lp3/2)-E(ls.) and 
E(lpt)-E(lst ) are independent of the potential shape. Thus the p-state, s-state 
energy spacing depends only on <R2)!. 

These results are related to using a scalar potential for the quark-quark 
interaction, as this behaviour is not exhibited by vector potentials. From equation 
(1) it can be seen that the scalar interaction modifies the mass term so that in essence 
an effective mass m* = m+ V is being used. 

For the range of bound state masses given in (7) it is possible to estimate the 
root-mean-square radius of the quark-quark interaction from the hadronic spectra 
without reference to (6). This is shown in Figure 3. We obtain the result 

0·3fm;:; <R2)!;:; 0·4fm, (8) 
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if both the E(lp3/2)-E(lst) and E(lPt)-E(lst) are fitted. This result is consistent 
with (6) which was obtained from consideration of the scattering sum rules and the 
nucleon form factors. 

V. RIGID ROTOR MODEL 

For the vector interaction we reproduced the results of the Dirac equation with 
a simple rigid rotor model in which a spherically symmetric mass distribution'rotated 
with a total angular momentum L given by 
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Fig. 4.-Rigid rotor approximation to the Dirac bound states for a scalar interaction and a 181/2 

level energy of (a) 600 MeV and (b) 1320 MeV. 

We do the same for the scalar interaction except that we use an effective mass, namely 
that of the s-wave bound state. The energy E of rotation of a rigid rotor is 

E = L2j21 = li2l(l+1)j2I, 

where I is the moment of inertia of the rotor, which for a spherically symmetric mass 
distribution is 

where m is the total mass and <R2) the mean-square radius of the mass distribution. 
Using an effective mass 

m* = E(ls)jc2 

we find the p-state, s-state energy spacing is 

E(lp)-E(ls) = ~li2c2j<R2)18E(ls), 

where <R2)18 is the mean-~quare radius of the s-state wavefunction. Figure 4 shows 
that this is a reasonable approximation to the behaviour of the Dirac bound states 
for a scalar interaction. 
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VI. CONCLUSIONS 

For quarks whose interaction is described by a non-singular scalar interaction, 
the hadron spectrum implies a root-mean-square separation distance of the quarks 
in the core of 

0·3 fm ;s <R2)! ;s 0·4 fm. 

For this interaction the hadron spectrum is independent of the quark mass and the 
shape of the interaction. The hadron spectrum is consistent with a rigid rotor model 
in which an effective quark mass is used. 
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