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Summary 

The Burgers vectors of the dislocations bounding steps in the stacking fault 
in Frank dislocation loops in quenched silver and copper-aluminium alloys have been 
identified by comparison of experimental electron microscope images and images com­
puted using the Head-Humble technique. The steps in the fault are generally acute, 
faulted, and bordered by t<llO) stair-rod dislocations. However, obtuse unfaulted 
steps bordered by t<1l2) Shockley dislocations have also been observed. A 
characteristic configuration for a stepped loop consists of a triangular region within the 
main loop with one edge, a dissociated Frank dislocation, forming an edge of the main 
loop, and the other two edges, acute fault bends bordered by t<llO) dislocations, 
forming steps in the fault. 

The formation of steps may occur by the union of separate loops involving 
dissociation of parallel edges on a common {Ill} plane. However, the formation 
of the triangular configuration and of steps bordered by t<1l2) dislocations is not 
compatible with this mechanism. An alternative mechanism, fault climb, is 
compatible with all observations. It is concluded that vacancy supersaturation is 
reduced in quenched materials of low stacking fault energy by fault climb, the 
formation of steps in the fault resulting from climb up and climb down in different 
portions of a loop. 

1. INTRODUCTION 

In an investigation into the nature of faulted defects in quenched silver, 
Clarebrough, Segall, and Loretto (1966) observed complex defects consisting of Frank 
dislocation loops containing steps in the stacking fault. In quenched aluminium, 
faulted Frank dislocation loops are common and intensive investigations have 
revealed the presence of multilayer Frank dislocation loops with two, three, and four 
faulted planes in close proximity (cf. for example, Edington and West 1966). However, 
complex defects of the type observed in silver have not been reported for aluminium. 
Since the stacking fault energy of silver is much lower than that of aluminium, it is 
likely that the formation of stepped faulted loops is associated with low stacking 
fault energy. 

This paper reports a study of complex Frank loops in quenched specimens of 
pure silver and copper-aluminium alloys. For several defects, the dislocation 
arrangement at the fault bends has been determined by a comparison of computed 
and experimental images. It is shown that in some cases the Burgers vectors of the 
dislocations at the steps are compatible only with the formation of the steps by climb 
of the stacking fault. 

* Division of Tribophysics, CSIRO, University of Melbourne, Parkville, Vic. 3052. 

Aust. J. PhY8., 1969,22,393-419 



394 A. J. MORTON AND L. M. CLAREBROUGH 

II. EXPERIMENTAL 

The silver and copper-aluminium alloys used in this investigation were the 
same as used previously (Clarebrough and Morton 1969b), as were the methods of 
determining the sense of the reflecting vector and the planes of the faulted loops. 
The nature of the stacking fault was determined from bright field images of loops 
which intersected a foil surface. From the nature of the outermost fringe the value 
of g. R is fixed (Hashimoto, Howie, and Whelan 1962) so that the known g determines 
R. In all cases examined, the faults were intrinsic. 

III. GENERAL OBSERVATIONS 

For the quenching conditions used in these experiments, the Frank loops in 
both silver and the copper-aluminium alloys were generally large, loops with edge 
lengths of approximately 0·5 f..l, were common, and occasionally loops with edge 
lengths of approximately 1 f..l, were observed. The loops always had edges along 
<110) directions, but regular hexagonal loops were rare. The density of loops was 
very variable, no loops being observed in some foils. The maximum density of 
loops in both silver and the copper-aluminium alloys was approximately 
5 X 1013 cm-3 and in regions with this density 25% ofthe loops were usually complex. 
For faster quenching rates, regions with a density of loops of 1014 cm-3 were common 
and a higher percentage of the loops appeared to be complex. However, for fast 
quenching rates the complex loops were too small for detailed analysis. 

It is readily shown that a complex loop involves a step in a single stacking fault 
if the step is large, by observing an offset when the main part of the loop is on a vertical 
plane or by rotating the specimen so that the step is clearly resolved. An example 
of a large step in a loop in the copper-aluminium (9'4%) alloy is shown in Figure 1. 
In Figure l(a) the loops are viewed in the [057] beam direction. Loop 1 is a simple 
Frank loop on (111), whilst loop 2, on (Ill), intersects the bottom of the foil along 
ACB and is complex with a step along [101] (CD). The fringe shift at the step, 
which is on (111), suggests that the step height is approximately one extinction 
distance for a 200 reflection. Since the step is on a plane that is nearly vertical in 
Figure l(a), it cannot be seen clearly. In Figure l(b) the beam direction is [103] and 
the step can be seen to be faulted. In Figure l(c) the beam direction is [213] and the 
plane of the step is again vertical, so that no fault contrast is observed. 

The large step shown in Figure 1 is an exceptional case and usually steps were 
detected by contrast effects along <110) directions within the loop. For 020 and 
III reflections, a step was usually detected by a displacement of the fault fringes 
in the loop on crossing the step and often contrast along the 010) direction of 
the step was associated with the fringe displacement. An example of strong contrast 
for a 111 reflection at the interior edges of a triangular region in a large loop in silver 
is shown in Figure 3(a). The observed features of the contrast along steps for 020 and 
III reflections were more complex than the dark contrast for 111 reflections and the 
light contrast for 020 reflections analysed by Tunstall and Goodhew (1966) for 
overlapping Frank loops in aluminium. For 220 or 311 reflections, for which the 
fault in the loop was out of contrast, contrast was usually observed along the 
<110) direction associated with the step. In most cases, for 220 reflecting vectors 
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lea) l(b) l(c) 

2(a) 2(b) 2(c) 

3(a) 3(b) 3(c} 

Fig. I.-Complex loop in a copper-aluminium (9·4 at. %) alloy ( X 120 000). The electron beam 
directions are (a) [057], (b) [103], and (e) [213]. The operative reflections are indicated. 

Fig. 2.-Complex loop in a copper-aluminium (9·4 at. %) alloy (X 60000). The electron beam 
directions are (a) [057], (b) [156], and (e) [155]' The operative reflections are indicated. 

Fig. 3.-Complex loops in silver and a copper-aluminium (9·4 at. %) alloy (X 60 000): 
(a) silver, beam direction [112]; (b) silver, [102]; (e) copper-aluminium, [011]' The operative 

reflections are indicated. 
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parallel to the <1l0) direction of the step, contrast was not observed, indicating that 
the steps were bounded by edge dislocations.* However, two examples were found 
where strong contrast was observed for a 220 diffracting vector parallel to the 
<1l0) direction of the step, and one of these is shown in Figure 2. Details of the 
observed contrast are given in Section V where it will be shown from a comparison of 
experimental and computed images that the contrast effects arise from steps in the 
stacking fault. 

The unfaulting behaviour of the complex loops is compatible with steps in a 
stacking fault. In many cases unfaulting was observed to occur up to the (110) 
direction across the loop, associated with a step, before the whole loop unfaulted. 
Thus the first stage of unfaulting left a loop with a Frank dislocation bounding a 
faulted region on one side of the step and a prismatic dislocation bounding an 
unfaulted region on the other side (Fig. 3(b)). For the example of unfaulting in 
Figure 3(b), the loop is on (III) and portion of the prismatic dislocation which was 
along [101] has slipped out of the foil on (lll). 

Only one example was found where the shape of the defect suggested that the 
step arose from the combination of two separate Frank loops. The shape of the 
defect in Figure 3(c) suggests that the step along CD arose from two closely spaced 
loops on (lll) (one of the loops intersects the surface along AB) combining along 
[101] (CD) by dissociation on (III). 

Specimens of quenched aluminium were examined for the presence of stepped 
loops but none were observed. It is concluded that if stepped loops form in quenched 
aluminium their concentration must be several orders of magnitude less than in silver 
and the copper-aluminium alloys. 

~ 
"'- ~DI 

Plane: :2 

D2~,,"~ 

~--

Fig. 4.-Geometrical arrange­
ment of fault planes and 
dislocations used in image 
computation for overlapping 
Frank dislocation loops. 

IV. IMAGE COMPUTATION 

Computation of contrast, arising from particular dislocation configurations 
that may be involved at the steps in complex loops, has been carried out using the 
technique of Head (1967), but with the extended programme of Humble (1968) which 
enables the treatment of two parallel dislocations bounding up to three faulted 
planes in a foil of arbitrary orientation. The values of elastic constants, anomalous 
and real absorption constants, and extinction distance used here are as given 
previously (Clarebrough and Morton 1969a, 1969b). Variation in the visibility limits 
from 7% below and 15% above background intensity is indicated in the figure 
captions. 

In order to consider the possibility that the observed contrast in complex loops 
may arise from overlapping Frank loops, a modification was made to the computer 

* This conclusion remains valid for anisotropic materials (Head, Loretto, and Humble 1967). 
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programme to treat situations similar to that shown in Figure 4. Here plane 2 is 
always parallel to plane 1 and extends over all fields of the computed image. 
Plane 2 no longer is bounded by dislocations 1 and 2, but does contain the dislocation 
direction. With plane 3 and dislocation 2 absent, the geometry then reduces to 
overlapping faulted planes with one plane terminating in the field of the micrograph. 

v. COMPARISON OF EXPERIMENTAL AND COMPUTED IMAGES 

A large number of possibilities exist for the Burgers vectors of the dislocations 
bordering a step in a complex loop. These cases can be reduced to a large extent by 
excluding the possibility of extrinsic faulting in the step in the present experiments. * 
Burgers vectors for stair-rod dislocations that may be present along [ilO] for a step 
on (llI) in a fault on (llI) are given in Table 1. Dislocations with Burgers vectors 
greater than .(301) are probably unstable (Friedel 1955) and have not been 
considered. The choices available in Table 1 can be reduced by knowing if the bend 
in the fault is acute or obtuse and if the dislocations bordering the step are of edge 
orientation. In addition to the stair-rod dislocations of Table 1, the possibility of an 
unfaulted step bordered by Shockley or Frank dislocations must be considered. 

TABLE 1 

BURGERS VECTORS FOR INTRINSIC FAULT BENDS ALONG [110] 

Burgers vector t[IIo] HllO] HOOl] t[30I] t[03I] t[O~I] t[301] 

Bend Acute Acute Obtuse Obtuse Obtuse Obtuse Obtuse 

The angle of the fault bend at the step can sometimes be determined from 
projections of the defect in different beam directions and sometimes from the sense 
of the fringe shift at the step for loops that intersect the foil surface, or by matching 
the intensities of fringes across the step in a loop that does not intersect the surface. 
Whether the dislocations are of edge orientation can be determined by using the 
reflecting vector parallel to the (llO> direction of the step edge. Usually either 
the nature of the bend or the character of the dislocations could be determined, but 
in some instances neither of these variables was known. 

Comparisons between experimental and computed images have been made for 
silver and the copper-aluminium (9·4%) alloy. 

A very characteristic configuration for complex loops in silver and copper­
aluminium alloys is a triangular region within the main loop with one edge of the 
triangular region along one edge of the loop. 

A complex loop of this form in silver is shown in Figure 5 for various reflecting 
vectors and beam directions. The loop lies on (llI) and the region EFG is bounded 
by directions [101] (EF), [Oil] (FG), and [110] (GE) . 

... Although the formation of extrinsic faults is uulikely, for each case considered in this 
section the appropriate Burgers vectors for intrinsic-extrinsic fault bends were tested by image 
computations. In no case were the computed images of intrinsic-extrinsic combinations 
compatible with the experimental images. 
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8: [809] 
g, W: 020,0'18 

6 (a) 6 (b) 

[516] 
iII,o·40 

6 (c) 

[225] 
220.0-40 

399 

s(;\) 

o 

40 

50 

60 

Fig. 6 (above).-Computed images of undissociated and dissociated Frank dislocations along the 
edge FE of the Frank loop shown in Figure 5: 

FN [418], u [lOl], t = 9~111' 
The values of S, B, g, and ware indicated. Line resolution is 23 A. 

Fig. 5 (opposite).-Complex Frank dislocation loop in quenched silver (x 100 000): 

(a) B [809], g 020; 

(e) B [516], g III; 

(e) B [225], g 220; 

(g) B [518], g 131; 

(b) B [103], g 020; 

(d) B [817], g 1 II ; 
(J) B [515], g 202; 

(h) B [5l8], g liH. 
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(d) 
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(I) .~~~~~~""\\' 
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B [809J 
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W 0·18 
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gIll 
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B [518J 

~~~~~~~ g 131 

WO'30 

B [5I8J 

"'·.,':,,',:,ri,·:',"",", ..... :.: g 131 

wO'10 

Fig. 7.-Computed images of the step EG in the complex Frank dislocation loop shown in Figure 5 
for different Burgers vectors of the dislocations at the step edge and for various reflecting vectors: 

S = 180A, FN [418], u [110] t = 9611. 

The Burgers vectors and the values of B, g, and ware indicated. Line resolution is 30 A in 
(a)-(d), 20 A in (e), and 40 A in (f) and (g). 
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It is clear from the images for the 131 and 131 reflections (Figs 5(g) and 5(h)) 
that the loop does not intersect either foil surface. Further, from the obvious protru­
sion outside the main loop of the projection of the triangular region in Figures 5(c) 
and 5(d), it is apparent that a large separation exists between the triangular region 
and the main loop. For the 220 and 202 reflections, there is no contrast along GE 
and EF respectively, showing that the dislocations along these directions are of pure 
edge character. It should be noted that for both the 220 and 202 reflections the 
edges of the hexagonal loop show the contrast typical of dissociated Frank dislocations 
(Clarebrough and Morton 1969a) in that the images are continuous dark lines where 
g is not parallel to u. 

The characteristic feature of the images obtained for the 020 reflection is 
that for the [809] beam direction (Fig. 5(a)) there is a broad dark line of contrast along 
both FG and GE (cf. Fig. 5(h)), whereas for [103] (Fig. 5(b)) the contrast along GE is 
resolved into two fine dark lines approximately 100 A apart, but the contrast for the 
edge FG remains single. The contrast at the outer edge EF also varies on rotating 
from [809] to [103], the light band visible in [809] inside the line of contrast along 
EF becoming narrower in the [103] beam direction. The similarity in contrast for 
edges BC and EF for the 020 and all other reflections should be noted. 

For the I I 1 reflection, the contrast along EF is similar to that for the 1 I I 
reflection. However, the contrast for edges GE and FG interchange for these two 
reflections; the light band along GE for the III reflection fading into the general fault 
contrast for III, and the contrast along FG for HI becoming a broad light band for 
the In reflection. The similar contrast along FG and GE for the III reflection normal 
to the dislocation line suggests a similar arrangement of dislocations and faults along 
these directions. 

The contrast along GE is a strong dark line for the 131 reflection, but is weak 
for the 131, whereas for the edge FG the contrast is strong for 131 and consists of a 
fine dark line (40 A wide) for the 131 reflection. For both the 131 and 131 reflections 
there is a strong dark line of contrast along FE. 

From the general observations of contrast in the experimental images, it is 
possible to eliminate many of the possible dislocation configurations. The protrusion 
of the triangular region requires that if faulted steps exist along FG and GE they must 
be acute steps. Secondly, the lack of contrast along GE for the 220 reflection and 
along EF for the 202 reflection requires that dislocations of edge character bound the 
region along these directions. 

Since an image for the 022 reflection was not obtained, no conclusion could be 
drawn about the character of the dislocations along FG. For this reason the dis­
location configurations at the edges EF and GE will be considered first. 

It was noted above that the contrast along edges BC and EF was similar for all 
reflecting vectors, suggesting that the dislocations along BC and EF have the same 
Burgers vector. Computations ofthe contrast from both undissociated and dissociated 
Frank dislocations along EF for the 020, III, and 220 reflections are given in 
Figure 6 for various separations of Shockley and stair-rod dislocations. Matching 
of experimental and computed images indicates that the dislocation along EF is a 
dissociated Frank dislocation with a separation of the Shockley and stair-rod 
dislocations of approximately 60 A. 



402 A. J. MORTON AND L. M. CLAREBROUGH 

Of the possible dislocation and fault configurations for the edge GE, only four 
satisfy the above observations. If the step is faulted, the Burgers vector of the 
fltair-rod dislocation dipole at the step edge must be either HnO] or 1[110] and if no 
fault is present on the step, the dislocation may be a l[112] Shockley dislocation 
dipole. In addition, if the triangular region is a second Frank dislocation loop 
overlapping the hexagonal loop, the Burgers vector of the dislocation along GE 
would be ! [Ill]. Computations of images of these four situations involving edge 
dislocations along GE were made for -the range of separations 50-250 A for both 
the III reflection in the [516] and the 020 reflection in the [103] beam directions. 
A match for both experimental images simultaneously was found only for a fault 
step involving a HHO] stair-rod dipole and intrinsic faulting on the (III) plane, 
the dipole separation being in the range 150-180 A. This identification was confirmed 
by computing the contrast for the remaining reflecting vectors at a separation of 180 A 
only, for all edge situations. Figure 7 shows the computed images for this separation. 
Good matches for individual reflections could be obtained with other dislocation 
arrangements, but only the i- [nO] step gave consistent matching at constant 
separation for all reflecting vectors. 

Computations for the contrast along FG for all possible edge dislocation 
arrangements and all reflecting vectors were made at a separation of 180 A. 
Consistent matching of the computed and experimental images was obtained for a 
faulted step involving HOff] stair-rod dislocations and intrinsic faulting on (III). 

From the matching of computed and experimental images for the edges EF, 
FG, and GE, it is concluded that the configuration is a stepped loop with the edges 
FG and GE bounded by low energy stair-rod dislocations and the side EF, a dissociated 
Frank dislocation. 

An example of a complex loop, where it is not known whether the bend at the 
step is acute or obtuse or whether the dislocations bordering the step are in edge 
orientation, is shown in Figure 8. 

The complex loop ABDCEF is on (Ill) with a step AB along [101]. The loop 
does not intersect either surface of the foil, although it approaches close to the top 
and bottom surfaces at B and A respectively. It was not known whether edge 
dislocations bordered the step on (III) since the image for the 202 reflection was 
not obtained. Further, the fringe shift across the step suggested either a step height 
of approximately 0·25611 at an obtuse bend, or a step height of approximately 
o· 75611 at an acute bend. Matching the intensities offringes across the step suggested 
an acute bend with the larger step height. In this case, all stair-rod dislocations of 
the type listed in Table 1 together with the three possible Shockley dipoles and a 
Frank dipole were considered in the comparisons of experimental and computed 
images. 

Figs 8(a)-8(h).-Comparison of experimental (x 90 000) and computed images at the step AB 
in a complex loop in a copper-aluminium (9' 4 at. %) alloy: 

FN [379], u [101], t = 6·5611. 

The operative reflections used, the Burgers vectors corresponding to the various computed 
images, and the values of Band ware indicated. In all cases the separation of the dislocations 

at the step along AB is O· 75~111' Line resolution is 50 A. 
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Matching between experimental and computed images for the III and III re­
flections, and all possible values for the Burgers vectors of dislocations bordering 
the step, was investigated for an obtuse bend with a step height of 0·25611. In no 
case was there good agreement between experimental and computed images, thus 
supporting the tentative conclusion from the fringe matching that the step is acute. 

The computed images for the possible Burgers vectors of dislocations bordering 
an acute bend with a step height of 0·75611 are compared with the experimental 
images in Figures,8(a)-8(h). It can be seen that agreement between the computed 
and experimental images for all the reflections is only obtained with the l[1OI] 
Burgers vector. 

A feature of the 200 image in Figure 8(f) is the fine dark line, approximately 
30 A wide, along AB. This detail appears in the computed image only if the true 
beam direction, [057], for which the loop plane (llI) and the step plane (III) overlap, 
is used. This can be seen in Figure 9, where the experimental image and high­
magnification computed images for the -l [101] Burgers vector and beam directions 
[057] and [Oll] are given (compare Fig. 9(b) with 9(h)). Further, it can be seen from 
Figure 9 that, although a fine dark line appears in the computed images for the -l [101 ] 
and t [101 ] Burgers vectors, the fine detail of the experimental image is matched only 
by the computed image for the -l [101 ] Burgers vector. It is concluded that the step in 
this loop is bounded by l[1OI] and l[IOI] stair-rod dislocations at a separation of 
approximately 180 A. 

An example of a loop where the step is known to be acute is given in Figures 
1O(a)-1O(g), and in this case only the computed images considered to give the best 
match to the experimental images are presented. The loop ABCDEF is on (llI) 
with the step FD along [IlO] so that the plane of the step is (llI). The loop intersects 
the top surface of the foil along CDE. From the fringe shift at the surface, the fault 
to the left of F --l> D lies below the fault to the right, indicating an acute bend for a 
step on (llI) with a step height of approximately 0·5611. 

The possible Burgers vectors for the dislocations bordering the step in this 
case are the stair-rods l[1l0] or HllO] for a faulted step and the Shockleys l[211], 
HI2I], HfI2], or the Frank HIll] for an unfaulted step. Images have been 
computed for all these possible Burgers vectors and the best match between the 
experimental and theoretical images is obtained for a step bounded by l[1l0] and 
1 [rIO] stair-rod dislocations at a separation of 120 A. 

The fine detail in the experimental images is reproduced in the computed images 
for comparable resolution in both (Fig. 10). Thus for the III reflection, the rounded 
protrusion at the end of the dark fringe at the surface intersection D is reproduced 

Fig. 10 (opposite).-Comparison of experimental and computed images at the step FD in a'complex 
loop in a copper-aluminium (9·4 at.%) alloy. In (a)-(c) the comparisons are made with the 
experimental images X 98 000 and in (d)-(g) with the 200 image X 320 000: 

FN [157], u [110], t = 6611. 

The portion of the micrograph (d) corresponding to the images (e)-(g) and the. values of 
B, g, and ware indicated. All computed images are for t[1l0] stair-rod dislocations bordering 
the step at a separation of o· 5~111' Line resolution is 30 A in (a)-(c) and 11 A in (e)-(g). 
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Figs 11(a)-11(j).-Comparison of experimental and computed images at the step FG in a complex 
loop in a copper-aluminium (9·4 at.%) alloy. In (a)-(g) the comparisons are made with the 
experimental images x90000 and in (h)-(j) with the III image x200000: 

FN [123], u [OIl], t = 7611. 

The operative reflections, the Burgers vectors corresponding to the computed images, and the 
values of B and ware indicated. In all cases the separation of the dislocations at the step along 
FG is 0·25611. The portion of the experimental image (h) corresponding to the computed images 
(i) and (j) is indicated. Line resolution is 55 A in (a)-(g) and 25 A in (i) and (j). 
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in the computed image, as is the region clearly above background intensity in the 
first light fringe at the step (Fig. lO(a)). Further, the general shape of the light band 
at the step is reproduced in the computed image (Fig. lO(a)). The curvature of the 
fringes in the 200 image, suggesting a point of inflexion at the step, is reproduced 
in the computed image (Fig. lO(b)), but at this magnification the fine detail of the 
contrast along the step is not resolved. The contrast along the step in Figure lO(b) 
consists of a fine light band, approximately 50 A wide, bordered by dark lines that 
are narrow and faint where they pass through the light fringes and broader and 
darker where they pass through the dark fringes at the step. Further, in the light 
fringes the lower of the two lines appears very weak. This light band and its 
associated detail are not present in the 200 image. The experimental 200 image and 
computed images at higher magnification for 200 and 200 reflections are given in 
Figures lO(d)-IO(g). It can be seen that the computed image at this magnification 
reproduces the fine detail in the experimental image for the 200 reflection and confirms 
the absence of any resolution for the 200 reflection. 

It should be noted that for the loops shown in Figures 9 and 10, the matching 
of the fine image detail at the fault bend is obtained only when the precise beam 
direction rather than the approximate beam direction is used in the computations. 
This applies both when the faults viewed in the beam direction are overlapping 
(Figs 9(b) and 9(h)) and when they are non-overlapping (Figs lO(e) and 1O(f)). 

The complex loop in Figures ll(a)-ll(j) is an example of non-edge dislocations 
bordering the step, i.e. strong contrast is observed with a 220 diffracting vector 
parallel to the step. The loop ABCDE (Fig. ll(a)) is unusually complex in that two 
bands of contrast FG and HI cross the stacking fault fringes along [OIl]. The loop 
lies on (Ill) and intersects the bottom of the foil along BC. From the direction of 
the fringe shift at the bottom surface, the fault to the right of H ---* I must lie below 
the fault to the left and, assuming that the contrast arises from a step in the fault 
with the step on (111), the observed fringe shift corresponds to an obtuse bend. 
Matching fringes across FG gives a fringe shift in the same sense as for HI, indicating 
that the fault to the right of F -'>- G lies below the fault to the left, and again suggesting 
an obtuse bend in the stacking fault. Thus the defects along HI and FG are taken 
to be associated with obtuse bends in an intrinsic fault. 

The absence of contrast along HI for the 022 reflection shows that this step 
is bounded by edge dislocations. However, for the 200 and 111 reflections, details 
of the contrast associated with HI can only be seen for approximately one extinction 
distance below the surface and this was not sufficient for a detailed comparison 
of experimental and computed images. Thus no decision could be reached between 
the various possibilities for the Burgers vectors of the dislocations at this step. 

The contrast along FG is strong for the 022 reflection (Fig. ll(e)), indicating 
that non-edge dislocations are associated with this step .. The III reflection gives 
the most striking image in Figure 11. For this reflection, the image along FG consists 
of a light band bordered on both sides by dark lines. The 11 I image is mainly light 
with some contrast at the step in the region of the dark fringes. The 200 and 200 
images are mainly light with the 200 image showing some fringe contrast at the step. 
The 311 image shows con~rast along FG, but contrast is absent on 311. 

The dislocations along FG are not in edge orientation, so that several possibilities 
such as Frank partials, edge Shockley partials, and low energy stair-rods associated 
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with extrinsic faulting in an obtuse step are excluded. There are six remaining 
possible values of b for dislocation dipoles along FG. Four of these (HI30], -1[lOa], 
U laO], U 103]) involve high energy stair-rod dislocations and two (l [121] and l[lI2]) 
Shockley partial dislocations bordering an unfaulted step. The fringe shift for the 
111 reflections in Figures 11 (c) and l1(d) is small and suggests a step height of 
approximately 0·25611. In fact, the best fits between experimental and theoretical 
images for all the possible Burgers vectors were obtained at this step height. Images 
have been computed for all the above values of b and the two possibilities which 
give the best match to the experimental images are l [lao] and l [112]. The computed 
images for these values of b are compared with the experimental images in 
Figures 11 (a)-l1(j). For the 200 reflection, the contrast along FG appears too dark 
for b = l [laO], but there is little to choose between the two values of b for the 
200 images. For b = Hlao] the 111 reflection gives too much dark contrast in the 
light fringes crossing FG and the 31 I and 022 images appear to be too weak. These 
results when combined with the 111 image enable a decision to be made between the 
two Burgers vectors. Experimental and theoretical images at higher magnification 
are shown for the III reflection in Figures 11 (h)-l1(j). At the low magnification 
(Fig. l1(c)) the high energy stair-rod dipole appears a better fit, but at the higher 
magnification, where the resolution in the computed images is comparable with the 
experimental resolution, it can be seen that the image of the Shockley dipole 
(Fig. l1(i)) matches the fine detail in the experimental image in that a light band 
bordered on both sides by a dark line traverses the fringes along FG. For the stair-rod 
dipole the dark lines do not appear (Fig. l1(j)). It is concluded from this comparison 
of experimental and computed images that the step along FG is obtuse, unfaulted, 
and bounded by l [1 12] and t [II!:!] Shockley dislocations at a separation of 
approximately 60 A. 

The small loop in Figure 2 also contains a step bounded by non-edge dislocations. 
This loop lies on (111) with a step along [OIl]. Comparison of experimental and 
computed images for the 111, Ill, III, 200, 200, all, all, and 022 reflections for 
all possible values of the Burgers vector of dislocations bounding the step indicates 
that in this case also the step is obtuse, unfaulted, and bounded by l[12l] and 
t [121] Shockley dislocations at a separation of approximately 70 A. 

Because of the large amount of computation involved in positively identifying 
the Burgers vectors of dislocations at steps in complex loops, only a small number 
of cases have been treated fully. Complete computations of all possibilities resulting 
in positive identification of lOlO) Burgers vectors have been done for seven cases. 
Further, complete computations have been done for the two cases found to involve 
non-edge dislocations giving t(112) Burgers vectors in both. Several other cases 
involving edge dislocations have been partially computed, and these also suggest 
l<110) Burgers vectors. These numbers grossly overestimate the ratio of t(112) to 
l<110) Burgers vectors as a deliberate effort was made to find non-edge dislocations 
at steps. 

VI. ADDITIONAL COMPUTATIONS 

It is to be expected that only steps above a certain minimum height can be 
detected from diffraction contrast. Computations for Shockley and stair-rod dipoles 
show that steps approximately 20 A high would be difficult to detect experimentally 
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and contrast effects in computed images become negligible at step heights less than 
10 A. Thus the observed density of complex loops must be an underestimate. 

The formation of stepped loops, either by combination or by fault climb, result­
ing in extrinsic faults in the steps, is unlikely. However, it is possible that an extrinsic 
fault in a step could result from the nucleation of a vacancy loop at a completed step, 
so as to form overlapping intrinsic faults in the step. In this case, the two dislocations 
along each edge of the doubly faulted step will have tOlO) and !<1I1) Burgers 
vectors. Since these dislocations are separated only by one plane, they may be 
regarded for purposes of image computation as a single dislocation of the form 
t<332). Computations of the contrast for such combinations of intrinsic faults have 
been made in a few instances, and these images did not match the experimental 
images. 

VII. DISCUSSION 

Two points of interest relating to diffraction contrast arise from the comparison 
of experimental and computed images. Firstly, it has been observed that small 
variations in the electron beam direction may produce marked changes in the nature 
of the image and this is to be expected for the complex configuration of dislocations 
and stacking faults considered here, in contrast to the behaviour of a single dis­
location (Head, Loretto, and Humble 1967). Secondly, the computations using the 
Head-Humble technique are based on the Howie-Whelan two-beam column 
approximation (Howie and Whelan 1961), and it is of interest that this approximation 
is capable of reproducing image detail involving resolution of approximately 30 A. 

In analysing the Burgers vectors associated with the steps, image compu­
tations were only carried out for two dislocations and three stacking faults. Thus 
the possibility of two Frank loops dissociated on neighbouring planes, so as to form 
an incomplete step, was not considered as this involves four dislocations and four 
stacking faults. Whilst such a configuration may give contrast similar to that 
observed for complete steps, it would be surprising if it matched all fine detail of 
experimental images. 

The presence of stepped loops in silver and two copper-aluminium alloys 
and their absence in aluminium, indicates that low stacking fault energy is associated 
with the formation of this type of Frank loop. 

We will consider two ways in which steps may form in Frank dislocation loops. 
Both of these involve the dissociation of the Frank dislocation loops which has been 
shown to occur in these materials (Clarebrough and Morton 1969b). 

The simplest method of obtaining a step in an intrinsic Frank loop is for two 
loops on neighbouring planes to unite by dissociation of parallel edges on a common 
intersecting {Ill} plane. A Frank dislocation will only lower its energy by dis­
sociation if dissociation involves a low energy stair-rod dislocation. Thus intrinsically 
faulted steps that form in this way will always be acute and bounded by t<lIO) 
dislocations along the step edges and t<1I2) dislocations along the step risers. This 
mechanism would not be expected to operate in materials of high stacking fault 
energy such as aluminium where the dissociation would be very small, but could 
operate for the low stacking fault energy materials considered here. 
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It will be shown that a stepped loop could also result from climb of the stacking 
fault by addition of vacancies (Escaig 1963; Schapink and de Jong 1964). This 
mechanism will be favoured in low stacking fault energy materials because dis­
sociation of the Frank dislocation hinders the addition of vacancies to the edge of 
a growing loop. The lowest energy configuration for the nucleus involved in climb 
is a triangular region with edges along <llO) directions (Escaig 1963). After the 
first climb step the triangular region is bounded by t vacancy jog lines (Thompson 
1955) which may be regarded as dipoles of Shockley partial dislocations. Nucleation 
of such a climbed region is expected to occur at the edge of a loop (Escaig 1963), 
in which case one edge of the climbed region is the Frank dislocation. The climbed 
nucleus may propagate across the loop by motion of the jog lines, the addition of one 
vacancy adding a complete row of atoms to the climbed region. If the climbed nucleus 
were hexagonal, alternate sides would be bounded by t and i vacancy jog lines. 

The formation of large steps in complex loops is compatible with fault climb 
involving the nucleation and propagation of jog lines. Thus steps must occur if jog 
lines produce climb up and climb down in different portions of the loop. Union of 
such climbed regions must produce a step and continued climb will increase the step 
height, with climb at all stages involving the movement of jog lines. 

Climb of the stacking fault surrounded by a dissociated Frank dislocation 
will be considered in some detail and it will be shown that constriction is not 
necessary for fault climb. For a dissociated loop, the favoured sense for the nucleation 
of climb at a particular edge is related to the sense of the dissociation. For example, 
the favoured sense of climb at an edge dissociated below the plane of the loop will 
be above the plane. The climbed regions will be taken as having nucleated and grown 
by the addition of vacancies to give climb above and climb below the plane of the 
loop as illustrated schematically in Figure 12(a). The addition of further vacancies 
will unite the climbed regions with one another, and with the edges of the dissociated 
Frank dislocation loop, and these processes will be illustrated by reactions involving 
Shockley dipoles. The loop is on (1l1) with Burgers vector Aa* and the jog lines 
bordering the climbed regions are denoted by the appropriate Shockley dipoles. 
For simplicity in illustrating the dislocation reactions involved, the climbed regions 
are shown in Figure 12(a) as having nucleated away from the edges of the loop. 

Figure 12(b) illustrates the union of climbed regions 2 and 6 with the dissociated 
Frank dislocation. Figure 12(c) illustrates the union ofr!;lgions 2 and 6 with one another 
in th~ region of B. Union of region 2 (climb up) with the dissociated Frank dislocation 
involves the reactions 

Ca+ap = Cp, BC+CP = BP, aC+Cp =ap, 

and union of region 6 involves similar reactions. The formation of a nucleus of 
climbed fault at the edge of a dissociated Frank dislocation involves reactions of this 
type. When regions 2 and 6 meet (Fig. 12(c)), Ba and aB annihilate and the reactions 

BP+PA =BA and Ay+yB =AB 

occur to give an unfaulted step with the dislocation AB along the step riser XY 

* Thompson's (1953) notation is used to denote the Burgers vectors of dislocations. 
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Fig. 12.-Schematic illustrations of: (a) a dissociated Frank dislocation loop with alternate 
edges dissociated above and below the plane of the loop; in regions 1 and 2 fault climb is above 
the plane of the loop and in regions 5 and 6 below the plane of the loop; (b) portion of the loop 
in (a) after regions 2 and 6 have combined with the dissociated Frank dislocation; and (c) portion 

of the loop in (a) after regions 2 and 6 have combined with one another. 

and with the dissociated Frank dislocation now constricting at the new nodes X and 
Y. The dislocation AB, on (HT), probably decreases its line length by glide to lie 
along a (H2) direction. 

Figure 13 illustrates the union of climbed regions I and 2 at H (Fig. 12(a)), 

at the stage when these climbed regions first meet (Fig. 13(a)) and after the union has 
progressed to some extent (Fig. 13(b)). The reactions involved are 

CB+ BD = CD and Da+aC = DC . 

The union of region 2 with the dissociated Frank dislocation in the vicinity 
of D (Fig. 12(a)) may be considered in the following way. The shear involved in the 
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Fig. 13.-Schematic illustrations of the union of climbed regions I and 2 at H (Fig. 12(a)): 
(a) immediately after union, (b) after union has progressed to some extent. 
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Fig. l4.-Schematic illustrations of the union of region 2 with the dissociated Frank dislocation 
at D (Fig. 12(a)): (a) t vacancy jog line formed, (b) reaction between t vacancy jog line and 

dissociated Frank dislocation. 

union of 1 and 2 at H introduces a length of i vacancy jog line on region 2 at the cotner 
near D, as illustrated in Figure 14(a). The reactions between the i vacancy jog line 
and the dissociated dislocation along DC (Fig. 12(a)) and between the! vacancy jog 
line and the dissociated dislocation along DB are illustrated in Figure 14(b). For the 
i vacancy jog line we have, 

Ba+ao = Bo, aB+Bo =ao, 

and for the 1 vacancy jog line, 

Ba+aC =~C, ~C+Ca = ~a. 
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The dislocation CB in Figure 14(b) is eliminated by the reactions 

BO+ oA = BA , 

A~+~C = AC, 

CB+BA = CA, 

CA+AC=O. 

Thus the original configuration of the dissociated Frank dislocation is returned. 
All other interactions between the climbed regions and between the climbed regions 
and the dissociated Frank dislocation are similar to those already discussed. 

The final configuration of the loop after one unit of climb upwards in 1, 4, 2 and 
downwards in 5,3,6 (Fig. 12(a)) is one containing an unfaulted step on (lII) bounded 
by the Shockley dislocations Ba and aB along the step edges and the dislocations 
AB and BA along the step risers. The step may lower its energy by faulting; the 
reactions 

oB+Ba = Oa and AB+BO = Ao 

giving an intrinsically faulted step bounded by low energy stair-rod dislocations along 
the step edges and Shockley dislocations along the step risers. 

Constriction of a dissociated Frank dislocation loop is not required for fault 
climb and thus a vacancy supersaturation can be reduced by this mechanism for a 
dissociated Frank dislocation loop when addition of vacancies at the edges of the 
loop would require constriction. 

In deciding between the two models for the formation of stepped loops, the 
relatively high incidence of such loops should be considered. The formation of stepped 
loops by a combination of two Frank loops requires that dissociation is coplanar. 
This should be a relatively rare event, particularly in view of the low density of loops 
involved in the present experiments. Such an objection, however, does not apply 
to the climb model. Further, if dissociation resulting in the combination of two 
loops was the main mechanism for forming steps, a higher incidence of loops of the 
form shown in Figure 3(c) would be expected. However, the observation in Figure 3(c) 
suggests that combination of two Frank loops can occur and it is likely that a small 
proportion of complex loops may result in this way. 

Only two types of Burgers vector for the dislocations at the step edge have been 
identified in these experiments: t(1lO) corresponding to faulted steps, and t<1I2) 
corresponding to unfaulted steps. The t<1I0) Burgers vector is the only reasonable 
possibility for steps formed by the union of two loops and for the climb model this 
Burgers vector is the mO!;t likely. Unfaulted obtuse steps bordered by dislocations 
with t(112) Burgers vectors could not arise by the union of two loops, but could 
arise by climb if the climbed region departs from a triangular configuration, so that 
its edges consist of t and i vacancy jog lines. Whilst the i vacancy jog line seems 
unlikely, since it is readily converted by allowable shears to a t vacancy jog line, the 
observations of the t<1I2) Burgers vectors suggest that the i vacancy jog line has been 
stabilized. Such steps would not be expected to fault as faulting would involve 
formation of high energy stair-rod dislocations of the t<310) type. 

The configuration of the loop in Figure 5 could not arise by the union of two 
separate loops and the alternatives in this case are that the defect consists of over­
lapping Frank loops or has resulted from fault climb. The presence of a triangular 
region within the hexagonal loop is similar in appearance to the double loops 
observed in aluminium, except that in this case one edge of the triangular region is 
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coincident with an edge of the hexagon. As shown in Section V, the contrast at the 
edges of the triangular region is incompatible with overlapping Frank loops and shows 
that the two edges within the hexagonal loop are faulted steps bordered by -1(110) 
stair-rod dislocations. This configuration could only have arisen by fault climb. 

The regular forms of complex loops in Figures 5 and 8 are common and can 
result from climb up and climb down, as discussed above. For example, nucleation 
of climb in regions 1,2,5, and 6 of Figure 12(a) would lead to climb up in 1 and 2 
and climb down in 5 and 6 and further addition of vacancies to the fault would unite 1 
and 2 and 5 and 6. The final stage would be the union of i vacancy jog lines with the 
dissociated Frank along CD and EF, giving one unit of climb upwards in region 1, 4, 2, 
and downwards in region 5, 3, 6. This would produce the regular configuration of 
Figure 8. Similarly, the triangular configuration of Figure 5 could arise by climb up 
in region 1 and down in 4, 5, and 6 (Fig. 12(a)). The absorption of further vacancies 
would unite 5 and 6 and 4 and 6 with the final stage being the union of i vacancy jog 
lines with the dissociated Frank along BD and EF. Continuation of up and down climb 
processes would lead to changes in the shape of loops as the step height increased. 
This discussion in terms of a small number of climbed regions is probably over­
simplified and it is likely that the observed loop configurations arise from the inter­
action of many regions of climb. 

Since constriction of a dissociated Frank is not necessary for the absorption 
of vacancies by fault climb, this method of growing loops may be the operative one 
in materials of low stacking fault energy once the edges of the loops are sufficiently 
aligned along <llO) directions for dissociation to occur. The present experiments 
provide evidence for the theory of Escaig that fault climb can occur by the absorption 
of vacancies. 
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