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Summary 

The stability properties of two charged plate-like parallel colloidal particles 
immersed in an aqueous solution containing a 1-1 plus 2-1 electrolyte mixture is 
considered where the first-mentioned ion is the coagulating one. It is found that 
the relation between the coagulating concentrations of the two binary electrolytes 
is such as to predict a very weak mutual antagonism, even in the absence of a 
Stern inner region, when the plate potentials are above 250 mV at 25°C. 

1. INTRODUCTION 

Some colloidal systems can become unstable on addition of a sufficient amount 
of an inorganic electrolyte. When such a system is suspended in water it is called a 
hydrophobic sol since, on addition of the electrolyte, the particles of the sol crowd 
together forming a large loose cluster which eventually settles on the bottom. This 
phenomenon is referred to as flocculation or coagulation. In the present work we are 
only concerned with the coagulation of two parallel plate-like particles of infinite 
extent and so the stability of the sol depends on the electrical interactions of the two 
electric double layers at the plate surfaces, which provide a repulsive force, and on 
the van der Waals-London dispersion forces, which Hamaker (1937) proved to be an 
attraction inversely proportional to the fourth power of the plate separation. A 
study of these types of stability problems lead Derjaguin and Landau (1941) and 
Verwey and Overbeek (1948) to a criterion for the stability of binary electrolytes in 
an aqueous medium. This theory will subsequently be referred to as the DLVO 
theory of colloid stability. 

Now most colloidal systems contain a mixture of electrolytes and, since even a 
small amount of an electrolyte component can have an appreciable effect on the 
stability of the solution, the extension to electrolyte mixtures is of considerable 
importance. In a recently published review article Levine, Mingins, and Bell (1967) 
have discussed the phenomenon of coagulation of two binary electrolytes in a hydro­
phobic colloid. They indicated that the coagulating concentrations of such mixtures 
can be divided into four distinct types, the behaviour of which are shown in Figure 1. 
Curve 1 is the simplest in that it shows a linear relation indicating the additivity of 
the coagulation action of the two electrolyte components. In this case the electro­
lytes behave independently in so far as the stability is concerned. On the other 
hand, the further possibilities are superadditivity (curve 2), sensitization (curve 3), 
and mutual antagonism (curve 4). A common feature of the first three effects is 
that less electrolyte of one type is required when electrolyte of the second type is 
present, and this is predicted by the classical DLVO stability theory. According to 
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Glazman (1963), the phenomenon of mutual antagonism in the coagulation of a 
hydrophobic sol is a very complex matter having more than one source. Among 
possible factors are, for example, ion pairing as discussed by Levine and Bell (1965), 
the effect of the activity coefficient of counter-ions in the dispersion medium (see 
Kruyt 1935; Vester 1935), and the discrete-ion effect for adsorbed counter-ions as 
discussed by Levine and Bell (1965). 
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Fig. I.-Typical coagulation curves 
in an electrolyte mixture showing 
the relation between the coagulating 
concentrations of 2-1 and 1-1 
electrolytes added to a hydrophobic 
sol. The 100% mark for the 2-1 and 
1-1 electrolytes are the molecular 
densities mel and nco for which there 
is coagulation of pure electrolyte. 
The curves are schematic and show: 

1, additivity 
2, superadditivity 
3, sensitization 
4, mutual antagonism 

Although it is widely assumed that mutual antagonism cannot be explained 
by the DLVO theory alone, Glazman, Dykman, and Strel'tova (1958), Barboi (1965), 
and the present paper use this theory to show that weak antagonism can occur at 
high plate potentials. According to Barboi (1965) simple additivity should occur 
in electrolyte mixtures when the plate potential is below about 70-100 m V at 25°0. 
Jones (1966) found this conclusion to be correct for a 1-1 plus 2-2 electrolyte mix­
ture, although the experiments of Lepin and Bromberg (1939) exhibited antagonism 
for such mixtures. The difference between these two results can be explained in 
terms of the discrete-ion effect associated with the electric double layer at the 
surface of the electrolyte. This phenomenon is discussed at length by Levine and 
Suddaby (1951, 1952) and Levine and Bell (1960, 1963, 1965). Hence, it is the 
potential at, what is referred to as, the outer Helmholtz plane rather than the 
potential at the plate surface that is relevant to the stability of the sol. The effects 
of this innermost Stern Layer will be neglected in the present paper, for its inclusion 
leads to much complication and it would have the effect of increasing the potential 
at which mutual antagonism first appears. 

One of the many difficulties of the theory is associated with the type of mathe­
matical approximations used to calculate the free energy of the colloidal system. 
Thus, expansions for the free energy as found by Levine and co-workers are based 
on the assumption that either the plate potential is high or the plate separation is 
small compared with the plate thickness. Jones (1966) showed that the high potential 
approximation is not satisfactory for a pure 1-1 plus 2-1 electrolyte mixture for, 
although the first term in the series predicts mutual antagonism effects, the second 
term in the series does not. This is not surprising because of the extremely weak 
antagonism that exists at infinite plate potential (see Fig. 2). It is the purpose of 
this paper to find an exact solution of the problem that is valid at high and infinite 
plate potentials. 
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II. POTENTIAL DISTRIBUTION 

The determination of the electrical forces between two parallel plate colloidal 
particles of infinite extent and immersed in an aqueous electrolyte requires a theory 
of the electric double layer at the plane surfaces. The earliest theory of such a 
layer was developed by Gouy (1910, 1917) and Chapman (1913) but was for a single 
plane interface. In the case under consideration here there exists two such double 
layers that interact and influence each other to a larger or smaller extent depending 
on the plate separation. In the present problem it will be assumed that the two 
plates are positively charged to a potential 'Po and that they are of infinite thickness 
at a separation 2h. The ions in the diffuse layer adjacent to the interfaces will be 
treated as point charges immersed in a continuous, homogeneous medium character­
ized only by its dielectric constant E. 

We shall suppose that the medium between the plates contains n? ions of 
species i (i = 1, 2, 3, ... ) per unit volume in the bulk of the electrolyte solution 
(i.e. n? is the number of ions of type i corresponding to zero potential). Then, if the 
valency of the ions of type i is denoted by z" its charge is Zi e, where e is the magnitude 
of the electronic charge, and the condition of electrical neutrality becomes 

e ~ n?zt = O. 
(i) 

(1) 

Now at any point in the diffuse layer near the plates the mean volume density of ions 
of type i is given by the Boltzmann equation 

nj = n? exp( -Zt e'PjkT) , (2) 

where 'P is the mean electrostatic potential at the point in question, k is the Boltz­
mann constant, and T is the absolute temperature. 

The one-dimensional Poisson equation can now be written in the form 

d2'Pjdx2 = -4rrp(X)jE, (3) 

where p(x) is the charge per unit volume residing in the electrolyte of dielectric constant 
E and'P = 'P(x) is the potential distribution at distance x (I xl < h) measured from the 
median plane at right angles to the two plates, whose separation is 2 h. It follows 
from equations (2) and (3) that, for a mixture of 1-1 and 2-1 valency types where 
the divalent ion has charge opposite to that at the surface of the plates, 

p(x) = e L njZj 
i 

= en{exp( -e'PjkT) -exp(e'PjkT)}+2em{exp( -e'PjkT) -exp(2e'PjkT}} , (4) 

where nand m are the densities of the dissociated molecules in the 1-1 and 2-1 
electrolytes respectively. This equation forms the basis of the Gouy-Chapman theory 
of the electric double layer. The "thickness" of this layer is usually represented by 
the Debye-Hiickellength IjK, where 

K = (47Te2 jEkT) ~ n?zr = (87Te2 jEkT)(n+3m) (5) 
(i) 

in the case under consideration. 
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We can now integrate equation (3) but before doing so it is convenient to 
introduce the parameters 

6 = Kx, Y = exp( -e'P/kT) , Yo = exp( -e'Po/kT) , Ym = exp( -e'P m/kT) , 

where 'Pm is the potential at the median plane. The first integral may then be 
expressed in the form 

dy/d6 = -Q(y) , (6) 
where 

(7) 
and 

c = 3m/(n+3m) , 

c being a measure of the relative concentrations and having the value 0 for a pure 
1-1 electrolyte and the value 1 for a pure 2-1 electrolyte. Now 

Q2(0) = tc :> 0 and Q2(1) = t(l-y;;;2){(3-c)Ym+c} <;; 0, 

so that Q(y) has three real zeros Ym' PI> and P2 which must satisfy the inequalities 

P2 < 0 < Yo <;; Y <;; Ym < 1 < Pl' 
In fact 

PI} = 3(I-C)Ym+c±[{3(I-c)YmtcP+4C(3-C)!Im]', 
P2 2(3-c)Ym 

where the positive sign corresponds to PI and the negative sign to P2' Finally we can 
integrate (6) to obtain 

fYm Kh = dy/Q(y) . 
Yo 

(8) 

This last equation is an expression for the potential at the median plane and may 
be written in terms of Legendre elliptic integrals of the first kind. Thus, if we 
make the substitutions 

ki = {(Ym -P2)/(PI-P2)}t 

equation (8) becomes 

with 

and 

and 

I1F(<fo,k) - F(t7T,k) -F(<fo,k) , 

(9) 

(10) 

where F(<fo, k) is the elliptic integral of the first kind as defined in Byrd and Friedman 
(1954). 

In the case of a pure 1-1 electrolyte (c = 0) this reduces to 

Kh = 2Y:n I1F(<foo, Ym) , 

a result obtained by Langmuir (1938). On the other hand, for a pure 2-1 electro­
lyte (c = 1) 

Kh = {6/(PI-P2)}'I1F(<foo, Ym), 

in agreement with Corkill and Rosenhead (1939) and Levine and Suddaby (1951). 
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III. GENERAL EXPRESSION FOR INTERACTION ENERGY 

The classical electrostatic energy per unit area of the two plates is, according 
to Bottcher (1952), given by 

Ee(h) = (€/47T) f: (dlJ'/dx)2 dx, 

which on applying equations (6) and (7) leads to 

fym Ee(h) = (€K/47T)(kT/e)2 Q(y)/y2 dy. 
Yo 

(11) 

In order to express this in terms of the elliptic integrals we shall integrate (11) by 
parts and then make the transformations (9) and (lO). It follows that 

Ee(h) = (€K/47T)(kT/e)2{Q(yo)/Yo +t(3-e)I1-a2I 2 +t(l-e)I3} ' 
where 

a2 = (I_Yo1)2{(I-tc)Ym+te}+2-c > 0, 

fYm 11 = y/Q(y) dy 
Yo 

= 2P1{(P1-P2)(I-te)}-! flF(</>o, k1) -2{(P1-P2)/(I-ic)}1 flE(</>o, k1), 

and 

with E(</>, k) and II(</>, 8, k) the Legendre elliptic integrals as defined by Byrd and 
Friedman (1954), 

flE(</>, k) = E(t7T, k) -E(</> , k) , flII(</> , 8, k) = II(t7T, 8, k) -II(</> , 8, k) , 
and 

8 = (P2-Ym)/P2 > 1 

Combining the above equations, we obtain 

as P2 < O. 

Ee(h) = (EK/47T)(kT/e)2{Q(yo)/Yo -3w flE(</>o, k1)}+{(3 -e)P1 -2a2}w-1 flF(</>o, k1) 

where 
(12) 

When we take the limit as h -+ 00, Ym -+ 1 and hence equation (7) becomes 

Q(y) -+ (l-y)f(y) with f(y) = {tc+(I-tc)y}!. 

The electrostatic energy corresponding to infinite plate separation then becomes 

Ee(oo) = (€K/47T)(kT/e)2f 1 {(I-y)/y2}f(y) dy 
Yo 

(13) 

where 

(14) 
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Again considering the limiting cases, we have for a pure 1-1 electrolyte 

(15) 

which is in agreement with the formula of Levine and Suddaby (1951); while for a 
pure 2-1 electrolyte we have 

Ee(oo) = (EK/47T)(kT/e)2[{(l+2Yo)3/3y~}1-3], 

which agrees with Levine and Suddaby (1952). Each of these equations is used in 
the following work. 

According to Levine (1951) and Levine and Bell (1960), the free energy 
associated with the electric double layers of the two plates can be expressed by the 
equation 

F(h) = -Ee(h) -2 f: P-Po dx, (16) 

where P-Po is the difference in the ideal (osmotic) pressures due to the thermal 
motion of the ions at any point x in the diffuse layers and hence 

(17) 

where nO and mO are the densities of the dissociated molecules corresponding to zero 
potential. Now, since the field at the median plane is zero, the double layer force 
of repulsion per unit area can be expressed in the form 

(18) 

where the derivative with respect to h is taken at constant plate potential 'Po and 
n(m) and m(m) are the molecular densities at the median plane x = O. The first 
form was derived by Verwey and Overbeek (1948) and the second independently by 
Frumkin and Gorodetskaja (1938) and Langmuir (1938). From the Boltzmann 
equation and (16), (17), and (18) it now follows that 

and the double layer pressure is 

The interaction energy is therefore 

because hPe(h) ---i>- 0 as h ---i>- O. 
In the DLVO theory of colloidal stability we must take into account the van 

der Waals attraction between the plates as well. If the thickness of the plates is 
large compared with h, the energy of attraction per unit area takes the particularly 
simple form 

W(h) = -A/487Th2, 

where the constant A depends on the material of the plates and on the dispersion 
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medium in which the plates are immersed. The derivation of this result is to be 
found in Derjaguin and Landau (1941) and Verwey and Overbeek (1948). Following 
these authors we find that the resultant interaction energy per unit area of the two 
plates is 

U(h) = F(h) + W(h) -F(oo). 

IV. COAGULATION CONDITIONS 

In the DLVO theory the limit of stability of a colloid is assumed to be reached 
when the force of repulsion just exceeds the van der Waals attractive forces between 
the plates and this leads to the coagulation conditions 

oU(h)/oh = 0 and o"U(h)/oh2 = o. 
However, it is felt that the criterion of a zero potential barrier between the plates 
describes the threshold of rapid coagulation and this criterion will be used here. 
Thus, the coagulation conditions are 

U(h) = 0 and oU(h)/oh = o. 
Since the double layer force of repulsion per unit area is given by equation (18), it 
appears that the second coagulation condition may be written in the form 

while the first becomes 

that is, 

If we introduce the Debye-Huckel parameter and use equation (18) then the 
coagulation conditions take on the form 

K = (6E/A)(kT/e)2(Kh)3a(Ym, c), (19a) 

where 
a(Ym' c) = (l-c)(Ym+y;,1-2)+lc(y;,2+2Ym-3); (19b) 

and 
3Kha(Ym, c) +4(EK/4-rr)(kT/e)2h(Yo,Ym' c) = 0, (20a) 

where 
Ee(h) -Ee(oo) = (EK/4-rr)(kT/e)2h(Yo,Ym' c) . (20b) 

The second of these conditions (20) leads to a determination of the potential 
'Pm at the median plane, while the first condition (19) gives the values of the con­
centrations m and n corresponding to coagulation at a given Yo. 

One of the difficulties associated with these formulae is that the electrostatic 
energies Ee(h) and Ee(oo) each contain a term that behaves like {t(I-c)/lc}logyo 
at high plate potential (i.e. at Yo = 0) where mutual antagonism is most likely to 
occur. To overcome this difficulty we shall now develop a formula appropriate to 
infinite plate potential. 
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V. EXPANSIONS AT HIGH PLATE POTENTIAL 

From equations (12), (13), (14), and (20a) it follows that 

h(yo, Ym' c) = Q(yo)/Yo -3wtJ.E(cPo, k1) +{(3 -c)Pl-2a2}w-1 tJ.F(cPo, k1) 

+{(I-c)/wP2}Ml(cPo, 8, k1) +3-(2+yo1)f(yo) +G. 

In order to find the solution corresponding to infinite plate potential, it is necessary 
to evaluate 

lim h(yo, Ym' c) . 
Yo----*O 

The proof of the existence of this limit is given in the next section. Since a consider­
able amount of algebra is required to obtain this limit only the result is given here. 

To begin, we make the transformations 

cosec2B = (82-kl)/(82-1), 

sin 2cPl = (1-sin 2cPo) / ( 1-ki sin 2cPO) 

-+ sin2B as Yo -+ 0, 
and 

k;' = (l-kf)t. 

Ultimately we find that, in the notation of Byrd and Friedman (1954), 

lim h(yo, Ym' c) = 3-(3c)t+(3c)t/Pl -3wE(B, k1 ) +{(3-c)Pl-2a2 
Yo----+O 

where 

and 

1 _, if.) sin22iw(B) 
+(I-cK3c) , ~'{ (4') lr i=l 1 exp lq-

Z(B, k) = E(B, k) -E(k) F(B, k)/K(k) , 

w(B) = 7TF(B, kl)/2K(kl) ' 

(21) 

(22) 

(23) 

We are now in a position to calculate the coagulation relations corresponding 
to infinite plate potential. The results of this calculation are shown in Figure 2. 

Equation (21) has also been used by Jones (1966), who developed the formula 
further by finding the term of order Yo' He showed that the extra term is such that 
it fails to predict the phenomenon of antagonism at high plate potentials. This is 
not surprising since the degree of mutual antagonism is extremely small at infinite 
potential. This type of expansion in terms of elliptic functions is quite a well­
established technique and was developed in a series of papers by Levine and co­
workers (Levine 1951; Levine and Suddaby 1951, 1952; Levine and Bell 1960, 
1962, 1963, 1965) and by Barboi (1965). It has the advantage that tables of elliptic 
integrals may be used in the numerical work; however, with the advent of electronic 
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computers a more direct approach to the numerical work can be undertaken. With 
this fact in mind we shall use an alternative method that is valid at high and infinite 
plate potentials. 
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Fig. 2.-Coagulation curves for a 2-1 
plus 1-1 electrolyte mixture in a 
hydrophobic sol at potentials 
e'PolkT of 1, 7, and 00. At infinite 
potential (00) very weak antagonism 
occurs with a maximum at 
mlme' = 1· 00015, nlneo = O· 00181; 
at intermediate potential (7) there is 
sensitization; at small potential (1) 
there is superadditivity. 

VI. AN EXACT SOLUTION AT HIGH PLATE POTENTIALS 

The crux of the problem lies in the fact that the difference Ee(h)-EkXJ) as 
defined by equations (ll) and (13) has a singular point at Yo = O. To overcome 
this complication we can make use of the identity 

{Q(y)-(1-y)f(y)}fy2 = -(1-y;;/)2{tc+(1-ic)Ym}f{Q(y)+(1-Y)f(y)} , 

so that 

h( ) - (1 -1)2{1 +(1 1) } (fyrn dy + fl (l-y)f(y) d ) 
yo,Ym,C - - -Ym aC -3C Ym Yo Q(y)+(l-y)f(y) Yrn y2 y. 

(24) 

In this form both the integrals are well behaved at infinite plate potential but it is no 
longer possible to expand the integrals in terms of Legendre elliptic integrals. 

If we now make use of the second coagulation condition given by (20) then we 
can find the potential at the median plane (given in terms of Ym) as a function of 
Yo and c. This relationship is shown in Figure 3. Finally, the coagulation curve 
(Fig. 2) can be found by using the first coagulation condition (19) which can be more 
conveniently written in the forms 

(25a) 
or 

(25b) 

VII. RESULTS 

The computations are carried out in two stages. Firstly we solve equation 
(19a) for the potential at the median plane (i.e. for Ym) and we then use this value to 
calculate the densities of the dissociated molecules as given by (25a) and (25b). 
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As a check on the numerical work, the coagulation curve corresponding to infinite 
plate potential is obtained from the two sets of equations (24)-(25) and (20a). These 
methods give precisely the same result. On the other hand, at finite plate potentials, 
the author computed the gradient of the coagulation curves by the method of 
finite differences and compared this with an analytical expression found by a direct 
differentiation (the equations so found are extremely complicated and are not given 
here). The two methods agree and enable us to calculate the critical potential above 
which mutual antagonism occurs. One important point not mentioned so far is 
that equation (21) has an apparent singularity at c = 0 and thus it was found 
convenient to use equation (15) in the appropriate place. This intricate method of 
calculation was considered necessary in view of the very weak antagonism corres­
ponding to infinite plate potential. 
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Fig. 3.-Variation in potential at 
the median plane, 'l'm. given as a 
function of the coagulating 
concentrations. The curves show 
values of Ym = exp( -e'l'm/kT) 
versus c = 3m/(n+3m) at plate 
potentials e'l'o/kT of 1(0'5)3 and 00. 

In the determination of n aw', m from equations (25a) and (25b) there is an 
unknown factor 

d = 3€3(kT)5/21TA2 e6. 

Thus, for a pure 1-1 electrolyte we may write 

n = nco = da(Ym' 0) (Kh)6 , 

while for a pure 2-1 electrolyte we may write 

m = mel = da(Ym, 1) (Kh)6, 

at c = 0, 

at c = 1. 

These data were used to draw the coagulation curves of Figure 2, which relate 
nlnco to mlmel at various plate potentials. 

On examination of Table 1 it appears that, at infinite plate potential, the 
value of Ym at c = 0 is precisely the square of the value of Ym at c = 1. This is to be 
expected since there would be twice as much charge at the median plane for a pure 
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2-1 electrolyte as there would be for a pure 1-1 electrolyte. However, at finite 
potentials not all the negative ions are absorbed on the plate surface and this simple 
relation cannot hold. 

The last column of Table 1 shows the variation in the gradient of the coagu­
lation curve at c = 1 with plate potential. It is seen that the slope is small and 
positive for potentials above 5·9140kT(::::250 mV at 25°0) and hence .that a very 
weak antagonism exists for these potentials. 

TABLE 1 

VALUES OF MOLECULAR CONCENTRATIONS AND GRADIENT OF COAGULATION CURVE AT C = 1 FOR A 

PURE 1-1 AND PURE 2-1 ELECTROLYTE AT VARIOUS PLATE POTENTIALS 

The data show that a very weak antagonism, even in the absence of the Stern inner region, can 
occur at potentials above 5·9140kT 

elPmlkT Ym at C = 0 neold Ym at c = 1 mdd (neolme1}dm/dn 

00 0·0870 176·3084 0·2949 2·5552 0·1634 
7 0·1045 136·4571 0·2959 2·5354 0·0839 
6·5 0·1095 127·0268 0·2965 2·5226 0·0520 
6 0·1159 115·9305 0·2976 2·5016 0·0078 
5·9140 0·1172 103·8758 0·2978 2·4974 0·0000 
5·5 0·1242 103 ·1665 0·2992 2·4676 -0·0520 
5 0·1350 88·8928 0·3020 2·4125 -0·1308 
4·5 0·1491 73·4869 0·3064 2·3249 -0·2304 
4 0·1678 57·5773 0·3136 2 ·1883 -0·3497 
3·5 0·1927 42·0542 0·3251 1·9824 -0·4833 
3 0·2265 27·9667 0·3432 1·6882 -0·6209 
2·5 0·2729 16·3519 0·3716 1·3012 -0·7490 
2 0·3378 7·9458 0·4155 0·8524 -0·8545 
1·5 0·4294 2·9003 0·4836 0·4241 -0·9297 
1 0·5597 0·6385 0·5892 0·1267 -0·9744 

A further calculation shows that the gradient of the coagulation curve at 
c = 0 is less than -1 for potentials below about 135 mV at 25°C. It follows that 
there is sensitization for potentials in the range 135-250 m V and that for smaller 
potentials there is superadditivity. The predicted antagonism seems generally much 
weaker than that observed experimentally by Watelle-Marion (1960); nevertheless, 
the above analysis does show that a crude model which neglects the effects of the 
Stern inner region can exhibit mutual antagonism. This phenomenon is, therefore, 
a characteristic of the electrolyte mixture which is emphasized by the electric 
boundary layer. 
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