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Summary 

An analytical treatment of space charge effects in the Townsend-Huxley 
swarm technique is given. The general case of a mixed swarm of equally charged 
ions and electrons drifting through a gas in which attachment is possible is con­
sidered. The case of a pure electron or pure ion swarm is treated as a particular 
case of the general one. The main result is an expression for R(r,z), this being the 
ratio of the current collected by a disk of radius r, in the plane z = z, to the total 
swarm current. This ratio is determined as an explicit function of DIp-, the total 
current, the electron (or ion) current, and the attachment coefficient. It is shown 
that space charge effects can be of importance for large currents, low E Ip, and low gas 
temperatures. Moreover, in practice such effects are only likely to be of interest 
in thermal swarms. 

1. INTRODUCTION 

Under certain conditions, space charge effects may be of major importance in 
the Townsend-Huxley swarm technique. At first sight this is a surprising statement, 
since in this technique the swarm currents are only of the order of 10-13_10-12 A. 
However, the fact that such effects can be significant is readily understood from 
the following argument. It is to be expected (confirmed in Section IV(c)) that the 
ratio /),,1>jV is a measure of the magnitude of space charge effects in the Townsend­
Huxley technique. /),,1> is the potential, due to space charge, between the axis and some 
characteristic radius of the swarm and V is the mean thermal energy of a particle 
in the swarm. For large values of this ratio the lateral spreading of the beam is 
determined by space charge effects, while for small values diffusion processes dominate. 
Apart from a geometrical factor, /),,1> is proportional to N, where N is the number of 
particles per unit length. Again, the swarm current I is of order New, w being the 
drift speed and e the particle charge, and it follows that /),,1>jV is proportional to 
IjwV. Obviously, for a given gas temperature and current this ratio may be made 
as large as desired by making w, that is, Ejp, sufficiently small. Expressed in physical 
terms, the lower the value of w the larger the value of N and thus of /)"1>. 

In general, the ratio Ijw V defines those conditions for which space charge 
effects may be important. They are large currents, low E jp, and low gas temperatures. 
Again, due to the inverse dependence of this ratio on w, it is clear that for a given 
Ejp such effects will be much greater in an ion swarm than in an electron swarm. 
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In a general mixture of equally charged electrons and ions N = Ni+Ne , 

where Ni and Ne are the ion and electron line densities respectively. That is, /1cp is 
proportional to (Ii/Wi +Ie/we), where Ie and Ii are the electron and ion currents, 
and We and Wi the respective drift speeds. Since wdwe is of the order of 10-2, it 
follows that the ion current need only be a small fraction of the total current for the 
space charge field to be almost entirely determined by the ions; that is, in an electron 
swarm "contaminated" by ions marked space charge effects can occur, the fields 
associated with the relatively slow moving ions being sufficient to perturb the faster 
moving electrons. Such contamination occurs in an electron swarm moving through 
a gas in which attachment phenomena are possible. 

In practice, space charge phenomena need not invalidate experimental accuracy. 
The presence of such effects is easily recognized, various parameters such as D / /h 

exhibiting an apparent current dependence, and limiting values as the current tends 
to zero may be readily determined. Even so, a detailed and accurate analysis of the 
phenomena is warranted. There are two main reasons for this. The first is to 
guarantee that any experimentally observed current dependence can be adequately 
explained in terms of space charge effects. The second is that the results of such a 
treatment can be used to determine drift speeds and attachment coefficients at low 
values of E/p and at low temperatures. 

In the subsequent analysis, the general case of a swarm of equally charged 
electrons and ions drifting through a gas in which attachment is possible is treated, 
the case of a pure electron or pure ion swarm being simply a particular example of the 
general one. In the following section, the basic equations are discussed. These are 
complex and nonlinear, and certain approximations are inevitable. These 
approximations are introduced in Section III and a solution to the problem is 
obtained. Since the usefulness ofthe results is obviously dependent on their accuracy, 
the limitations imposed by the approximations are discussed at some length in 
Section IV. Also in that section, the real physical conditions for which space charge 
effects are likely to be of importance are considered. Finally, in Section V, the 
main results and conclusions of the analysis are briefly summarized. 

Wherever applicable, an MKS system of units is used. Again, certain references 
are made to Watson's (1944) text on Bessel functions. Such references are denoted 
by WBF followed by the appropriate page number. 

Applications of the results of this analysis are to be given elsewhere (Crompton, 
to be published). 

II. GENERAL 

(a) Statement of the Problem 

The essential elements of the experimental arrangement are shown in Figure 1, 
details being given by Crompton and Jory (1962). The diffusion chamber is bounded 
by two plane electrodes separated by a distance h. The anode is circumferentially 
split at a radius b. The axial electric field Ea is maintained at a uniform value at 
a radius c by means of suitably placed additional electrodes. For theoretical purposes 
the radius c is assumed to be infinite. 
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Electrons are generated by a heated filament and enter the diffusion chamber 
through a small hole in the cathode. In the absence of space charge effects and 
attachment processes these electrons drift towards the anode, diffusing radially 
in transit. The experimental results are given in terms of R, the ratio of the current 
received by the central anode disk to the total anode current, as a function of Elp. 
From this ratio the electron diffusion coefficient, and hence the electron temperature, 
may be deduced. 

For large electron currents or very low Elp, space charge effects become 
important, radial spreading of the swarm being appreciably greater than that due to 
diffusion alone. In the presence of negative ions this effect is enhanced, the relatively 
slow moving ions leading to a degree of charge "accumulation". 

I ~ 2b ~I Anode 

L 
Gas at pressure p 

l~ h 

(0,0) 
--------------L-lr----c~a-t~hOd~e--h-OI-e----------~c-a~th-O~d-e--

II Filament 

Fig. l.-Experimental arrangement and geometry. 

Therefore, for electrons drifting through a gas in which attachment is possible, 
the ratio R besides being a function of Elp is also a function of the attachment 
coefficient a and the total current I. The prime object of the subsequent theory is 
to determine this function. 

(b) Basic Equations 

The basic equations governing the drift and diffusion of the electrons are the 
continuity and flux equations 

divje = -a'ne (1) 
and 

j e = ne fLe E -De grad ne , (2) 

where je is the electron flux density, ne the electron number density, a' the attachment 
coefficient, fLe the electron mobility coefficient, De the electron diffusion coefficient, 
and E the electric field vector. It is assumed that the electron temperature (and 
hence a', fLe, and De) is uniform throughout the diffusion chamber. 
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The electric field vector may be written as the sum of two components 

E = Ea+Es, 

where Ea is the applied uniform axial electric field, and Es is the field due to space 
charge. For the cylindrically symmetric problem considered here, 

Ea (0,0, Ea); Es - (Esp 0, Esz) . 

On substituting equation (2) in (1), a diffusion equation for the electrons may 
be obtained. This is 

1 a (one) o2ne 2' one 2 ' 2Ae{1 a (( E)) a ( E)} ror rar + OZ2 - lIeTz - aile ne = Ea ror r ne sr + OZ ne sz , (3) 

where 

Ae = we/2De, We = f-LeEa, a = ai/We. 

A similar equation may be obtained for the negative ions, this being 

1 a (ani) o2n; ani , We 2A;{ 1 a ( ) a ( ) } 
ror rar + OZ2 -2A; OZ +2all; Wi ne = Ea rar r(n;Esr) + az njEsz , (4) 

where the definitions of A;, n i , and W; correspond to those given for the electrons. 

The term 2aAe ne in equation (3) accounts for the loss of electrons due to 
attachment processes, while the corresponding term in equation (4) accounts for 
the gain in ions due to the same processes. 

To obtain a closed set, it is necessary to include with equations (3) and (4) 
the Poisson equation 

~:r(rEsr) + :z(Esz) = (ni+Ene)ee, (5) 

where E is the permittivity of the medium, and ee is the electronic charge. 

(c) Boundary Conditions 

Equations (3), (4), and (5) have to be solved subject to certain boundary 
conditions. Provided thermal velocities are appreciably greater than drift velocities, 
an appropriate set of boundary conditions for the electrons is (Hurst and Liley 1965, 
Section III(c)) 

ne finite, jeAr,O) = !ne(r,O)we+Pe(r, 0), ne(r,h) = 0. 

Pe(r, O) is the axial source term. For the problem in hand this is a point source at 
the origin (0,0) and 

Pe(r,O) = p'(r, 0) 8(r) , 
where 

fro I 

277 0 p(r,0)8(r)rdr =P. 

P is the total axial flux at the source hole. 

Similar boundary conditions apply to the ions. 

With respect to equation (5), the relevant boundary conditions ate not discussed 
since they are not needed. 
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(d) The Ratio R(r, z) 

It is convenient to define a general ratio R(r, z) by the, relation 

R(r,z) = Re{r,z)+Rj{r,z), 
where 

Re{r, z) = (27T/1) J: ee jez(r, z) r dr 

and 

Ri{r, z) = (27T/1) J~ ee ji.(r, z) r dr, 

I being the total swarm current. 

III. THE RATIO R{r, z) 

(a) An Equation for R{r, z) 

531 

(6) 

(7) 

(8) 

In order to simplify the mathematics certain approximations will be made. 
In particular it will be assumed that both diffusion and space charge effects in the 
axial direction may be neglected. The limitations imposed by these approximations 
on the validity of the final results are discussed in Section IV. Subject to the 
approximations, equations (3), (4), and (5) become 

1 a (one) 2 \ one 2 \ 2\ 1 a (( E)) 
ror rar - I\eaz - al\e ne = Ea ror r ne sr , (9) 

1 a ( ani) ani We 2'\i 1 a ( E) 
-3""" r:;;- - 2.\; :;;- + 2a'\i - ne = -E -::I r( nj sr) , 
rur ur uZ Wi a rur 

(10) 

and 

~:r(rEsr) = {ni+ne)ee/€, (ll) 

while 

jez = neWe; jiZ = njwi · (12) 

These equations can be rewritten in terms of Rand Re. 

Integration of equation (ll), after some rearrangement in which equations (12) 
are used in (6) and (7), gives 

EST = _I ~{R-(l- Wi)Re}. (13) 
27T€W i r we 

Again, noting that ne can now be expressed in the form 

I loRe 
ne=----~, 

27Tee We r ur 

multiplication of equation (9) by r and integration over the range 0 to r gives 

r~(~ORe) -2,\ aRe -2,\ aR = 2,\ EsroRe. (14) 
or r or e OZ e e e Ea or 

Similarly, on multiplying equation (10) by rWj and integrating from 0 to r an 
equation for Ri may be obtained. Adding this equation to (14), which is then used 
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to eliminate all terms in a, an equation for the total ratio R may also be obtained. 
This is 

r~(~OR)_2,\.OR = 2,\ EsroR _(~_I)r~(~ORe). 
or r or 1 OZ 1 Ea or'\e or r or 

(15) 

Using equation (13) to eliminate EST from (14) and (15), the problem is reduced 
to one of finding a solution of two simultaneous second-order partial differential 
equations. In general, further simplification is impossible. If, however, 

'\i = '\e - '\, (16) 

reduction to a single equation readily follows. Since, as implied in the Introduction 
and further discussed in Section IV, imposition of this condition is unlikely to limit 
the practical usefulness of the results, the subsequent analysis is restricted to this 
one particular case. Subject to (16), equation (15) becomes 

r~(~ OR) -2,\ oR = 2'\ EsroR. 
or r or OZ Ea or 

(17) 

Referring now to equation (14), if the substitution 

Re = exp( -az) Reo 

is made, then it is found that Reo satisfies exactly the same equation as R, namely, 
equation (17). Therefore, since R and Reo will satisfy identical boundary conditions, 
it follows that 

Re = feo exp( -az) R, (18) 

where feo (a constant) is that fraction of the total current carried by the electrons 
at z = 0 (r = 0). 

Using this result in equation (13), and eliminating EST from (17), a single equa­
tion determining R is obtained. This is 

o (1 oR) oR { }ROR r- -- -2'\- = 2y 1-,8exp( -az) --
orror OZ ror' 

(19) 

where 
,8 = f.o(l-wi /we ) (20) 

and 
y = ,\I/27TEWi E a · (21) 

Finally, certain particular cases of this equation should be noted. For a = 0, 
equation (19) also applies to a general swarm of equally charged ions and electrons, 
with the limiting cases of a pure electron swarm for feo = 1 and a pure ion swarm 
for feo = O. 

(b) Transformation to Integral Form 

The imposition of boundary conditions on the solution of equation (19) is most 
easily performed by transforming this equation to integral form. On introducing 
a flux density J, defined by 

R = 27T f~ J r dr, (22) 
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differentiation of (19) with respect to r leads to the equation 

10(OJ) OJ r:ar r or -2A oz = -47Tp(r, z) , (23) 

where 

p(r,z) = -- l-,Bexp(-az) -- -- . y { }1 0 (ROR) 
47T2 ror r or 

(24) 

Equation (23) is a standard type of diffusion equation with a continuously distributed 
source term. 

If instead of being given by (24), p(r, z) is given by 

p(r, z) = 8(r) 8(z) , 
where 

27T J: 8(r) r dr = 1, 

then a solution of (23) is 

J1(r, z) = Z-l exp( -Ar2j2z); z >0. 

Similarly, for a point source of unit strength at the point (r', ()', z') a solution is 

g(r, (), z; r', ()', z') = Z-l exp( -AR2j2Z) , (25) 
where 

R2 = r2+r'2-2rr' cos(()-()') 
and 

Z=z-z' (>0). 

Therefore, for a source of strength p(r', z') r' d()' dr' dz' the contribution to J 
at the point (r, (), z) is 

8J p = p(r', z') gr' d()' dr' dz' 

and the total flux density due to all such sources is 

Jz Jro J2?1 Jp(r, z) = 0 0 0 p(r', z') gr' d()' dr' dz' . (26) 

Since p is independent of (), integration over ()' is straightforward. Noting that 
(WBF, p. 79) 

10(x) =7T-1 J~exp(xcos())d(), 

on substituting (25) for g in the integral (26) 

fz fro ( r2 +r'2) (rr') Jp(r, z) = 27T 0 0 p(r', z') Z-lexp -A-----zz- 10 Z r' dr' dz' . (27) 

With p given by (24) this is a "solution" of equation (23). However, to this solution 
a further term, corresponding to the real point source at the origin (r' = 0, z' = 0) 
must be added. Apart from a constant this term is given by (25) and 

J(r, z) = (Ajz)exp( -Ar2j2z) +J p(r, z) . (28) 
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Inserting this expression for J in (22) leads to an integral equation for R. 
Furthermore, since R(oo, 0) = 1 while Jp(r, 0) = 0, the constant A may be determined 
from this equation and 

R = {1-exp( -V)}+27T J~ Jp(r, z) r dr, (29) 

where 

v = Ar2 j2z 

and p is given by (24). 

(e) Solution for Small y 

(30) 

In most cases of practical interest y is a small quantity. Therefore, in seeking 
a solution of (29) we expand R as a power series in y, that is, we put 

00 

R = ~ ynRn. (31) 
n~O 

On substituting this expression for R in equation (29) and equating powers of y, 

Ro = {1-exp( -v)}, 

Rn = -An(r, z) 

where from equations (29), (27), and (24) 

n:> 1, 

I, ·z 
An(r, z) = 0 j 0 Z-l{I-f3 exp( -az') }exp( -Ar2j2Z) F nCr, Z) dz' r dT, 

_ 1 ICO (Ar'2) [ a {I a ( ) }] (Arr') , Fn(r,Z) - 2" 0 exp - 2Z or' 701" ~ RsRn- 1- s 10 Z dT, 

(32) 

(3:3) 

(:34) 

(35) 

it being understood that for k -=1= 0, R_ 1c = O. Therefore, as inspection confirms, 
Rn may be determined in terms of R n- v Rn- 2, ... Ro and hence a complete solution 
may be found. However, as pointed out in Section IV, a solution to first order 
in y is adequate and to this approximation 

R = {1--exp( -v)}-yAv (:36) 

the relevant F 1 integral being 

F - 1100 (Ar'2) [0 f1 a (1 (,))2}]1 (Arr') d.' 
1 - 2" 0 exp -- 2Z 01"\7 or' --exp -v 0 Z 1. (:37) 

Using the integral (WBF, p. :39:3), 

J: lo(at) exp( _p2t 2) t dt = (lj2p2)exp(a2j4p2) , 

integration over 1" is straightforward and Fl is readily determined. Substituting 
the result in (34) and reversing the order of integration, i.e. integrating over l' first, 

_ IZ I--f3exp( -az'){ ( z')}, A 1(I',z)=exp(-v) , l-exp -v:---) ~, dz. 
o z ~Z-···" 

(:38) 
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Making the substitution 
Z' = 2zy/(v+y) , 

AI(r,z) may be rewritten as 

JV { (-2aZY)}1-eXp(-y) AI(r,z) = vexp( -v) 0 l-,8exp v+y __ 1 __ ' \ dy. (39) 

To evaluate this integral it is necessary to expand the integrand in powers 
of 2az. On doing this it is found that 

00 (_l)n 'n 
AI(r, z) = (l-,8)aIO(v) -,8 ~ -,- aln(v) (2az) , 

n=l n. 
(40) 

where the coefficients aln(v) are given by 

aln(v) = vexp( -v) J: yn-l{l-exp( _y)}/(y+v)n+l dy. (41) 

As shown in the Appendix, these integrals may be reduced to tabulated form, 
the first four being 

a lO = {l-exp( -v)}ln2 +E(O, v){l+exp( -v)}-E(O, 2v), 

an = v{ln2 +E(O,v)-E(O,2v)}-texp{-v){1-exp(-v)} , 

a l2 = an (1 +tv) +texp( -v ){l-exp( -v)} -texp( -v) v , 

(42) 

(43) 

(44) 

al3 = an (l +v+iv2)+l4{5+v)exp( -v){l-exp{ -v)}-2~(9+2v)exp( -v) v, (45) 
with 

E{O, x) = J~ {l-exp( -u)}/u du (46) 

being a tabulated function (Harvard Computation Laboratory 1949). 

At first sight these coefficients and the corresponding series appear disappoint­
ingly complicated. However, due to the alternating character of the series, for 2az 
of the order of unity or less convergence is rapid and only the first few terms need 
be retained. In fact, as will be shown, the series may be approximated by a simple 
exponential function. 

From the integral expressions (41) for the coefficients, comparison of the 
integrands over the range of integration shows that 

a ln+l < taln. 

Therefore, for 2az of the order of unity or less, neglect of all terms in the series higher 
than the nth involves an error no greater than 

Iff _ aln+1 (2az)n 1 
n - ~ (n+1)! < 2n(n+1)! (2az)n. (47) 

In particular for n = 3, 2az <; 1, the error is already less than 1 %. In fact, as will 
be seen, the real error is even smaller than this. Noting that for small x 

E(O, x) ,....., x, (48) 

it can be shown from the expressions given for an, a12, and al3 that as v -+ 0 

al2/an -+ o· 35( ... ); a13/a12 -+ o· 39( ... ) . (49) 

Furthermore, on calculating these ratios for other values of v it is found that they 
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are surprisingly constant over a wide range, at least over the range v = 0 to v = 2, 
differing by only a few per cent from these limiting values. Therefore, in particular, 
from (47) 

tff3 = ~4~(2az)3 = ~4a13~2~(2az)3 < 0.02(az)3, 
a n 4! a13 a12 an 4! 

and even for az = 1 the error involved in neglecting all terms higher than the third 

TABLE 1 

PARTIAL TABULATION OF COEFFICIENTS a 10 AND an 

v a1O(v) an(v) v a1O(v) an(v) 
-

0·00 0 0 1·00 0·2085 0·0542 
0·05 0·0326 0·0091 1·20 0·1977 0·0507 
0·10 0·0614 0·0170 1·40 0·1824 0·0462 
0·20 0·1087 0·0298 1·60 0·1651 0·0413 
0·40 0·1707 0·0462 1·80 0·1472 0·0364 
0·60 0·2012 0·0538 2·00 0·1299 0·0317 
0·80 0·2115 0·0557 

- -- ----

is only of the order of 2%. Because of this A1(r,z) may be reduced to a relatively 
simple expression. The series term may be rearranged to read 

However, 

an an { ~ (( _l)n a12 a1n (2az)n) } . 
a12 n=l n! an an 

a12 a12 = (0.35)2, 
an an 

a12 a13 = (0.35)2(0.39) ~ (0·35)3, 
an an 

(50) 

and, to the degree of approximation required, it may be assumed in general that 

~na12 = (0.35)n. 
~l~l 

This means that the series (50) may be approximated by 

(an !a12)an {exp( -0· 7 az)-l} = 270an{exp( -0·7 az)-l} 

and that 
A1(r,z) = (1-,B)alO+27°,Ban{1-exp(-0·7 az)}. 

Therefore for aZ <; 1, v <; 2, the final solution for R is 

R = {l-exp( -v)}-y(1-,B)alO-270y,Ban{1-exp( -0·7 az)}, (51) 

the accuracy being of the order of 1 %. The coefficients a lO and an are given exactly 
by (42) and (43), and have been partially tabulated in Table 1. For most practical 
cases this solution should be adequate. However, if greater accuracy or a wider 
range of v or aZ is required then the series term in A1(r, z) must be calculated exactly. 
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(d) Solution for Large y 

For very large y radial diffusion is negligible, the lateral spreading of the 
swarm being governed entirely by space charge effects. For this particular case 
equation (19) becomes 

}
ROR 

oR - _:r{ 1-(3 exp( -az) r or . OZ - A 

On seeking a solution of the form 

it is found that 

R = U(z)r2, 

R = 1, 

r <b; 

r ;>b; 

(ljU2)dUjdz = -(2yjA){I-(3exp( -az)}. 

For a point source at the origin this equation is to be solved subject to 

IjU(O) = O. 

The relevant solution is 

U(z) = {2; z( 1- :z{l-exp( -az)}) fl, 
giving 

R(r,z) = r2{2; Z(l- :z{l-eXp(-az)}) fl, r <b, 

= 1, r ;>b. 

The two solutions for r = b define b. 

(e) Special Oases 

There are several cases of special interest, namely, 

(i) a = 0, with feo = 0 or feo = 1; 

(i) Oase a = 0 

(ii) II ~ 1, 

(iii) aZ ~ 1. 

az~l; 

For small y the solution for a = 0 is 

R = {1-exp(-II)}-y(1-(3)a1o, 

where, as defined by equations (20) and (21), 

(3 = feo(l-w;jwe) 
and 

y = Alj27T€'W t E a (A _ At = Aa). 

} 

(52) 

(53) 

(54) 

This result applies to a mixture of equally charged ions and electrons in the absence 
of attachment processes. Furthermore, this result emphasizes an important point. 
Since (l-feo)1 is the current due to the ions in the swarm and wtiwe is only of the 
order of 10-2, the ionic current need only be a small fraction of the total for the 
ions to completely determine the space charge field. 
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If leo = 0, the swarm consists entirely of ions and 

R = {l-exp( -V)}-YialO' 

Yj = AjI/27T€w jE a . 

(55) 

(56) 

Yj is always a positive quantity and no matter what the ionic charge this solution 
is applicable. 

If leo = I, the swarm consists entirely of electrons and 

R = {l-exp(-v)}-Yealo, 

with Ye = AeI/27T€weEa· 

(57) 

(58) 

It is to be noted that the solutions (55) and (57) are valid no matter what the 
values of Ai and Ae. 

Corresponding results for large Y may be obtained from (53). 

(ii) Case v < 1, az < 1 

Using (48), for small v and az, equation (51) becomes 

R ~ (1-y[{(1-.B)+2az.B}ln2 -az,B])v. (59) 

Noting that to the same approximation azI is the ionic current, this result once again 
emphasizes the dominance of the space charge fields associated with the ions. 
Even for leo = 1, 2az need only be of the order of Wi/We (--- 10-2) for these fields to 
dominate those of the electrons. 

In general of course, leo is not equal to unity. In drifting between the filament 
and the cathode electrons are lost and ions are produced by attachment processes. 
If conditions in this region are similar to those in the diffusion chamber proper, 
then 

leo = exp(-aL) ~ 1-aL, (60) 

where L is the axial distance between the filament and the cathode. 

(iii) Case aZ ~ 1 

For az~ 1 the solution (51) is inadequate. However, on physical grounds 
alone it is to be expected that the result will be the same as that given in (55). 
For sufficiently large az, this may be confirmed by inspection of (39). 

IV. DISCUSSION 

In this section the implications and limitations of the various approximations 
made in t.i;le preceding analysis are discussed. In particular, the conditions for 
which the axial diffusion and the axial component of the space charge field may be 
neglected are established. Again, the physical significance of Y and the expansion 
of R in terms of this parameter are discussed, and finally, for the general case, the 
physical limitations imposed on the results by the restriction Aj = Ae are considered. 
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(a) Axial Diffusion 

The axial component of the flux density equation is 

jz = nfLEz-Donjoz, (61) 

subscripts being ignored since this equation applies to both electrons and ions. 

The condition 

nf-tEz~ onjoz (62) 

states that the motion of the swarm in the axial direction is essentially independent 
of diffusion. It is not, however, a criterion for neglecting axial diffusion. Since 
axial and radial diffusion are coupled by the continuity equation, to ignore axial 
diffusion on the grounds that (62) is satisfied could lead to a serious miscalculation 
of the degree of diffusion in the radial direction. Referring to equations (3) and (4), 
the true criterion is 

1

10 ( an) I l
o2n

l r or r or -< OZ2 . 

This condition is, however, too stringent since it cannot be satisfied for all rand z. 
Therefore, in order to establish a suitable criterion appropriate to the previous 
analysis a more exact approach is adopted. In the absence of space charge effects, 
the zero-order solution with axial diffusion included is compared directly with the 
case when such is neglected. 

Defining 

J = Ji+Je, Je=neWe, J i = niwi , (63) 

equations (3) and (4) may be expressed in terms of J e and J i . On putting Ai = Ae 
and ignoring the space charge terms, the addition of these two equations gives 

~~(r OJ) + o2J -2,\ OJ = O. 
ror or OZ2 OZ 

(64) 

Again, from (61) it may be shown that 

jz =jez+jiz = J-(1j2A)OJjoz. (65) 

Equations (64) and (65) are also obviously true in the limiting cases of J = J e , 

J = J i. Furthermore, from Section II(c) it may be shown that J, J e , and J i all 
satisfy the same types of boundary conditions. Therefore the solutions for J and 
the limiting cases J = J i, J = J e are analytically the same and, in particular, 
the ratio Ro for all three cases is given by the Huxley-Crompton relationship (Hurst 
and Liley 1965) 

Ro = 1-Z(Z2+r2)-' exp[ _'\{(z2+r2)t-z}]. (66) 

On the other hand, the zero-order solution for the case in which axial diffusion 
is ignored is 

Ro = 1-exp( -'\r2j2z) . (67) 

For z2jr2 ~ 1 the difference between these two solutions is negligible. However, 
in using (67) to calculate higher order approximations in the presence of space 
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charge, the condition z2jr2?> 1 must be satisfied for relatively large r and not just 
for those values near the axis. Therefore, in order to satisfy this requirement, a 
criterion for ignoring axial diffusion must be of the form 

z2jr2?> 1, Ar2j2z ,-..J 1 . 

These two conditions may be combined to give 

2jAZ ~ 1. (68) 

The results derived in Section III are subject to this criterion. 

(b) Axial Component of Space Charge Field 

The discussion in this subsection is similar to that given in the preceding one. 
The condition 

Ea?>Esz, 

is a statement that motion in the axial direction is essentially unaffected by space 
charge fields. On the other hand, since Esz and EST are coupled by Poisson's equation, 
the criterion for neglecting E sz is 

10:;z 1 ~ I~;r(r EST) I· 

Unfortunately, unlike the diffusion case, an exact solution is not possible. Therefore, 
this criterion must be adopted as such. It may, however, be rewritten in the 
alternative form 

1 o:;z 1 ~ 1 (ni ~ne)ee I· (69) 

In Section II(a) it was stated that the electric field is maintained at a uniform 
value Ez(c, z) = Ea at the radius c. If cp(r, z) is the potential at the point (r, z), it 
follows that 

cp(r,z) = cp(c,O)-Eaz- J:Esr(r,z) dr, (70) 

whence 

oEszjoz = _q2cpjoz2 = J: 02EsTjoz2 dr. (71) 

Restricting the subsequent discussion to an ion swarm, on neglecting Esz, 
Esr is given by (equation (13)) 

_1 !R, 
EST = 27TEWi r (72) 

where, to the same degree of approximation, 

R = l-exp(-Ar2j2z). (73) 

On substituting (72) in (71) it is found that 

~ ~ --- 1-- exp -- - 1-- exp --. (74) 
1
0E 1 1 1 {( Ar2) (Ar2) ( AC2

) (AC2
) } 

OZ 27TEWi 2Z2 2z 2z 2z 2z 
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On the other hand, since 
I loR 

nj=---T' 
27TWj ej r ur 

n· e· 1,\ ('\r2) 
~ = 27T(;wj Z exp - 2z . 

Therefore, for '\e2j2z appreciably greater than unity, (69) becomes 

j (Ij2'\z)(I-'\r2j2z) j ~ 1 . 

541 

(75) 

For '\r2j2z very large this cannot be satisfied. However, since r cannot be 
greater than e, while in actual fact joEzjozj = ° for r = e (see equation (74)), an 
adequate criterion is 

j(Ij2Az)(I-e2j2z)j ~ 1, 

or taking '\e2j2z = 5, to give a condition identical to that obtained in the preceding 
subsection, 

2j,\z ~ 1. (76) 

This criterion has been derived only for an ion swarm. It may be confirmed 
that it is also adequate for the more general case. 

(e) The Parameter y 

The radial component of the flux density equation is 

jr = nfLEr-Donjor, 

. E - -ocfJjor, ()} 
or, puttmg r - . ~{D In!!:.. +flcfJ , 

Jr = -nfL or fL no 

where no is the number density at r = ° and 

flcp = cp(r, z) -cp(O, z) . 

Therefore, taking n = noexp( -1), a relative measure of the importance of 
space charge effects is the ratio 

flcp e flcp _ flcp 
DjfL f"oo.' kT =Y' 

where 

Jf. 
flcp = - 0 E sr dr . 

TO IS that value of r for which n = no exp( -1). From (13), (18), and (20) 

I R 
Esr = -2 --{I-{3exp( -az)} , 

7TEWj r 

and on using equations (73) and (75) it may be shown that 

I 
flcp = ~{I-{3exp( -az)}E(O, 1). 

'±7TWj E 

(77) 

(78) 
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It follows, from (77) and (21) that 

flif>/V ~ y{I-f3 exp( -az)}. (79) 

Comparison of this result with equation (51) confirms the assertions made in 
the Introduction that flif>/ V is a good measure of the relative importance of space 
charge phenomena. In fact, as a little thought soon shows, the expansion of R, 
although formally expanded in powers of y, is really in terms of a parameter of 
order flif>/V. 

As given by (78), the dominance of the ions in determining the space charge 
field is not immediately apparent. That this is the case, however, may be readily 
confirmed. Let Ie and Ii be the electron and ion currents respectively, with initial 
values leo and 110 • Then 

1= Ie+Ii = Ieo+I iO . (80) 
However, 

Ie = Ieoexp( -az) = feoI exp( -az) (81) 

and it follows from the conservation equation (80) that 

Ii = I iO+Ieo{l-exp( -az)} = (l-feo)I +feoI{I-exp( -az)}. (82) 

Therefore, in particular, 

Ii + (wdwe)Ie = I{I-{3 exp( -az)}. 

Since Wi/We is a small quantity, this result immediately emphasizes the dominant role 
of the ions. 

In Section III(c) the solution for R was found only to first order in y. In 
general, such a solution is adequate, since it should be always possible to determine 
Rand aR/aI in the limit as I tends to zero. Nevertheless, it is of interest to note 
the orders involved. For I = 10-12 A, y is of the order of 1O-2/wi V (with Wi in 
metres per second and V in volts). For ions in hydrogen at room temperature, an 
E/p of 0·1 Vcm-1 torr-1 gives a Wi of order 10 and V r-; 1/40. For these values 
y is 0·04. Therefore, for an ion swarm flif>/V is approximately equal to 0·04, and 
small but significant effects should be observable. However, if the swarm consisted 
entirely of electrons, flif>/ V is roughly 100 times smaller and space charge effects 
would be negligible. On the other hand, if the temperature were lowered to 
V = 1/160 (liquid nitrogen temperatures), y would approximately equal 0·16 and 
large effects should be observable in an ion swarm. Furthermore, E/p would only 
have to be decreased by one order and the current increased to 5 X 10-12 A for very 
significant effects to occur in an electron swarm. In fact, even at room temperatures, 
for these latter values of E/p (0·01) and I (5xl0-12) an electron swarm need only 
be contaminated by ions to the extent of 2% (that is, Ii r-; 10-13 A) for flif>/V to 
be of the order of 5%. 

These estimates indicate the importance of space charge effects in the Townsend­
Huxley swarm technique. They also imply, however, that for most cases of practical 
interest flif>/V is a small quantity and that a solution to first order in y is not only 
adequate but also quite accurate. 

(d) The Restriction ,\ = ,\ 

This restriction is by no means as severe as it appears at first sight. As already 
emphasized, the results in the case of a swarm consisting of a single particle type 
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are valid for all values of A. Again, as implied in the preceding subsection, space 
charge effects are only likely to be of importance for extremely low values of Elp. 
For these values the temperature of the particles in the swarm is the same as that 
of the gas, and under such conditions '\ is in fact equal to Ae • 

There is, however, one important point to note. For small 1', the associated 
space charge term in equation (15) is also small. Therefore, it may appear that 
even minor departures from the condition AI = Ae , leading to retention of the term 

(~ -l)r~(! ORe) A. orror' 

could drastically change the nature of the results. Fortunately, this is not the case. 
On retaining this term and ignoring space charge effects it may be shown that the 
solution for R, although dependent on a, is independent of 1. Therefore, small 
departures from the restriction \ = Ae will not drastically alter the space charge 
terms in the result, since such terms are primarily current dependent. 

v. CONCLUSIONS 

In the Townsend-Huxley swarm technique space charge effects may be of 
importance for large currents, low gas temperatures, and low Elp. In most practical 
cases, however, such effects are only of interest in thermal swarms. The experimental 
technique consists of determining the ratio R(r, z) as a function of various controllable 
parameters, where R(r, z) is the ratio ofthe current passing through a disk of radius r, 
in the plane z = z, to the total swarm current 1. 

If 
21k <{ 1 , A _ Ai = Ae , 

then for a swarm consisting of equally charged electrons and ions, the ions possibly 
being produced by attachment processes, R(r, z) satisfies the differential equation 

where 

r- -- -2A- = 21' l-,Bexp(-az) --o (lOR) oR { }ROR 
or ror OZ r or' 

Ae = we/2De, Aj = w1/2D I , 

I' = Al I27TEw j E a , ,B = feo{l-wdwe)· 

We and Wj are the drift speeds of the electrons and ions respectively, with De and D; 

the associated diffusion coefficients, E is the permittivity (MKS units) of the medium 
concerned, and a is the attachment coefficient. feo1 is the initial value of the electron 
current at the point source r = 0, z = O. If L is the distance between the filament, 
producing the electrons, and the cathode (see Fig. 1), feo ~ exp( -aL). 

For small 1', a solution for R(r, z) to first order in I' is 

where 
R = {l-exp( -v)}-y[(l-,B)alO+ 27°,Ban{1-exp( -0· 7 az)}], 

v - Ar2/2z. 

alO and an are functions of v, being given explicitly in Section III(c) and partially 
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tabulated in Table 1. The solution for R is inexact in the term exp( ~O· 7 az). The 
inaccuracy involved, however, is only of the order of 1 % provided az < 1, v < 2. 
For other values of az and v or for a greater degree of accuracy the exact solutibn 
given in Section III(c) must be used. 

Limiting cases for feo = 1, a = 0, corresponding to a swarm of electrons, and 
feo = 0, corresponding to a swarm of ions, may be found from this solution. The 
solution in the case of the ions is valid no matter what the ionic charge. 

In the limit 1 --+ 0, these results may be used to determine '\ and A., and, 
depending on the experimental accuracy, We' Wi' and a. 

For very large y, space charge effects completely dominate and these solutions 
are inadequate. The appropriate solution in this case is given in Section III(d). 
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ApPENDIX 

In evaluating the integrals 

-v JV yn-l(I ~e-Y) 
a1n = ve 0 , __ , \n.i-l dy, 

the generalized exponential integral 

E(O, x) = J~ (1 ~e-U)/u du (AI) 

is basic. In particular, it is to be noted that 

J2V J2V J2V 
v e-u/u du = v u-1 du~ v (1 ~e-U)/u du 

= In2 +E(O, v) ~E(O, 2v). (A2) 
For n = 0 

a lO = ve-v J: (I~e-Y)/y(y+v) dy 

= e-V E(O, v) ~e-v J: (1 ~e-Y)/(y+v) dy 

= e-v E(O, v) ~e-V In 2 +e-v J: e-Y /(y+v) dy 
./ 

J2V 
=e-VE(0,v)~e-vln2+ ve-s/sds. 
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The final form given in Section III(c) follows from (A2). 

For n ;;;;, 1 put Y = s-v, then 

where 

J2V 
a1n = ve-V v {(s_v)n-ljsn+1}(l_e-(S-v)) ds 

n-l 
= ve-V :2; (nkl)( _l)kvk 1k(v), 

k~O 

J2V 
1k(v) - v (1_e-(S-V))jsk+2 ds 

J2V J2V = v 1jsk+2 ds-ev v e-Sjsk+2 ds. 

Repeated integration by parts reduces these integrals to 

k+1 vk+1 (2v)k+1 +e (k+1)! ln2+E(O,v)-E(O,2v)) 
1k(v) = _1_(_1 _ 1 ) y( _1)k+2( 

In particular, 

1 k (_l)mvm(1_2m-k-1 e-V) 

- Vk+1m~o (k+1)k ... (k+1-m)· 

an = ve-Y 10, 

a12 = ve-Y[1o-v11], 

a13 = ve-Y[1o-2v1l+v212]' 

the final forms being given in Section III(c). 
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