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Summary 

The lunar semi-diurnal variations in H, D, and Z at Toolangi observatory have 
been analysed for the 4-yr period 1952-55 of the sunspot minimum. 

Three methods of analysis of the lunar semi-diurnal component of D have 
been compared. It was found that the Chapman-Miller method was the most suitable 
and that the initial removal of the solar daily variation used in earlier methods is not 
essential. 

I. INTRODUCTION 

The lunar diurnal variation, L, of the Earth's magnetic field is of special interest 
owing to the relatively simple and regular distribution of the lunar tide which produces 
it. The significance of lunar influences on geophysical parameters in general can be 
seen in the recent works of Bradley (1962), Adderley (1963), Bartels (1963), Bigg 
(1963a, 1963b), and Bowen (1963). Knowledge of the behaviour of L, especially of 
a world-wide nature, is therefore likely to be of value even though its small magnitude, 
and the fact that its period is close to that of the solar transient daily variations, 
makes its calculation laborious. 

Data available from the Toolangi (37 0 32' S., 1450 28' E.) observatory were 
analysed. Furthermore, a comparison of three methods of computation, of which 
one was the Chapman-Miller method, was undertaken in order to determine the most 
suitable method. The results obtained were then arranged according to the seasons 
to obtain the seasonal variation in the amplitude and phase of L. Comparison of the 
amplitude C2 of the lunar semidiurnal term from Tables 1, 2, and 4 shows that they 
are not significantly different, the differences between the amplitudes calculated by 
anyone method and either of the other two being within the probable error range 
of anyone of them. 

II. PROCEDURE 

(a) First Method 

The first method described here is that used by Chapman (1914) in his calcula­
tion of L for Pavlovsk and Pola (1857-1903). 

The published geomagnetic data usually consist of hourly mean values of the 
three magnetic elements H, D, and Z, arranged in columns according to the hour, 
from 1 to 24, and in rows according to the day of the month, from the first of the 
month to the end of the month. The solar daily variation, S, is assumed to be inde­
pendent of the lunar daily variation, so that in one month (or more correctly 29·5306 
days) the lunar disturbance characteristic of any lunar hour affects in turn each group 
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of 28-31 solar hours in like degree. This also assumes that the variation of L from day 
to day is small; the statistical fluctuations could, however, be considerable (Bartels 
and Johnston 1940; Schneider 1941). 

If from each hourly value is subtracted the solar daily variation for that hour, 
the remainder will be due to causes not regularly solar, that is, to irregular distur­
bance, secular variation, and any lunar action. Where work can be carried out using 
computers, the computation of the mean hourly values for each day of the month 
centred at that day is not very difficult. 

The hourly mean values minus their monthly mean hourly values are next 
arranged according to lunar time, and it is assumed that, if a sufficiently large number 
of days are taken, the irregular disturbance will average out, even though on individual 
days the magnitude of the disturbance may be greater than the lunar variation. 

The length of the lunar day is on the average 24 hr 50 min, and it usually does 
not vary from this by more than half an hour. It is therefore convenient to treat the 
lunar day as being of duration 25 solar hours. Commencement of the lunar day is 
taken at the lower local transit of the Moon (lunar hour 0). The times for the upper 
and lower transit of the Moon at Greenwich can be obtained from the "Nautical 
Almanac", and interpolation to any other longitude will yield the local mean time of 
transit. These times do not as a rule fall at an exact solar hour, and the nearest solar 
hour is used. The difference for this hour (that is, the hourly mean value minus the 
monthly mean hourly value) and the differences for the 24 succeeding hours are 
arranged in a row on a lunar sheet, and represent the lunar variations together with 
accidental variations. 

A further hourly difference is added at the end of the row to correct for the 
non-cyclic variation. The solar times which are adopted as most nearly corresponding 
to the time of lower lunar transit generally differ from one day to the next by 25 hr, 
so that the last entry on the row for one lunar day is the first in the row for the next 
day. When, however, the interval is 24 hr, further 2-hourly differences are added 
at the end of the row, and these will be the first two on the next row. ' 

All the lunar days for one calendar month are written on the one lunar sheet, 
and a few hours are taken each from the preceding and following month to make 
all the rows on the lunar sheet complete. Totals and means of all the columns are 
then formed, and the resulting hourly means are then corrected for non-cyclic 
variation. These then give the mean lunar variation for the month but will usually 
include considerable accidental error due to magnetic disturbance. It is, therefore, 
necessary to combine the results from many months before a well-determined lunar 
daily variation can be expected to be obtained. 

A computer program was written for an IBM 1620 machine, which calculated 
the lunar variation by the above method. Small modifications, which it was assumed 
would not significantly affect the results, were introduced to simplify the program 
and to make it possible for a single program to do the complete computation. 

The first modification was to correct each solar day for the non-cyclic variation 
in order to remove any linear trends (e.g. non-cyclic variation) in the data. This 
was done using Chapman's formula for midnight local time, which is magnetically 
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the quietest period, where the non-cyclic variation (NOV) in G.M.T. is given by 

NOV = !{(14t)+(13t)-(-lOt)-(-9t)}, 

569 

in which the numbers in the round brackets refer to the hourly means centred at the 
epochs indicated. Hourly values n (n = 1-24) were then corrected by adding 

(n-O ·5) X (NOV) 

to the original hourly values, and finally these were adjusted to have zero mean. 

The second modification was to take exactly 30 solar days, starting with 
January I, and organize them in five rows of 25 and one of 24,in order to make the 
deviation from the mean lunar day (taken as 24 hr 50 min) not more than half an 
hour. It was found that 30 solar days could be exactly arranged in 29 lunar days, 
which simplified the computer program considerably and is a good approximation 
to one complete lunation. 

Means of the 25 columns were formed, and these were taken to represent the 
mean lunar daily variation for the month of January. The II succeeding lots of 
30 days were taken to give values of L for the corresponding remaining months. 
This left 5 or 6 days (depending on whether the year was not or was a leap year) at 
the end of the year untreated, for treatment of the next year was started on January I. 
This was done so that the lunations could be more easily classified according to the 
seasons. 

(b) Second Method 

The second method is the same as the first, except that the solar daily variation 
is not subtracted from the data. It is assumed that the arrangement of the data 
according to lunar time over 29 lunar days (approximately I complete lunation) is 
sufficient to average out the solar daily variation. 

To show why the greater part of S is eliminated by arrangements of 30 .solar 
days according to lunar time, consider data Yi such that 

Yi = 0(1 COS{(21Tj/24)+E1} + 0(2 COS{(21Tj/24 ·S4)+E2}, 

that is, where Yi contains the first harmonics of Sand L respectively. 

Let (h = 21T/24, and 82 = 21T/24·S4, then the lunar Fourier coefficient (in 
complex variable notation) from N + 1 solar hourly values is given by 

N N 
~ Y1expi82j = ~ to(l(expi{j(81+82) +E1} + exp[-i{j(81-82) +E1}]) 
j=o 1=0 

N 

+ ~ !ot:2(expi(2j82+E2) + exp (-iE2)) 
1=0 

+ 1 (. )1-exp{-i(81-02)(N+I)} 
~ot:1 exp -lEI 1 {·(O 8 )} -exp -1 1- 2 
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If k is the number oflunar days used, then N +1 = kx 24·84. Now, to eliminate 
the contribution of 8 one must eliminate the terms containing C"l without eliminating 
0(2. This is the case when (0·842j24)k = 1,2,3, ... , that is, 

k = 28 '50, 57 '00, 85 '50, ... (lunar days) 

= 29'50, 59'00, 88·50, ... (solar days), 

so that 8 should be completely eliminated (if it remains constant in amplitude from 
day to day) over periods that are multiples of 29· 50 solar days. This is only approxi­
mately true if 30 solar days are taken, but the approximation appears to be a good 
one, as shown by the result of Figure 1. 

A similar proof holds for the other harmonics of 8 and L. 
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Fig. I.-Amplitude of lunar semi-diurnal variation of 
declination for Toolangi, 1952-55. - - - - First method; 

second method; -- third method. 

(c) Third Method 

The third method employed, the Chapman-Miller method, was developed by 
Chapman and Miller (1940), and later Tschu (1949) described the computations 
required in the practical applications of it. The geomagnetic data at Toolangi were 
analysed following Tschu, and the probable errors were calculated as outlined by him 
and later by Chapman (1952). The method is briefly as follows. 

Daily sequences of hourly values are arranged in 12 groups (r = 0-11) according 
to the ages as assigned to each day from "Geophysikalische Mond-Tafeln" by Bartels 
and Fanselau (1937). Thus the group r contains days for which the age of the Moon 
is rand r+I2. To each daily sequence the hour from the preceding daily sequence 
is then added, so that allowance for the non-cyclic variations can be made. The 
number of daily sequences for the group r is N r , and ~ N r = N (N = total number 
of daily sequences used). 

For each group r, the hourly values are summed and the 12 group-sum sequences 
gs,r (8 = 0-8, r = 0-11) are obtained; 8 = 24, 12, or 8 depending on whether 
I-hourly, 2-hourly, or 3-hourly data are used. (This 8 is not to be confused with 
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the S used above to denote solar daily variation.) These group-sum sequences are 
then harmonically analysed, giving 

s 
Ap,r = ~ gs,rCOS(27TspjS) + t(gS,r-go,r), 

s~O 

s 
Bp,r = ~ gs,r sin(27TspjS) + t(gs,r-go,r) COt(7TpjS). 

s~O 

Here the last terms in the expressions for Ap,r and Bp,r correct the data for 
non-cyclic variation. The value of p determines which harmonic is to be analysed. 
For the calculation of the lunar semi-diurnal variation, p = 2. 

A secondary harmonic analysis now gives 

11 11 

N1,A = ~ Nrcos(27TrjR), 
r=O 

N1,B = ~ Nrsin(27TrjR), 
r=O 

11 11 

Ap,A = ~ Ap,rcos(27TrjR), 
r=O 

Ap,B = ~ A p,r sin(27TrjR), 
r~O 

11 11 

Bp,A = ~ Bp,r cos(27TrjR) , 
r=O 

Bp,B = ~ Bp,rsin(27TrjR). 
r~O 

where R = 12, the number of lunar age groups. 

Finally, 
Up = (Ap,A-Bp,B) - N-l(Ap,NN1,A - Bp,NN1,B), 

V p = (Bp,A+Ap,B) - N-l(Bp,N N1,A + Ap,N N1,B), 

from which the lunar amplitude L2 and phase 1.2 are given by the equations 

L2sinA2 = U2jKdmps, L2cosA2 = V2jKdmps, 

K = 0·4943 NS[1-{(N1,A)2+(Nl,B)2}N-2], 

dmps = (ljS) sin7T(m-p) [cot{7T(m-p)jS} + COt(7TpjS)], 

m = 2(1-M-l), 

where M (= 29 ·5306) is the number of mean solar days in the mean synodic period 
of the Moon. 

A correction 8 to the phase must now be carried out if the data are not tabulated 
for Greenwich mean time and at the latitude of Greenwich, given by 

8 = 2LjM -15mH'+m(L-L') degrees, 

where L denotes the longitude from Greenwich (measured positive if westward and 
negative if eastward) of the station to which the data refer. L' is similarly the meridian 
to which the data are tabulated, and H' is the initial solar hour used for the calculation. 

(d) Probable Errors 

(i) First Method.-The probable error in the amplitude ofthe lunar semi-diurnal 
variation L2 was obtained using the simple probability theory given by Guest (1961). 
Here the variance of the Fourier coefficients an and bn, and hence of en = (a~ +b~)!, 
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is given by 2a2/r, where a is the standard deviation of an observation, r is the number 
of data points, and Cn is the amplitude of the nth harmonic. The probable error for 
Cn is therefore taken to be 2 ·06(2a2/r)i. 

(ii) Second M ethod.-The theory used to calculate the probable error in the values 
of L obtained by using the second method was the one developed by Miller (1934). 
This theory also served as the basis of the determination by Tschu (1949) of the 
probable error in L using the Chapman-Miller method. 

Let Rm (m = 1, ... , n) denote a set of vectors representing the set of lunar 
semi-diurnal harmonic components. These vectors can be considered as consisting of 
two parts, namely, a vector Lm which is the mean value of the Rm's, and the vector 
Am which represents the errors in the lunar variation. The vector Lm is assumed to 
represent the true lunar variation of the set of Rm vectors. 

Further, let the vector Lm have a constant amplitude L and a known variable 
phase angle lm, and let Am have an amplitude A;" and phase (lm+8m), where 8m is 
independent of lm. Consider vectors R;,., L, and A;" which are equal to R m, Lm, 
and Am except that they are reduced in phase by lm. Therefore, 

and 
R;"=L+A;", 

where L is a c~nstant vector with zero phase. 

Next, assume that the n vectors A;" have a Gaussian distribution, so that the 
distribution function for anyone of the vectors is given by 

(1/21Ta2) exp( -r2/2a2) rd8dr, 

where r is the amplitude and 8 the phase angle, so that the probable error ro in the 
amplitude Am is 

that is, 2""2 1 1 - exp( -ro/2a ) = 2", 

and therefore ro = 0·8326 .j2a. 

To calculate a, first the r, were found, where 

r, = {(at-a)2+(b,-b)2}i, 

and where the a, and b, are the harmonic coefficients of the lunar semi-diurnal 
variation, and a and b are the corresponding mean values. Then the variance is 
given by 

where f = (lIn) ~ rt. 
f 

2 / )'., 2 _2 a = (1 n ~r, -r , , 

The value of a then enables the ro to be calculated. 
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TABLE 1 

HARMONIC COMPONENTS* OF THE LUNAR SEMI-DIURNAL 

VARIATION OF DECLINATION D, FROM THE FIRST METHOD 

Values are monthly means, February-November, for the period 
1952-55 

02 Probable Error 
(tenths of £2 

in 02 
min of arc) 

(degrees) 
(same units) 

Feb_: 2-75 159 1-84 
Mar.: 2·88 108 1·60 
Apr.: 1·83 145 1·39 
May: 0·40 345 2-02 
June: 0·34 204 0·31 
July: 0·89 35 0·73 
Aug.: 0·29 236 0·41 
Sept.: 0·89 245 0·58 
Oct.: 0·67 218 0·63 

Nov.: 2·46 222 0·70 

* Expressed in the form 02sin(27'+£2), where 7' = mean 
lunar time in angular measure reckoned from lower lunar transit 
at Toolangi. 

TABLE 2 

HARMONIC COMPONENTS* OF THE LUNAR SEMI-DIURNAL 

VARIATION OF DECLINATION D, FROM THE SECOND METHOD 

Values are monthly means for the period 1952-55 

O2 Probable Error 
(tenths of £2 

in 02 
min of arc) 

(degrees) 
(same units) 

Jan.: 2·62 284 1·24 
Feb. : 2·77 291 0·74 
Mar.: 3·46 336 1·06 
Apr.: 1·76 307 0·57 
May: 0·82 166 0·87 
June: 0·42 242 0·58 
July: 0·85 45 0·38 
Aug.: 0·18 220 0·65 
Sept.: 0·81 213 0·57 
Oct.: 0·72 236 0·40 

Nov.: 3·14 229 1·09 
Dec.: 3·31 271 0·85 

* Expressed in the form 02sin(27'+£2), where 7' = mean 
lunar time in angular measure reckoned from lower lunar transit 
at Toolangi. 

573 
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TABLE 3 

HABMONIC COMPONENTS· OF THE LUNAR SEMI-DIURNAL 

VARIATION OF HORIZONTAL INTENSITY H, FROM THE THIRD 

METHOD 

Values are monthly, seasonal, and yearly means respectively 
for the period 1952-55 

02 
Probable Error 

£2 
in 02 

(gammas) (degrees) 
(same units) 

Jan.: 0·89 64 0·65 
Feb.: 0·90 19 0·64 
Mar.: 0·87 44 0·69 
Apr.: 0·10 20 0·80 
May: 0·04 307 0·82 
June: 0·57 301 0·57 
July: 0·20 255 0·44 
Aug.: 0·64 346 0·53 
Sept.: 0·42 319 0·89 
Oct.: 0·46 349 0·50 

Nov.: 1·31 352 0·89 
Dec.: 2·23 24 0·63 

Summer: 1·23 21 0·36 
Equinox: 0·38 10 0·37 

Winter: 0·31 316 0·30 

Year: 0·59 10 0·20 

• Expressed in the form 02sin(2T+£2), where T = mean 
lunar time in angular measure reckoned from lower lunar transit 
at Toolangi. 

00 

09~----+-----1-----"~~~~~-+-----;03 

06 
Fig. 2.-Harmonic dial for second Fourier component of 
lunar daily variation of Hat Toolangi, 1952-55. S, summer; 

E, equinox; W, winter; Y, year. 
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TABLE 4 

HARMONIC COMPONENTS* OF THE LUNAR SEMI-DIURNAL 

VARIATION OF DECLINATION D, FROM THE THIRD METHOD 

Values are monthly, seasonal, and yearly means respectively 
for the period 1952-55 

Cz Probable Error 
(tenths of €z in Cz 

min of arc) 
(degrees) 

(same units) 

Jan.: 4·02 82 3·41 
Feb.: 3·19 140 1·27 
Mar.: 3·59 352 1-99 
Apr.: 2·06 155 1·28 
May: 0·52 149 0·95 
June: 0·49 80 0·63 
July: 0·94 60 0·66 
Aug.: 0·11 114 1·15 
Sept.: 0·81 49 1·28 
Oct.: 0·40 118 1·11 

Nov.: 2·63 86 1·07 
Dec.: 3·59 126 1·61 

Summer: 3·04 108 1·03 
Equinox: 1·31 165 0·73 

Winter: 0·42 87 0·44 

Year: 1·42 121 0·45 

* Expressed in the form CZSin(2T+€Z), where T = mean 
lunar time in angular measure reckoned from lower lunar transit 
at Toolangi. 
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Fig. 3.-Harmonic dial for second Fourier component of 
lunar daily variation of D at Toolangi, 1952-55. S, summer; 

E, equinox; W, winter; Y, year. 
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TABLE 5 

HARMONIC COMPONENTS* OF THE LUNAR SEMI-DIURNAL 

VARIATION OF VERTICAL INTENSITY Z, FROM THE THIRD METHOD 

Values are monthly, seasonal, and yearly means respectively 
for the period 1952-55 

O2 
Probable Error 

£2 
in 02 

(gammas) (degrees) 
(same units) 

Jan.: 1·18 74 0·29 
Feb.: 1·11 79 0·37 
Mar.: 0·81 228 0·40 
Apr.: 0·55 242 0·45 
May: 0·69 245 0·32 
June: 0·68 244 0·31 
July: 0·64 72 0·21 
Aug.: 0·83 240 0·24 
Sept.: 0·66 219 0·35 
Oct.: 0·48 225 0·35 

Nov.: 0·91 239 0·45 
Dec.: 1·32 79 0·34 

Summer: 0·69 84 0·19 
Equinox: 0·62 228 0·20 

Winter: 0·39 239 0·14 

Year: 0·18 192 0·10 

* Expressed in the form 02sin(2T+£2), where T = mean 
lunar time in angular measure reckoRed from lower lunar transit 
at Toolangi. 

09~---+----4--,f-~~~----+----4r---~--~03 

06 

Fig. 4.--Harmonic dial for second Fourier component of Z 
at Toolangi, 1952-55. S, summer; E, equinox; W, winter; 

Y, year. 
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III. RESULTS AND DISCUSSION 

Figure 1 and Tables 1, 2, and 4 show the great difference in amplitude of the 
semi-diurnal variation of declination between the summer and winter months, over 
the 4-yr period 1952--55. It also shows how nearly equivalent are the values of the 
amplitude of the semi-diurnal variation obtained from the three methods of compu­
tation of L, in spite of the fact that the probable errors are so large. The probable 
errors for the three methods were all themselves of the same order. 

TABLE 6 

AMPLITUDE AND PHASE OF LUNAR SEMI-DIURNAL VARIATION OBTAINED AT 

BOTH NORTHERN AND SOUTHERN STATIONS ON LATITUDES NEAR THAT OF 

TOOLANGI 

Units of Os and E2 are the same as in Tables 3 and 4 

Geographical latitude 
Geomagnetic latitude 

Variation {02 
ofB E2 

Variation {02 
ofD £2 

Worker 

Val-Joyeux 

1·3 
( 9 

Rougerie 
(1950) 

Pola Amberley, N.Z. 

44°·9 N. 43°·2 S. 
45°·1 N. 47°·7 S. 

0·79 1·09 
39 339 

0·9 2·4 
68 29 

Chapman Bullen and 
(1914) Cummack 

(1954) 

Figures 2, 3, and 4, which illustrate the results of Tables 3, 4, and 5, are har­
monic dials showing the seasonal variation in H, D, and Z, respectively, as computed 
by the Chapman-Miller method. The error circles have also been included. Where 
the radius of the error circle is greater than the amplitude of L, little significance 
can be given to the value of L. The time of maximum amplitude can be easily read 
from the harmonic dials. 

Table 6 has been included to enable a comparison to be made with some of the 
values obtained by other workers at stations of latitude similar to that of Toolangi. 

Figure 1 also shows that the initial inclusion or removal of the solar daily 
variation from the data does not significantly alter the value of the amplitude of the 
second harmonic of the lunar daily variation. 
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