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Summary 

A class of soluble three-body systems suggested by Pluvinage is studied. The 
Hamiltonian Ho of these systems is not Hermitian, and the energy spectrum contains 
a continuum of bound states. The use of H 0 as a reference Hamiltonian in calcula
tions of the helium atom ground state, as suggested by Pluvinage and Walsh, is 
discussed in the light of these results. 

1. INTRODUCTION 

The wave function ¢; describing an S-state of three interacting spinless particles 
in the centre-of-mass frame is a function only of three coordinates which define the 
shape of the triangle formed by the particles. Labelling the position vector of the 
particles from some arbitrary origin as X], X2, X3 we can define the relative coordi
nates Xij: 

Xij = Xj-Xi· (1 ) 

Then the scalars X12, X23, X31, the three sides of this triangle, are a suitable set of 
coordinates to describe ¢;. We use the notation 

Xij = rk; 

where, here and throughout this paper, 

(i,j, k) is a cyclic permutation of (1,2,3). 

In terms of rl, r2, r3, the wave function ¢; satisfies the reduced wave equation 

where 

where 

(H -E)¢;(rb r2, r3) = 0, 

3 

H = ~ {TO(ri) + Tcross(i)} + V(rl, r2, r3), 
i~1 

li2 (02 2 0) TO(ri) = --, - - + --- , 
2ILi or7 ri Ori 

li2 2 
. rj . rk 0 

Tcross(~) = ------, 
m, rj rk orj ork 

and the reduced mass ILi is given by 

ILi = mjmk!(mj+mk). 

(la) 

(1 b) 

(2a) 

(2b) 

(2c) 

(2d) 

(2e) 

* This research was supported in part by U.S. Air Force Grant No. 62-400 to the University 
of New South Wales. 

t Applied Mathematics Department, University of New South Wales, Kensington, N.S.W. 

Aust. J. Phys., 1965, 18, 101-7 



102 L. M. DELVES 

Separable solutions of(2) wouldexistfor a two-body interaction v = v(rl)+v(r2)+v(r3), 

were it not for the cross terms Tcross in the kinetic energy. We can force the existence 
of separable solutions by choosing the interaction to be 

v = u(1)+u(2)+u(3), 

where 

u(i) = vi(ri)-Tcross(i). 

With this choice of interaction, equation (2) reads 

where 

(H 0-Eo)if;o(rI, r2, r3) = 0, 

3 

Ho = ~ {TO{rt)+vi(ri)}, 
i~l 

which clearly has separable solutions and is hence trivially soluble. 

(3) 

(3a) 

(3b) 

The interaction (3) is not a sum of two-body interactions, since Tcross(i) is not a 
function of Ti only. However, it is possible that, at least for some systems, Tcross may 
be in some sense "small"; and hence (3a) is an attractive starting point for a discussion 
of the exact equation (2) with a two-body interaction of the form 

3 

V = ~ vi(rd. 
i~l 

(4) 

Examples of such discussions have already appeared in the literature. Delves and 
Derrick (1963) have derived a set of equations for choosing a suitable variational wave 
function for (2) in the nuclear problem, which for spinless particles reduce to equation 
(3a). A similar discussion has been given by Pluvinage (1950), and by Spruch and 
Kelly (1959), and Walsh and Borowitz (1959), for the helium atom. In both these 
cases the interaction vi(rt) is singular for small ri, while Tcross in general is not; so 
that a solution of (3a) is a good approximation to that of (2a) in this region. We 
therefore expect that variational wave functions defined in this way will be rather 
good; and this is borne out in practice. The use of (3a) to approximate (2a) is dis
cussed further in Section III. 

In addition, two methods based on (3a) have been proposed for yielding results 
of rather higher accuracy. The first (Delves and Derrick 1963) generates a sequence 
of eigenfunctions, which are used as trial functions for (2a). These trial functions are 
defined in terms of the set of Sturmian eigenfunctions of the factorized one-dimensional 
parts of (3a). An alternative approach, suggested by Walsh and Borowitz (1959), is 
to carry out a perturbation expansion using (3a) as the zero-order equation. Neither 
of these methods has yet been tried in practice; however, the second has some 
difficulties in principle which arise from the form of (3a). In the next section we discuss 
briefly some of the properties of equation (3a) which are independent of the detailed 
form of the potential vi(ri), while in Section III we discuss the possible uses of (3a) 
as a comparison soluble problem to (2a). 
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II. PROPERTIES OF SEPARABLE SOLUTIONS 

For simplicity we shall consider in this section the case of three identical parti
cles of equal mass m, interacting through a pair potential v(r); we shall also ignore 
any symmetry requirements on the wave function. Equation (3a) then becomes 

[Ho-E]ifi(rl, r2, r3) = 0, 

where 

{ fi}( 02 2 0) } Ho = ~ - -- " + - - +v(rt) . 
i m ori ri ori 

The operator Ho differs from H, equations (2), by the "perturbation" HI, 

H=Ho+HI, 

:z;2 2 
HI = ~~ rj' rk_o_. 

m i rjrk Orj ork 

Equation (5a) has the set of separable solutions 

ifiZmn = ¢>Z(rl)¢>m(r2)¢>n(r3), E = E zmn = Ez+Em+En, 

where the functions ¢>j(r) are solutions of the one-dimensional equations 

{ n2( 02 2 0) } 
- m or2 + r or +v(r)-Ej ¢>j(r) = O. 

(5a) 

(5b) 

(5c) 

(5d) 

(6) 

Although equation (5) is separable in this way, the complete problem is intrinsically 
not separable, since the space over which solutions of (5) are defined is not separable. 
Rather, rl, r2, r3 are subject to the triangular inequalities 

JrJ-rkl ~. ri ~ rj+rk. (7) 

(a) Bound States 

Let us first look for acceptable "bound state" solutions of (5). We define a 
bound state to be a solution of (5) which is quadratically integrable over the space (7) 
with the volume element dr appropriate to equation (2a), which is 

dr = rl r2 r3 drl dr2 dr3. (8) 

This definition ensures that a bound-state solution of (5) is an acceptable variational 
trial function for (2),t and indeed gives the variational estimate Ev ofthe eigenvalue 
E of (2) 

Ev = E zmn+ fifi;mnHIifizmn dr 

f ifi;mn ifi1mn dr . 
(9) 

t We ignore the possibility that the numerator of (9) may diverge although the denominator 
does not. 
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For such a separable bound state to occur, we require that the potential v(r) shall 
support a one-dimensional bound-state solution of (6); we assume here that this is 
the case, and that the lowest such bound state has energy Eo. In this case, we find the 
following completely unphysical energy spectrum of H 0: 

The separable bound-state solutions of (5) 
form a continuum from energy 3Eo to 00. (10) 

The proof of (10) is simple. Let us construct a solution of (5) of (arbitrary) 
energy E, in the following way. We write 

E = Eo+Eo+E, } 
iX2 = -mEo/h2, (32 = -mE/h2, 

<fiB = rPo(rI)rPO(r2)rPe(r3). 

(11) 

In equation (ll), rPo(r) is the ground-state solution of (6), while rPc is a solution of (6), 
regular at the origin, for E j = E. 

Then <fiB forms a bound state if the integral J <fi~ dT is finite. But the convergence 
of this integral is determined by the behaviour of <fiB for large r], r2, r3. In this region 
we have in general (E not an eigenvalue of (6)) 

rPo(r) ~ e-ar , rPc(r) "-J e+f3r , 

so that the dangerous direction is r3 --+ 00. However, for r3 --+ 00 the inequalities 
(7) imply 

r3 < rl +r2 

and hence 
<fiB ;s exp -(iX-(3)r3. (12) 

Hence the function <fiB is exponentially decreasing everywhere, and therefore forms 
an acceptable bound state, provided that 

Re(iX-(3) > O. (12a) 

But this is true for any energy E > 3Eo, since for 3Eo < E < 2Eo we have Eo < E < 0, 
and hence (3 is real and less than iX, while for E > 2Eo we have E > 0 and hence (3 
is imaginary. 

The reason for this behaviour is of course very simple: the operators H 0 and HI 
are not Hermitian with respect to the class of quadratically integrable functions over 
the space (7) with volume element (8), although H = Ho+HI is. Hence, there is no 
reason why the usual properties of Hermitian operators should be exhibited by H 0; 
in particular, it may not (and does not) have a discrete spectrum. This unphysical 
behaviour of H 0 does not matter if we are using solutions of (5) to generate trial 
functions for (2); however, it does mean that at least the usual perturbation theories 
cannot be applied to (5) using HI as a perturbation since these theories assume that 
both Ho and HI are Hermitian, even when taken only to first order. 
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(b) Scattering States 

A solution .ps of equation (2), representing the scattering of particle (3) from a 
bound state of particles 1 and 2 at a total energy E, has the following asymptotic 
form. 'Ve define p and k by the relations (for ml = m2 = m3 = m) 

P - 2 rl r2 -"{l3, (13) ~ _ 1 ( 2+ 2) 1 0
2 ) 

k2 = (4m/3h2)(E-Eo)0 

Then for large p 

.ps ->- 4>oh)[sin(kp) + tan 8 cos(kp)J/ p. (14) 

Solutions of (5) also exist with the asymptotic form (14). The positive energy 
solutions of (6) have the asymptotic form for energy E: 

22) E = Ii ko/m, 

4>(E, r) -+ [sin(kor)+ tan 80k cos(kor)J/r, 
(loa) 

while for E = 0 we have with a suitable normalization 

4>(O,r) -+ l-ao/r2 . (15b) 

In equation (15), tan80 is the phase shift of the single-particle equation (6), 
while ao is the zero-energy scattering length, for the potential v(r); these are not of 
course directly related to the three-particle phase shift and scattering length of 
equation (14). Now let us choose an energy Ev and a partitioning of Ev as follows: 

Ev == 4E/3-Eo/3 = Eo+(li2/m)k2+0. (16) 

Then the corresponding solution of (5) is 

t/;v = 4>o(rl)4>(h2k2/m, r2)4>(O, l03) 

-+ 4>oh){[sin(kr2)+ tan 8 cos(kr2)Jlr2}ll-aoir~] 

= 4>o(rl)[sin(kp)+ tan 8 cos(kp)J/ p+O(p -2). (17) 

Thus .pv has the same asymptotic form as .ps, equation (14), and hence may be 
said to represent a scattering state. We note that the energies appropriate to .ps and 
.pv are not the same; moreover, the convergence of .pv to the form (14) is rather slow. 
This slow convergence is not directly connected with the non-Hermitian character of 
H 0; however, it does mean that .pv is not a suitable trial function to use in the standard 
variation principles for tan8. This point is discussed further in Delves and Derrick 
(1963), where it is shown that a modified variation principle for tan8 can be derived 
in which .pv can be used. 

III. A SIMPLE EXAMPLE 

The previous paragraph showed that (5) is limited in usefulness as a comparison 
soluble problem for (2) ; however, it can be useful for generating bound-state variational 
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functions, and has so been used in the fixed nucleus two-electron problem (Pluvinage 
1950; Spruch and Kelly 1959; Walsh and Borowitz 1959), with mt = m2 = m, 

m3 --+ 00 .. In this case, we have (in atomic units) 

Ho = Lo{rt)+£oh)+Lt(ra), (ISa) 

Ht = _ !.. r2+ra-rt_o_ + ra+rt-r2 0 {
2 2 2 2 2 2 2 2} 

m 2r2 ra Or2 ora 2ra rt ora Ort ' 
(ISb) 

H=Ho+Ht, 

Lo(r) = _!( 02 + ~~)- ~ 
or2 r or r' 

(ISc) 

( 02 2 0) 1 Lt(r) = - - + -- +-, 
or2 r Or r 

(ISd) 

and the variational wave function for H suggested by Ho is 

!f = cpo(rt)CPO(r2)cpt(ra), (19) 

where cpo is an eigenfunction of Lo and CP1 an eigenfunction of Lt. This wave function 
is expected to be a reasonable approximation if H t is small; and in this case it may 
be thought reasonable to choose cpo and CPt as the lowest-lying eigenfunctions of Lo 
and L t , satisfying the equations 

(Lo-Eo)cpo(r) = 0, 

(Lt-Et)cpt(r) = 0. 

(20a) 

(20b) 

These equations represent respectively the motions of an electron in the field of a 
massive nucleus of charge Z and the relative motion of two electrons in their mutual 
repulsive field; they therefore have well-known solutions. In fact, both Pluvinage 
and Walsh and Borowitz chose !fO as the ground state of Lo; that is 

cpo(r) = e -Z*r , 

Eo = _Z*2 a.u. 

Equation (20a) predicts Z· = Z; however, of course Z· was allowed to vary as a 
free parameter. 

The Hamiltonian L t has no bound states; and Pluvinage therefore took cpt(ra) 
to be a function of positive energy E 3, E3 being left as a variational parameter. The 
positive-energy solutions of (ISd) are not simple; and Walsh and Borowitz, arguing 
as above from the assumed smallness of H t , take E3 = 0, for which the eigenfunctions 
are simpler. However, we saw in the previous paragraph that finiteness of cpt for large 
r3 is not a necessary condition for !f to be a satisfactory trial function for H. Rather, 
we obtain allowable trial functions if we take for cpt any solution of (ISd) for energy 
Et ~ _2Z2. 
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Further, the same argument that suggested the value El = 0 to Walsh and 
Borowitz, would suggest that the value El = -2Z2 should be better still. We take 
here the wave function 

ifl = exp (jr3 exp{ - Z' h + r2)}. (21 ) 

This wave function is identical with that of Pluvinage and of Walsh and Borowitz 
in its rl and r2 dependence; the dependence on r3 typifies that of a negative-energy 
solution of (20b) (and is much simpler than that of Pluvinage or of Walsh and 
Borowitz). 

TABLE 1 

BOUND ON THE GROUND STATE ENERGY OF HELIUM-LIKE ION 

z - : ;PIUviM"a) I ;; IWamh) "qno (21) I H~t z· I B",' PiE loxootJ 

--1- --=---'---'=0' 49-8- ---'=0, 50-8-~-6---;.-;;--I------=~ 52;--

--------------------------------1------
2 -2·878 -2·875 -2·890 1· 86 0·25 -2·904 

--------------------------·----1-----
3 -7,255 -7·249 -7·267 2·86 0·26 -7·280 

I ---------------------------------1-------
4 -13·631 -13·623 -13·645 I 3·86 0·26 , -13·656 

----------------------------1-----5 -22·006 -21·997 -22·019 4·87 I 0·28 -22·031 
------------------------1----1------6 -32·381 -32·372 -32·394 5·87 0·28 -32·406 
------------------------------------+ 

7 -44·756 -44·746 -44·761 6·86 I 0·27 I -44·781 

The variational energies given by this wave function, on varying Z' and {j, are 
compared in Table 1 with those of Pluvinage and of Walsh and Borowitz. We see 
that, as expected (21) is somewhat better than either, although the amount of work 
involved in calculating the energy is much smaller. 

It is also interesting to note that the prediction El = -2Z2 corresponds to the 
assignment (j = Z' for which we find the rather poor result 

E(Z*, Z*) = O. (22) 
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