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Summary 

An expression is obtained for the first Townsend ionization coefficient in uniforIn 
crossed electric and magnetic fields, and shown to be in better agreement with observation 
than previous theoretical expressions. The" equivalent pressure" concept for the 
effect of a transverse magnetic field on this coefficient is shown to be a valid approach 
to the problem, although the value for the equivalent pressure obtained in this analysis 
differs from, the values given by earlier authors. 

The effect of a transverse magnetic field upon the second Townsend coefficient is 
discussed in greater detail than hitherto, and the possibility of differentiating by this 
means between the secondary processes operating is discussed. 

I. INTRODUOTION 
The mechanism of electrical breakdown of gases in uniform static electric 

fields is now well established in terms of the growth of current equations based 
on the first and second Townsend ionization coefficients, oc and wjoc. The more 
complex situation in the presence of crossed electric and magnetic fields is not· 
so well understood, however, and previous attempts (Wehrli 1922; Valle 1950 ; 
Somerville 1952; Raefer 1953) to explain the observed breakdown characteristics 
have not been entirely satisfactory. Each of these .investigations has been 
concerned with the influence of a transverse magnetic field on one or both of the· 
Townsend ionization coefficients. 

Wehrli made calculations of the first Townsend coefficient in uniform crossed 
electric and magnetic fields, basing his theory on the assumption that all electron 
collisions with gas molecules are completely inelastic and that the free path l is 
constant for all electrons. In this case, an electron will describe a cycloidal 
path between collisions. 

The distance l' travelled in the direction of the electric field E (Vjcm) will 
then be 

l'=l(1-eH2lj8x108Em), .............. (1.01) 

H being the magnetic intensity in oersteds, e and m the charge (e.m.u.) and mass 
(g) of an electron. When the magnetic field is absent, l' =l and, since only the 
component of the free path in the direction of the field E affects the kinetic 
energy of the electron, Wehrli concluded that, in this sense, the effect of the 
magnetic field is equivalent to an increase in the pressure to a value P., where 

p.=pj(1-eH2lj8 X 108Em). (1.02) 
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Valle inserted this" eqlrivalent pressure" Pe into Townsend's approximate 
expression for ocjp in static electric fields, namely, 

ocjp=A exp (-BpjE), ................ (1.03) 

and so obtained an empirical relationship for oc in a magnetic field. Neither of 
these authors considered the effect of the magnetic field on the secondary 
coefficient. 

Valle's theory has been discussed in detail by Somerville (1952) and Haefer 
(1953) and they have shown that the neglect of the distribution of free paths 
about the mean is the cause of many of the major qualitative differences between 
the the'oretical and observed values of sparking potentials in crossed electric and 
magnetic fields. By considering this distribution of free paths, Somerville 
obtained an improved form of the equivalent pressure concept, which is in 
better though not entirely satisfactory agreement with experiment. 

As an alternative approach, Somerville (1952) and Haefer (1953) 
independently derived a new expression for ocjp in crossed fields without resorting 
to the equivalent pressure concept. This derivation was based on the assumption 
of completely inelastic collisions and an ionization probability of unity for all 
those collisions for which the electron energy is greater than the ionization 
energy of the gas molecule. Their expression is 

ocjp=A sinh ((aj2l)y'(1-4BLjEa)}jrp(lja) sinh (aj2l), .. (1.04) 

where a is the length of a complete cycloidal arch described by an electron 
starting from rest, i.e. a=8 X 108EmjeH2, 

L is the mean free path at 1 mm Hg pressure (L=pl), 
A, B are the empirical constants occurring in equation (1.03), and 
q?(x)=coth (lj2x)-2x. 

Furthermore, Somerville has shown that, provided 4BLjEa<1, this 
expression for ocjp leads to sparking potentials not greatly different from those 
deduced· from his modification to Valle's theory, but that for 4BLjEa> 1 the 
theory breaks down completely, because the maximum energy gained over a. 
cycloidal path by an electron starting from rest is then always less thaD the 
ionization potential of the gas, and, with the assumptions made, no ionization 
can then occur. In this case an adequate theory must take account of the' 
possibility of an electron obtaining sufficient energy to iouize as the result of 
energy gained over several free paths. 

Somerville (1952) and Haefer (1953) further extended their investigations 
to include the effect of a transverse magnetic field on Townsend's secondary 
coefficient wjoc, but limited their discussion to the case when positive ion action, 
either at the cathode or in the gas, is the only secondary process. In this case 
the problem is greatly simplified, since the magnetic field has little influence 
on the motion of positive ions in the gas and consequently their energies will 
not be changed appreciably except at very high magnetic field strengths. For 
this simplified case, the problem reduces to an investigation of the effect of the 
magnetic field on the secondary electrons produced at the cathode by the positive 
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ions. The magnetic field causes these electrons to move in cycloidal paths and 
they may be recaptured by the cathode, thus effectively reducing CJ)/IX • 

.All these previous theories have approached the problem through the study 
of individual electron trajectories in the gas. They have entailed some drastic 
simplifying assumptions, however, and, while qualitative agreement with 
experiment is reasonably good, quantitative agreement is far from satisfactory. 
This is hardly surprising when it is realized that, as yet, a satisfactory theory 
has not been derived on this basis even in the absence of a magnetic field. In 
view of this, a new approach is made to the problem in the present analysis and 
consideration given to the" bulk" properties of the electron avalanches, 'such as 
electron mean energy, drift velocity, and the distribution function for the electron 
energies. 

In the absence of a magnetic field, this approach leads (EmeIeus, Lunt, 
and Meek 1936) to the following expression for the first Townsend coefficient, 

lX/p=KW-1f; P(V).Vl.j(V).dV, .......... (1.05) 

where K=y(e/150m) and is constant, 
W is the electron drift velocity, 

P( V) is the ionization efficiency of electrons with energy V, at 1 mm Hg 
pressure, and 

J( V) is the distribution function of the electron energies. 

In order to extend this approach to the case when a transverse magnetic 
field is present, it is necessary to determine the influence of the magnetic field 
on the quantities occurring on the right-hand side of equation (1.05). One may 
then obtain a new expression for IX/p as a function of H/p and E/p. 

II. THE INFLUENCE OF A TRANSVERSE MAGNETIC FIELD ON THE ELECTRON 

AVALANCHE 

In order to analyse the influence of the magnetic field on the properties of the 
electron avalanche, it is necessary to know the variation of the mean free path l 
with electron velocity u. The assumption usually made is that l is independent 
of u, and for some gases (notably air) this is approximately true. For hydrogen 
and helium, however, a more valid assumption is that l is proportional to u 
(von Engel 1955). Since the values of the Townsend coefficients in static electric 
fields are best known for hydrogen, experimental work in these laboratories 
has been Carried out using this gas so that, in what follows, the assumption is 
made that l/u (=T, the mean free time) is constant for a given pressure. The 
error introduced by using this assumption for other gases will be discussed at a 
later stage. 

When only the electric field E is present, any quantity Q under discussion 
will be denoted by Qo, Elp; when both Hand E are present, the quantity will be 
denoted by QHlp, Elp' 
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(a) The Electron Drift Velocities, W 0, E/p and WHIp, E/p 

For the particular case when the mean free time is constant, the drift velocity 
W 0, E/p is given by 

W o, Elp =EeT jm. ................ (2.01) 

This expression was first derived by Pidduck (1913) and has been obtained 
more recently by Davidson (1954) and Huxley (1957a), using different methods 
of derivation. 

An expression for the corresponding drift velocity WHIp, E/p in the presence 
of a transverse magnetic field has been obtained by Huxley (1957b) assuming 
that l=J(u), and, for the particular case when lju=T, his result reduces ta 

E wT 
WHIP,EIP=jj 1+w2T2' .............. (2.02J 

where w=Hejm. 

This same result can be obtained by a rather different method, which is 
given in Appendix I, because this particular approach will be used later when 
discussing the influence of the magnetic field on the secondary coefficient. 

From (2.01) and (2.02), 

W o,ElpjWH/p,E/p=1+w2T2 . .............. (2.03} 

Also wT=HeLjmpu, so that for a given gas 

w2T2=G(Hjp)2, .............. (2.04) 
where G is constant {=(eLjmu)2}. 

Substituting for w2T2 in equation (2.03), 

W o,E/p/WH/p,E/p=1+0(Hjp)2. . ......... (2.05) 

(b) The Velocity Distribution 

The precise form of the velocity distribution of elec trons in crossed electric 
and magnetic fields is not known, except for the particular case when the collisions 
between electrons and gas molecules are elastic. Allis and A.llen (1937) have 
shown that the distribution function can then be written as 

where e:=tmu2 and e:1=Eel. 

When the mean free time is independent of u, the integrals in equation. 
(2.06) can be evaluated to give 

\ 3m3 (1 +w2T2) } 
J(u)=Aou2 exp '( - 2M' E 2e2T2 . u 2 , ........ (2.07) 

so that the distribution of electron velocities is Maxwellian. The distribution 
is Maxwellian whether the magnetic field is present or not, the effect of the 
magnetic field being the same as if T were replaced by T / vi (1 +w2T2). Since 
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T depends only upon the actual gas pressure (at a given gas temperature) and 
T=L/pu, the effect of the magnetic field on the distribution function is equivalent 
to an increase in pressure by the factor V(l +w2T2). Thus in this particular 
case, the magnetic field has no influence on the form of the distribution but only 
reduces the mean electron energy. 

Whether this conclusion is valid when inelastic collisions occur remains 
to be determined. it is of interest in this connexion, however, to note the 
results of a recent redetermination of theoretical values of (oc/p )0, Elp in hydrogen 
(:Slevin and Haydon 1957) showing that for this gas the distribution function 
may be assumed to be approximately Maxwellian. For hydrogen, then, the 
"elastic collision" theory cited above seems to fit the experimental results 
quite well even when inelastic collisions take place. Consequently, it will be 
assumed that the magnetic field does not affect the form of the distribution 
function, but has the effect of reducing the mean energy. 

(c) The Mean Electron Energy 
If the mean electron energy is V when both the magnetic and electric fields 

. are present, then, for equilibrium, the average energy gain per free path must 
equal the average energy loss at collision, that is, 

Ey=A(V). V, •.••........••.... (2.08) 

where y is the average distance travelled in the direction of the field E between 
collisions, and A(V) is the average fractional energy loss at collision when the 
mean energy is V. For a given gas A(V) depends only upon the distribution of 
energies, and consequently, using the assumption of the preceding section 
regarding the distribution function, will be independent of H. 

Now 

From (2.08) and (2.09) 

E L 
P u 

y=T.WHlp,Elp 
L 

= pu WHlp,Elp' ........ (2.09) 

WHip, Elp =A(V). V. . .......... (2.10) 

Since A(V) is independent of H, A(V). V may also be thought of as the average 
energy loss at collision in a different situation in which there is no magnetic 
field, and some different value of E/p prevails. Let this value be E/p'. 

In this case, the equilibrium condition becomes 

EZ=A(V). V, •.•..•............ (1.11) 

where z=T.WO,Elp' or 
Z=(L/p'U),WO,Elp" .......... (2.11) 

From (2.11) and (1.12) 

(EL/p'u).WO,Elp,=A(V). V . .................. (2.13) 
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Comparing (2.13) and (2.10) shows 

p'/P=Wo;Elp,/WHlp,Elp .......... (2.14) 

_ WO,Elp,·WO,Elp 
- W 0, Elp, WHIp, Elp' 

Now from equation (2.01) WO,Elp,/WO,Elp=P/P', so that 

p'/p=y(Wo,Elp/WHlp,Elp), ...... (2.15) 
Using (2.05) 

p'=py{1+0(H/p)2}. . ........ (2.16) 

From the definition of p' it follows, then, that in crossed electric and magnetic 
fields the electrons behave energetically as they would if only the electric field 
were present, and the pressure were increased from p to p'. 

Townsend and Gill (1938) have also derived an expression for the" equivalent 
pressure" by a consideration of the number of collisions made by an electron 
when advancing unit distance in the direction of the electric field. Since their 
result differs from equation (2.16), it is necessary to examine their work more 
closely. 

When there is no magnetic field, the number (n1 ) of collisions made by an 
electron moving unit distance in the direction of E is given by 

n 1 = (Wo,E/p.T)-l. . ................... (2.17) 

With the magnetic field present, the number of collisions becomes 

or, using (2.05) 

n 2={1 +O(H/p)2}/(WO, Elp.T). . ......... (2.18) 

Townsend and Gill obtained this result and by comparing (2·.17) and (2.18) 
concluded that the magnetic field has the same influence in this respect as would 
a decrease in T by the factor 1+0(H/p)2, or, since T=L/pu, an increase in 
pressure by this factor. However, this makes no allowance for the change in 
the drift velocity which would take place if the pressure were increased. 

Using equation (2.01), the result given in (2.17) becomes 

n 1 = (u/L)p2/E(e/m)(L/u). (2.19) 

Similarly (2.18) becomes 

n2=(u/L)p2{1 +O(H/p)2}/E(e/m)(L/u). . . . . .. (2.20) 

Comparing equations (2.19) and (2.20) now shows that the magnetic field 
is identical, in this respect, with an increase in pressure by a factor y{1 +O(H/p)2}, 
in agreement with equation (2.16). 
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m. CALCULATION OF (rx.jp)H/p,E/p 

It is now possible to calculate _ (rx.jp)H/p.E/p by way of equation (1.05), 
that is, 

(rx.jP)H/P.E/P=K(WH/P.E/P)-l{J: P(V). Vi·f(V).d V}V' .• (3.01) 

where the subscript V means that the integral is to be evaluated for this mean 
energy. 

It also follows from equation (1.05) and the discussion of Section II (0) 
that 

(rx.jP)O.E/P,=K(WO,E/P,)-l{J: P(V). Vi.f(V).dV}v' •• (3.02) 

where p' is determined by equation (2.11). 

From (3.01) and (3.02) 

Wo E/p' (rx.jp)H/P,E/P=W ' • (rx.jp)O.E/p" •••••••••••••• (3.03) 
H/p,E/p 

or, using (2.14) and (2.16), 

(rx.jp )H/p.E/p = -v'{1 +O(Hjp )2}.(rx.jp )0, E/p'. •• • • • • • • •• (3.04) 

For many gases and over a considerable range of the parameter E jp (von Engel 
1955), 

(rx.jp)o.E/p=A exp (-BpjE), (3.05) 
so that 

(rx.jp)o,E/p,=A exp [-B(pjE)-v'{1+0(Hjp)2}]. (3.06) 

Equations (3.04) and (3.06) then yield 

(rx.jp)H/p,E/p=A-v'{1+0(Hjp)2} exp [-B(pjE)-v'{1+0(Hjp)2}]. .. (3.07) 

Thus by comparing equations (3.05) and (3.07) it can be seen that the effect on 
the first Townsend coefficient of the addition of a transverse magnetic field is 
the same as an increase in pressure by the factor -v'{1+0(Hjp)2}. 

Should the empirical relationship given in equation (3.05) be invalid for a 
particular gas, then equation (3.04) can be used, (rx.jp)O,E/p' being evaluated 
from experimental results. 

Also equations (3.03) and (2.14) show that 

(rx.jp )H/p.E/p=(P' jp ) (rx.jp )O.E/p" 

As these two equations depend only upon the assumption that the magnetic 
field does not alter the form of the distribution function, it would be expected 
that, if this assumption is valid, the" equivalent pressure" concept is justified 
for the general case when L=f(u). Following the discussion of Section II (b), 
however, the assumption that the form of the distribution function is unchanged 
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depends upon the condition Lju = constant, and it seems unlikely that these two> 
assumptions can be divorced. 

It should be emphasized that, in applying the results of the above analysis 
to pre-breakdown currents in uniform fields, a distinction must be made between 
the spatial and temporal variations, owing to the fact that· the drift velocity,. 
collision frequency, and consequently the electron transit time, are different, 
in the following two systems : 

(i) Magnetic field=H, 
electric field . =E, 
pressure =p; 

and (ii) magnetic field=O, 
electric field =E, 
pressure _p'. 

This means that although, as far as the primary ionization is concerned, 
the same electron multiplication takes place in a given distance, the time taken 
for this multiplication to be achieved is different in the two systems. This· 
situation originates from the fact that when Lju is constant the average time­
spent between collisions depends only upon the actual gas pressure. 

IV. COMPARISON OF THEORY AND EXPERIMENT 

The only measurements of (a.jp)H/p,E/p available for comparison with the­
theory are those made in hydrogen in these laboratories (Blevin 1956) for 
50 <Ejp <150 V cm-1 (mm Hg)-I, and for H<700 oersteds. The hydrogen used. 
in these experiments was admitted to the vacuum system by diffusion through a· 
palladium thimble. The ionization chamber was not baked out, however, and, 
as a diffusion pump was not used, the lowest pressure obtainable in the system 
was about 10-3 mm Hg, so that the gas possibly contained small amounts of 
impurities. 

The values of A, B used in (3.07) for the calculation of (a.!P)H/p,E/p were-
5 . 6 and 141 respectively, corresponding to the measurements of (a.jp )0, E/p made­
in the same apparatus. These measurements are in good agreement with other 
recent determinations of (a.jp)O,E/p (Blevin, Haydon, and Somerville 1957). 

The value of 0 to be used in equation (3.07) can be determined by severa] 
methods. 

(i) Since O=(eLjmu)2 and e, m are known, it is only necessary to find 
Lju. This may be calculated from collision cross-section data such as those­
determined by Ramsauer (1921) and Brode (1925). 

(ii) Microwave measurements of the properties of electric discharges in 
hydrogen enable the collision frequency vc=ujL (at 1 rom Hg pressure) to be­
determined (Rose and Brown 1955; Udelson, Creedon, and French 1957), and 
hence O. 

(iii) Equation (2.01) shows that WO,E/p=VO. Ejp, so that by taking a· 
linear approximation to experimental values of the drift velocity, 0 and Vc may 
be calculated. .A summary of determinations of the electron collision frequency 
Vc by these methods is given in Table 1. 
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That the values of Vc obtained by these various methods are different is to 
be expected, because a collision between an electron and a molecule is defined 
differently for the different methods (Healey and Reed 1941). For the deter-

TABLE 1 
COMPARISON OF COLLISION FREQUENCY MEASUREMENTS 

Method 

Collision cross·section data 
Collision cross·section data 
Microwave measurements 
Microwave measurements 

Drift velocities 

Author Vc X lO-9 sec-1 

Ramsauer 5·9 
Brode 3·6 
Rose and Brown 4·85 
U delson, Creedon, and 4·6 

French 
(As in text) 3·6 

TABLE 2 

OOMPARISON OF EXPERIMENTAL AND THEORETICAL VALUES OF a.H/p E/pla.o E/p , 

Elp=50, p=5·17mmHg Elp=70, p=5'17mmHg 

a.H/p, E/pla.o, E/p a.H/p, E/pla.o, E/p 
HIE HIE 

Expt. Calc. Expt. Calc. 

0·5 0·976 0·986 0·5 0·988 0·985 
0·8 0·954 0·966 1·0 0·940 0·942 
1·0 0·940 0·947 1·5 0·855 0·873 
1·5 0·880 0·886 2·0 0·789 
2·0 0·815 0·809 3·0 0·597 
2·5 0·720 
3·0 0·629 

Elp=100, p=2·52mmHg Elp=150, p=2·11 mmHg 

a.H/p, E/pla.o, E/p a.H/p, E/pla.o. E/p 
HIE HIE 

Expt. Calc. Expt. Calc. 

0·5 0·989 0·987 0·5 1·02 1·001 
1·0 0·945 0·947 1·0 0·985 0·989 
1·5 0·870 0·881 1·5 0·895 0·937 
2·0 0·766 0·797 2·0 0·754 0·855 
2·5 0·633 0·697 3·0 0·637 
3·0 0·591 
4·0 0·405 
5·0 0·260 

mination of the effective cross section a collision is defined as an event in which 
an electron suffers an appreciable change either in direction of motion or in 
velocity, whereas for the drift velocity analysis, a collision is defined as an event 
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in which, on the average, an electron loses all its momentum in any specified 
direction. Since the constant C has been introduced into the theory by a 
consideration of the electron drift velocities, it seems appropriate to select 
ve =3'6x109, or C=2·4x10-5• 

Experimental and calculated values of rxH/p,E/p/rxO,E/p are given in Table 2 
for various values of E /p in the range 50 <E /p <150. Figure 1 shows the nature 
()f the agreement between the present theory and the observed values, together 
with the theoretical values of Somerville and Haefer (cf. equation (1. 04)), for 
Ejp=50. It can be seen that even at large values of H/E, where the latter 

'·2 

,·0 

o·s 

0·4 

0·2 

o 

I(" -._. 
-x-.-... 

0·5 ,·0 

.-... 

,·5 
HIE (OERSTED eM/V. \ 

-...... 

2·0 3·0 

Fig. I.-Theoretical and experimental values of 'XH/p, E/p in 
hydrogen for Ejp=50 V cm-1 (mm Hg)-l. X Experimental values. 
_.- Present theory. -- Equation (1.04) (cf. Somerville 19M!; 

Haefer 1953). 

theory predicts zero values of (rx/P)H/p,E/p, the present theory is in good agreement 
with observation. The calculated values are quite sensitive to the value chosen 
for 'Ie because '1~ appears in the calculation, so that the accurate measurement 
()f (rx/P)H/p,E/p in pure hydrogen might well be used as the basis of the deter­
mination of 'Ie in this gas. 

v. TOWNSEND'S SEOONDARY OOEFFICIENT 

The secondary processes acting in an electric discharge can be denoted by 
a generalized coefficient w/rx (Llewellyn-Jones and Parker 1950). When only 
positive ion and photon action at the cathode are important, 

(5.01) 
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where y is the average number of electrons liberated from the cathode per incident 
positive ion and ~ is the average nlimber of electrons liberated from the cathode 
by the photons created in the gas when an electron moves 1 cm in the direction 
of the electric field. Equation (5.01) is valid, for instance, in low pressure 
discharges in hydrogen (Morgan 19(6), for which gas it has already been shown 
in Section IV that the present theory for the first Townsend ionization coefficient 
is applicable. 

Equation (5.01) does not take into account, however, the probability that 
electrons set free by either of these processes may be scattered back to the cathode 
after a collision with a gas molecule, and be captured there. If k is the fraction 
of secondary electrons which remain free in the gas, then 

wla.=k(y+~/a.) . ................ (5.02) 

(a) The Recapture Coefficient, k 
In the presence of both an electric and a transverse magnetic field there are 

two mechanisms by which electrons leaving the cathode may be returned there 
and recaptured. 

(i) Electrons colliding elastically in the vicinity of the cathode can have 
sufficient energy to travel against the field E back to the cathode and be recap­
tured. Let the fraction of electrons which escape recapture by this mechanism 
be kl" If only E is present, then, at those values of Elp where ionization is. 
appreciable, kl remains nearly constant (Theobald 1953) with increasing Elp,. 
so that little error is introduced by assuming that kl is independent of Elp,. 
and, consequently, of the electron energy. Thus, although the presence of the· 
magnetic field changes the mean electron energy, kl can be assumed independent 
of H for sufficiently high values of Elp. 

(ii) There is a second loss mechanism which is not present in the absence of 
H, namely, loss of secondary electrons which do not suffer collision in the gas, 
but return to the cathode under the action of the magnetic field. Let the fraction 
of electrons which escape recapture by this means be denoted by k 2• This 
process has been investigated by Somerville (1952), but slight modification of 
his theory is required when the mean free time rather than the mean free path 
is considered to be constant. . 

If t' is the time required for a secondary electron liberated from the cathode 
to return there, the number of electrons N(t') travelling for this time without, 
collision is (cf. Appendix I, equation (A2)) 

N(t')=Noexp (-t'IT), .......... (5.03) 

where No is the number of electrons leaving the cathode. Oonsequently the· 
fraction of electrons remaining free in the gas is given by 

1-N(t')INo=1-exp (-t'IT), 

and, if r is the probability that an electron will be reflected from the cathode,. 
then from (5.03), Nor exp (-t' IT) electrons will leave the cathode again, and a 
fraction r{exp (-t' IT)}{1-exp ( -t'IT)} of these will collide and remain free in 
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the gas. The value of k2 is obtained by summing these fractions over an infinite 
number of reflections, giving 

k2 ={1-exp (-t'/T)}/{l-r exp (-t'/T)) . .......... (5.04) 

Now if it is assumed that the electrons leave the cathode with zero velocity, 
the distance Il:t travelled in the direction of the electric field is (cf. Appendix I, 
equation (AI)), 

1 E 
Il:t= w jj(l-cos wt), 

but, by the definition of t', Il:t=O when t=t', or 

t'= 2n/w. (5.05) 

From (5.04) and (5.05) 

k2 ={1-exp (-2n/wT)}/{1-rexp (-2n/wT)) .. .... (5.06) 

The coefficient k in equation (5.02) is then given by 

k=k 1k 2• • ••••••••••••••••••••••••••••••••••• (5.07) 

(b) The Variation of Y with Magnetic Field Strength 

For a given gas and cathode surface, y will depend only upon the energy 
of the positive ions reaching the cathode. However, the magnetic field has little 
~ffect on the motion of positive ions in comparison to the effect on electrons, 
because of the much greater mass of the ions. Equation (2.16) shows (when 0 
is evaluated for positive ions) that the" equivalent pressure" for the ions is 
very little different from the actual pressure, except for large values of H/p. 
With this restriction, 

YH/p,E/p =yo, E/p· .......... , '" (5.08) 

The limiting value of H /p for which this is valid must be evaluated for each gas. 

( c) The Variation of a / Ot; with Magnetic Field Strength 

At low pressures when photon absorption in the gas is negligibly small, 
a can be written in the form 

a="y)fJg, ..................... (5.09) 

where fJ is the average number of photons produced by an electron moving 1 cm 
in the direction of the electric field, 

g is a geometrical factor determining the probability that a photon 
will reach the cathode, and 

"Y) is the probability that a photon reaching the cathode will liberate an 
electron. 

By analogy with equation (1.05), the excitation coefficient fJ is given by 

(fJ/p)o,E/p=K(WO,E/p)-l (00 P'(V). Vi.f(V).d V, .. (5.10) 
• 0 
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where PI(V) is the efficiency of excitation. Proceeding in the same manner 
as for ionizing processes, it follows that 

(fJ/P)H/P,E/P=(p'/p)(fJ/P)O,E/P" ••••••••••••••••••• (5.11) 

Now 'Yj will depend upon the energy of the incident photon and, when 
there are photons of different energies present, upon tb.e relative abundance 
of photons in each energy group. 

When excitations occur to different energy levels, PI(V) in equation (5.10) 
can be replaced by Pi (V) +P2(V) + ... +P~(V), where P~(V) is the excitation 
efficiency for the nth level. Thus, if (fJj )0, E/p is the number of photons produced 
which have energies characterized by the jth level of the gas molecule, then 

(fJ)P)O'E/p=K(WO'E/P)-lf~ Pj(V). Vl.!(V).dV, 

and similarly, 

(fJk/P)~'E/P=K(Wo'Erp)-l f~ Pi,(V). Vl.!(V).dV, 

so that 

(fJj/fJk)O,E/P= f~ Pj(V).Vl.!(V).dV! f: Pi,(V).Vl.!(V).dV. . ... (5.12) 

By a similar procedure, the ratio (fJj/fJk)H/P,E/P can be found, glvmg an 
equation similar to (5.12) but in which the integrals on the right-hand side must 
be evaluated for a different mean energy. . It has already been shown that this 
mean energy corresponds to the case when there is only the electric field present, 
but the pressure is increased from p to p'. It follows, therefore, that, 

(fJj/fJk)H/p,E/p = (fJj/fJk)o, E/p'. . . • . • • . • • • •• (5.13) 

This result means physically that the relative abundance of photons in the 
energy groups is the same in the presence of both E and H, as in the case when 
only E is present, provided that the pressure is increased from p to p' in the 
latter case, that is, 

'YjH/p,E/p='YjO,E/p" .............. (5.14) 

The value of g for a given electrode configuration depends only upon the 
manner in which the production of photons is distributed throughout the 
discharge space. In crossed fields, the number ~n(xl) of photons produced by N 
electrons moving a distance ~x in the direction of the electric field, having already 
travelled a distance Xl from the cathode, is 

~n(xl)=N • fJH/p,E/P • ~x. 

If No electrons originally leave the cathode, then 

N =No • exp {f~ OCH/p,E/p. dx}, 
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and 

Lln(x1)=No' (JH/p,E/p. exp {I:' OCH/p,E/p' dX}. Llx. 

Similarly the number of photons produced by electrons moving a distance 
Llx at a distance x 2 from the cathode is 

{IX' I Lln(x 2)=No ' (JH/p,E/p • exp t ° OCH/p,E/p' dx 5 . Llx, 

so that 

Lln(x1)/Lln(x2)=exp fI:: ocH/p,E/pdX}- .•.•.•.•....••.• (5.15) 

From (2.16), (3.04), and (5.15) 

Lln(x1)/Lln(x2) =exp {I:: OCo, E/p'dX} , 

and it follows that the distribution of photon production in the gap when both E 
and H are present is the same as when only E is acting, but the pressure is 
increased from p to p', that is, 

gH/p,E/p =go, E/p'· ...................... (5.16) 

Oombining equations (2.16), (3.04), (5.09), (5.11), (5.14), and (5.16), 

(~/OC)H/p,E/P=(~/OC)O,E/p" .. , ..•............ (5.17) 

or, using (5.02), (5.07), (5.08), and (5.17), 

(w/~)o, E/p =kl {Yo, E/p + (~/ oc)o, E/p} , ( 5.18) 
and 

( 5.19) 

VI. THE SECONDARY OOEFFICIENT FOR SMALL H /p 
Equation (5.06) shows that for small values of H/p the recapture coefficient 

k2 is very close to unity, so that equations (5.18) and (5.19) can be written as 

Furthermore, if the fraction of the secondary coefficient due to photons is 
known at any value of E/p, that is, the ratio kl(~/W)O,E/p=f (say) is known, 
then equation (6.01) may be rewritten 

(w/ OC)H/p,E/p - (l-f)( w/ oc)o, E/p =kl (~/ oc)o, E/p" 

It follows then that if a value is assumed for f ata given E/p (obtained, for 
instance, from measurements of the formative time lag of breakdown (Morgan 
1956)) it is possible, by measuring the total secondary coefficient w/oc with and 
without a transverse magnetic field present, to determine the photon contribution 
kl(~/OC)O,E/p' at a valueE/p'. By repeating this procedure the actual contribution 
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due to photons can be determined at any lower value of Ejp. In this way the 
fractional contributions obtained by measurements of the formative time lag of 
breakdown, in the absence of a magnetic field, may be checked. 

VII. CONCLUSIONS 

The above theoretical investigation has shown that the presence of a 
transverse magnetic field has the same effect on many of the " bulk properties " 
of an electron swarm in hydrogen as would an increase in the gas pressure. This 
,equivalent increase in pressure has been determined and used to evaluate a 
theoretical expression for the first Townsend ionization coefficient in hydrogen 
which has been shown to be in good agreement with recent experimental 
,determinations. 

TABLE 3 
VALIDITY OF EQUIVALENT PRESSURE CONCEPT 

Actual Situation Equivalent Situation 

Property Associated with Electron Transverse magnetic Transverse magnetic 
Avalanche field=H field =0 

Uniform electric Uniform electric 
field=E field=E 

Gas pressure =p Gas pressure=p' 

Distribution function · . · . · . · . f(V) f(V) 
First Townsend coefficient · . · . · . rL rL 

Collisions/cm of drift · . · . · . · . n n 
Excitation coefficient · . · . · . · . e e 
Photo-emission probability · . · . ' .. 1) 1) 

Geometrical factor · . · . · . · . g g 
Drift velocity . . · . · . · . · . W (p'/p)W 
Collision frequency .. · . · . · . · . Vc (p'/p)vc 

The detailed discussion of the secondary coefficient wjrJ. has also shown that, . 
for small magnetic fields, the equivalent pressure concept is applicable to the 
influence of H on the photon contribution. It is not applicable to the influence 
of small magnetic fields on the liberation of electrons by positive ion bombardment 
of the cathode. As the magnetic field increases, the recapture of secondary 
electrons by the cathode becomes increasingly important, so that wj rJ. is diminished 
owing to this effect. 

The extent to which the equivalent pressure concept developed in this 
analysis is valid is summarized in Table 3. It may be seen that the concept 
may be validly applied to all aspects of the spatial growth of currents which 
depend only on the first six quantities listed in the table. However, owing to 
the fact that the electron transit time is not identical in the two systems, an 
:analysis of the temporal growth of pre-breakdown currents cannot be treated in 
terms of the particular value of the equivalent pressure derived in this analysis. 

A further paper relating the present theory to breakdown characteristics 
:in crossed fields is being prepared. 
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APPENDIX I 
The Drift Velocity of Electrons' in a Transver8e Magnetic Field 

Consider an electron moving in a gas, at pressure p mID Hg, under the 
influence of a uniform electric field E in the Om direction and a uniform magnetic 
field H in the Oz direction. 

Putting Helm=w, the equation of motion for the electron is, (see e.g. Healey 
and Reed 1941) 

mt=(l/w)[{(EIH-Uy)}{l..;...coswt}+U~sinwt], ••••• (AI) 

where mt is the distance travelled in the Om direction in time t, and 'ud u y are the 
initial velocities in the Om, Oy directions. 

Now, if the mean free time T is independent of u, then the number (dN) 
of collisions made by N electrons in a time interval dt, is 

dN=-N(dtIT), 
or 

N =No exp ( -tiT), (A2) 

where No is the total number of electrons. 

D 
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If a collision is defined as an event in which, on the average, an electron 
loses all of its momentum in any specified direction, then averaging for initial 
velocities in (A 1) gives 

xt=(E/Hw)(l-cos wt). 

Averaging over free times, and using (A2), 

or 
W H/p,E/p =x/T= (E/H)wT/(l +w2T2). 




