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Summary 

The paper discusses the validity of Sondheimer's (1950) variational method of 
solving the integral (Bloch) equation for the distribution of free electrons, interacting 
with lattice vibrations, in the case of thermal conduction at low temperatures. This 
equation is solved numerically, and it is found that the resulting thermal conductivity 
is about 11 per cent. larger than the value calculated by Sondheimer. 

I. INTRODUCTION 

It can easily be shown that the thermal conductivity of a pure metal l 

calculated on the assumption of energy transport by free electrons interacting 
with lattice vibrations but in the absence of scattering by static imperfections, 
should be inversely proportional to the square of the absolute temperature at 
sufficiently low temperatures. However, no analytical solution has been 
found to the Bloch integral equation which must be solved to obtain the multi­
plicative constant to that relationship. 

The variational method of Kohler (1948, 1949), extended by Sondheimer 
(1950), overcomes the difficulty by adjusting the parameters of a linear trial 
function by a variational principle which leads to a stationary expression for 
the conductivity. The particular trial functions chosen are polynomials in the 
electron energy. 

Olearly the results of such calculations must be sensitive, at least to some 
degree, to the particular form of the trial function used. Since it can be shown 
that the actual solution of the Bloch equation cannot be represented by a 
polynomial in electron energy, some doubt is thrown on the accuracy of Sond­
heimer's approximation. In order to clarify this point, the Bloch equation has 
been solved numerically for the region in which the T-2 law applies, where the 
error of the Sondheimer method is probably largest. The present result is 
estimated to be accurate to better than 0·5 per cent., and it is found that the 
theoretical conductivity exceeds Sondheimer's value by 11 per cent. 

II. THE VARIATIONAL METHOD 

Oonsider the equation 
S. c(E)=En, (1) 

where c(E) is a function of E, later to be identified as the electron energy, and S 
is a linear operator, so that S.c(E) is also a function of E. Oonsider a real 
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Hilbert space, whose elements are all self-adjoint and are the functions o. Scalar 
products are defined by the integrals 

.............. (2) 

fO(E) being the Fermi distribution function. Let 8 have the special property 

and 
(80B 02) =(802,01 ), ••••••••.••••••••• (3) 

(801,01 );>0 . ........................ (4) 

It is then easily shown by considering the variation of 0 that the solution of (1) 
is such that 

(80,0) is a maximum, .............. (5) 

subject to the normalization condition 

(80,0) . (En,o). . ................... (6) 

In the Kohler-Sondheimer method, 8 is the integral operator describing the 
rate of change of o(E)-a measure of the deviation of the distribution function 
from equilibrium-due to the interaction of the free electrons with the lattice 
vibrations. It was shown by Kohler (1948), that (3) and (4) are indeed satisfied. 

Let 0(3/2) and 0(5/2) be the solutions of (1) with n=3j2 and n=5j2. Defining 
coefficients 

(7) 

then the electrical conductivity is proportional to K 1 ,H while the thermal 
conductivity is proportional to 

K2,2KI.l -(K1 •1 )2 
K 1 ,1T 

................. (8) 

It is obvious from (5) and (6) that the coefficients K2,2 and K 1 ,1 are stationary; 
that is, given a trial function deviating from the true solution by ~o, the error 
in these coefficients will be of order (~c, ~c). The coefficient KI.2 is not stationary 
for general variations, but Makinson (personal communication) has shown that, 
with the trial function a polynomial in E and its variations thus restricted, the 
Sondheimer method also leads to a stationary expression for K 1 ,2' The expression 
(8) for the thermal conductivity is then stationary. 

The same result would be obtained if the Bloch equation for the case of 
thermal conduction were written in the form given by Bethe (see Sommerfeld· 
and Bethe 1933), who showed that the thermal conductivity, correct to the first 
significant order in KTj~, is given by 

x oc (0, e:), ......... " ........ '" (9) 
where c(e:) is the solution of 

8.0(e:)=e:, .................... (10) 

and e:=(E-~)jKT. The variational method can again be applied to (10). 
The expression (9) is of similar form to K 1 ,1 or K 2 ,2' and it is easily seen to be 

E 
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stationary and a maximum. This formulation of the problem is more easily 
discussed than Kohler's. The function c(e) is, except for terms of higher order 
in_KT/~, a linear combination of C(3/2) and C(5!2). 

In the Kohler-Sondheimer method, the trial functions c(E) are expressed in 
a series of ascending powers of E, whose coefficients are evaluated and substituted 
into the stationary expression for the transfer coefficients. This is equivalent to 
expressing c(e) as a power series in e, and substituting the coefficients into (9). 
In practice only terms up to the cubic are retained. Now the function C(3!2) 

can be expressed very well by the first few terms of a power series; but the 
function c( 5 !2) cannot be thus represented at low temperatures for a pure metal, 
because the solution c(e) of (10)-given explicitly in (11) below-approaches 
a constant value asymptotically, as is easily seen by inspection. Thus the 
variational method, while giving good results for electrical conduction, and for 
thermal conduction when the Wiedemann-Franz law is obeyed, cannot give the 
correct solution c(e) for thermal conduction in a pure metal at low temperatures. 

It does not necessarily follow that the variational method gives a value 
of the thermal conductivity seriously in error, for, if cp(e) is the polynomial 
trial function, the approximation (cp,e) to (9) differs from the true value only 
by a term of second order in 8c =c p -c. However, this term is not necessarily 
small. In the real Hilbert space introduced above, all functions cp(e) which are 
cubic polynomials form a subspace P. The true solution c(e) evidently lies 
outside this subspace, since it cannot be represented by iii cubic. Thus the 
length (8c.8c)1 cannot be less than that of the component of c(e) orthogonal to P, 
and this sets a lower limit to the second order error in (c,e). It may be that 
(8c.8c) is not negligible compared with (c,c). 

It does not seem possible to give more than this qualitative discussion of the 
error, which from the above considerations must of course be negative. Equation 
(10) has therefore been solved numerically for a pure metal at very low temper­
atures, and the conductivity, ·varying as T-2, has been evaluated from (9). 

III. NUMERICAL SOLUTION OF THE BLOCH EQUATION 

Disregarding multiplicative constants, the explicit form of (10) at low 
temperatures (T-<:6) in the absence of scattering by static imperfections is 

foo a:2da: ~ ee:+1 e-e:+1 } 
o e<ll_1l~c(e+a:)-c(e)Jee:+e-<Il+[c(e-a:)-c(e)Je-e:+e-<Il =e ..... (11) 

The symmetry of (11) requires that c(e) shall be an odd function of e, and it is 
seen easily that c(e) OCe for small e, and that c'(e) oce-2 for large e. 

Two methods were used to solve (11) numerically, both of which gave 
substantially the same results. The lengthy computations involved were done 
on an automatic desk calculator. 

In the first method the integral equation was replaced by a set of 10 simul­
taneous linear equations, with the values of c(e) at 10 equally spaced points as 
unknowns. The coefficients of the equations were the values of the kernel at 
these discrete points. Use was made of the property c( -e) = -c(e), c(O) =0. 
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It was assumed that c(o;) =0 for all values beyond the lOth point. The set of 
10 equations was solved by a method of successive elimination adapted for desk 
machines, as described for example by Milne (1949). Two such calculations 
were made, using spacings of 0·5 and 1·0 respectively, and the two sets of 
solutions are marked in Figure 1. The assumption c(o;) =0 for large 0; was seen 
to be inconsistent with the results, but, since the two sets of results did not differ 
greatly in spite of the different cut-off, it seems that the effect of this cut-off is. 
not critical. 
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Fig. I.-Solution of equation (10), replacing the integral equation 
by a discrete and finite set of linear equations. Crosses for 
e:=0·5, 1, ... , 5; circles for e:=I, 2, ... , 10. Full curve: 
result of the iterative method. Inset shows the form of c(e:). 

It would have been desirable to shorten th1l intervals without decreasing 
the range of unknown values. Unfortunately the methods of computation 
available did not permit a significant increase in the number of unknowns. 
However, it was noticed that in each equation the diagonal term was dominant, 
which suggested the following iterative procedure: 

Let c(o;) =co(o;) +c1(0;) +c2(0;) + ... , where co(o;) is given by 

fO> x2dx [ ee:+1 e-e:+1 ] 
o eX -1 ee+e x+e-e:+e-x co(o;)=-o;, ........ (12} 

and 

fOC> x2dx \ _ ee:+1 _ _ e-e:+1 }_ 
o eX -1( [cn- 1(0;+x) cn(0;)]eE+e-X+[Cn-1(0; x) cn(o;)]e E+e x -0 . 

. . . . . . . . . . . . . . .. (13, 

Evaluating co(o;), c1(0;), c2(0;), etc. in turn from these definite integrals, successive 
approximations were obtained. The integrations were done numerically and 
cn- 1 (0;) was obtained for a few values of 0;. The intermediate values were obtained 
by interpolation and used for the next iteration. The iteration was broken off" 
after ca' The smallness of cn(o;) indicates whether c(o;) =co(o;) +c1(0;) + ... +cn- 1(0;) 
is a good approximation. While the convergence of this method was not 
examined, the actual results, plotted in Figure 2, indicate that it is satisfactory_ 
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No investigation was made of the accumulation of errors, and therefore the 
solution had to be tested by substitution into (II). The conductivity can then 
be obtained from (9). These two steps were combined and a further correction 
to the conductivity was obtained by multiplying the solution by an arbitrary 
<constant and renormalizing it using the relation 

(Sc,c)=(e:,c). . ................... (14) 

As before, with c thus normalized, the expression (e:,c) is stationary. The 
renormalization correction was only 0·4 per cent.; hence the conductivity thus 
calculated is accurate to at least the same limit. 

-0·14 

'-'-' Co 

--- Co+CI 

-0,12 _ ... - CO+Ct+C2 

-0'10 

-0'08 

c 

-0·06 

-0·04 

-0,02 

LO--~2----~4--~8~--~8--~1~0--~12~--~14~~1~6--~18~~20 

Fig. 2.-Solution of equation (9) by iteration. 

IV. OONCLUSION 

Including the multiplicative factors in the Bloch equation and the expression 
for the thermal conductivity, which have not been'stated here, but are given by 
Bethe (see Sommerfeld and Bethe 1933, Section 39), the thermal conductivity 
in the T-2 region has been obtained from the numerical solution of ( II). Express­
ing this in terms of a hypothetical thermal conductivity at high temperatures, 
.assuming a Debye spectrum of limiting frequency 21tKfJ/h, a'spherical Fermi 
surface due to N free electrons per atom, and absence of any processes other 
than those considered in the Bloch theory for a pure metal (in particular no 
Umklapp-processes), one obtains 

x(T) =x( 00 )(fJ/T)2(64' ON213)-1. . ........... (15) 

'The result of Sondheimer's (1950) third approximation, when similarly expressed, 
has a numerical constant of 71·6 in place of 64 '0, while the first approximation, 
-obtained by Wilson (1937), leads to 95"3. Sondheimer's value differs from the 
present solution by only 11 per cent. As is to be expected, the present method 
gives a larger value for the conductivity than Sondheimer's. 
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In addition to the conductivity, these calculations also give the functional 
dependence of c(e). The variational method, using a polynomial trial function, 
does not even approximate the true solution, though it gives rea~onable values 
for the conductivity. While the function c(e) is only of secondary interestr 

knowledge of it may be useful in other .work. 

There are well-known discrepancies between the Bloch theory and the 
thermal conductivity observed at low temperatures (Hulm 1950, 1952 ; .Andrews, 
Webber, and Spohr 1951; Berman and MacDonald 1951, 1952; White 1953),. 
which are hardly reduced by the result of the present calculations. It thus. 
appears that the simple free electron model is inadequate. The required 
modifications of the model will be discussed subsequently. 
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