
PROGRAMME DESIGN FOR THE O.S.1.R.O. MARK I OOMPUTER 

II. PROGRAMME TECHNIQUES 

By T. PEARCEY* and G. W. HILL* 

[Manuscript received December 5, 1952] 

Summary 

The general structure of typical programmes is considered in relation to the structure 
of the computer, in particular to its facilities which tend to render programmes invariant 
with regard to their position in the store. Full-scale programmes are constructed 
by piecing together by a master programme a suitable selection of items from a library 
of " standard routines". The library contains "sub-routines" which are completely 
self-contained and require no additional information for their operation and are invariant 
with respect to their position in the store, and " routines" which are not so invariant 
and frequently require additional data to be provided during their entry into the store. 
The entry of special data for routines and the simplification of the construction of the 
master programme are facilitated by a special routine used whilst the entire programme 
is being entered into the store. 

1. INTRODUCTION 
Part I (Pearcey and Hill 1953) dealt largely with the preliminaries to the 

design of full-scale programmes. It described the computer, its address system, 
and the system of notation used for designing and recording programmes on 
paper prior to the stage of translating them onto a medium for machine input. 
The written programme is recorded onto punched tape with the aid of a specially 
modified teleprinter keyboard. The written programme permits direct trans
lation onto tape without further writing or special effort. 

Part II includes a general discussion of the nature of programmes, the main 
features being illustrated with regard to the use of the present machine. Basic 
groups of commands or " sub-routines" are selected from a library of such groups 
and only the connections between them, together with any special operations, 
are included in the part of the programme specially designed for the current 
problem. Oommands may be modified upon entering the computer in a number 
of ways which involve use of a special routine which is entered initially; this 
routine is described in detail. 

II. THE ELEMENTS OF A PROGRAMME 
The ability of a computer to change the commands held in the store in au 

organized manner permits a great saving in the effort needed for programme 
design and also in the number of commands required to perform a required 
calculation. In practice only a small proportion of the commands of a. 

* Division of Radiophysics, C.S.I.R.O., University Grounds, Sydney. 



336 T. PEARCEY AND G. W. IDLL 

programme is actually devoted to making the calculation; the greater pro
portion organizes the course of calculation and frequently involves continued 
.adjustment of some commands. 

A typical example of a programme having the normal structure is given in 
'Table 1. The construction of the table may be compared with those for a 
similar example given for the EDSAO (Wilkes, Wheeler, and Gill 1951). 

Suppose it is required" to find the sum of the content of all storage locations 
from 100 to 149 inclusive, to store the result in register A, and then stop. The 
notation described in Part I is used in Table 1, and the programme is entered 
at the first command in the list placed at location m. 

TABLE 1 
TYPICAL PROGRAMME STRUOTURE 

Location I 
of Command Action 

Command 
----------

m (A)"':;::A Clears A, (A),=O 

m+l (149)-=!:A Addition starts with (149) 

m+2 (m+l)~O 
}Reduces (m+l) to (149-1')2;. A ; 

m+3 Pu"':;::O 

m+4 (O)~m+l 
r=O, 1, 2, ... 

m+5 100"':;::0 Reduces (0) by 100 Pu 

m+6 8(0)-!;..S Tests sign of (0) 

m+7 m+l~S [m+l] I If <50 addition, i.e. r<50 

m+8 p2o~T r= 50 ; additions complete; stop 

The programme possesses the following features which illustrate the normal 
structure of most programmes: 

(1) The programme is partly repeated, being re-traversed from the command 
in m+1 to that in m+7. 

(2) During each traverse of the repeated commands only one command, 
that inm+1, is directly devoted to the calculation which is the objective 
of the programme. 

(3) The command performing the desired arithmetical function is changed 
during each traverse by the computer so that in the following traverse 
it refers to a different, altliough adjacent, storage location. 

(4) Three of the six repeated commands adjust the command in location 
m+1, i.e. those in m+2, m+3, and m+4. 

(5) A count is made of the number of repetitions, and is tested during each 
traverse to decide whether or not the full number of additions has 
been made. 

(6) If the summation is incomplete, control is shifted "backwards" to 
m + 1, otherwise a " stop" command, as in m +8, is reached. 

(7) One command is not repeated, i.e. that at m. This is devoted to the 
preparatory function of clearing register A. 



PROGRAMME DESIGN FOR C.S.loR.O. MARK I COMPUTER. II 337 

In a complete programme the command in location m +8 would be replaced 
by one which would cause a shift of control to continue with further calculation. 

From Table 1 it is seen that a programme consists of : 
(a) A preparatory group of commands. 
(b) A group performing the functions which are the objective of ithe pro

gramme. 
(0) A group of commands which adjusts the programme for successive 

immediate repetitions. 
(d) A group keeping a tally of the number of repetitions. 
(e) A test on the tally to decide if the repetition shall cease and another 

part of the programme be adopted. 
In some cases these sections of a simple programme may not be distinct 

and may even be absent. Thus, in an iterative process, as distinct from a 
repetitive process illustrated by Table 1, the groups (0) and (d) may be omitted, 
whilst (e) is present in the form of a test at each stage on the result from the 
group (b) .. 

In the example given, (a) corresponds to the command in m, (b) to,that in 
m+1, whilst m+2, m+3, and m+4 correspond to (0). The command which, 
at each stage, appears in m + 1 is held in register 0 and is used as the" counter" 
for the repetitions. 

Normally, programmes will contain a number of groups of eommands similar 
in structure to that of Table 1. In fact, the main controlling programme will 
frequently be of this typical type in which its component parts are themselves 
smaller groups possessing similar structure and so on. 

III. STANDARD ROUTINES 

Construction of each 'programme ab initio upon its individual merits would 
become very tedious. To save much of the labour of programme design as 
much use as possible is made of information accumulated and made available 
from previous programmes in the form of "standard routines " or groups of 
commands. 

It frequently occurs that computations involve somewhat complex opera
tions of standard types, such as evaluation of particular functions like exponential 
or circular functions, interpolation of a function table, numerical quadrature 
and so on. Each such operation requires its special programme which, if 
suitably designed, may be used as a standard routine for use in other calculations 

. which require these types of operations. 
Operations such as division, taking square roots, and even reading and 

recording fresh information and converting data to and from decimal scale may 
be so standardized. Such standard routines have the effect of providing the 
computer with additional and more complicated functions. Thus, for instance, 
an inversion routine may be considered as having the logical meaning, "substitute 
into register A the reciprocal of its present content". 

Two factors are necessary for successful use of standard routines in construc
tion of programmes. Firstly, standard routines should be useful over as wide a 



338 T. PEARCEY AND G. W. HILL 

field as possible, that is, routines should not be too specialized otherwise the 
list of standard routines eventually recorded and stored becomes overwhelming 
and confusing. Secondly, there must be a simple means of incorporating them 
into programmes. 

Standard routines frequently, although not always, possess a structure 
like that of Table 1 and may frequently involve more than one loop. For 
greatest usefulness it should be possible to place a routine in any part of the 
store without complication to the organization of the remainder of the pro
gramme. It should preferably be invariant with regard to its place in the store. 
Occasions will arise, particularly in use of routines for specialized use, when a 
routine must be restricted to a special position in the store and will not be 
invariant. 

Further, a routine may require different data when used in a different 
context and may do so even when used more than once by the same programme. 
Such data are commonly called" parameters" and are supplied to the programme 
during its insertion into the machine, as will be described later. 

Quantities used by a routine which differ every time the routine is entered 
are stored in standard positions, e.g. registers A, B, 0, Ii, and D, just before the 
entry into the routine. These quantities are called " variables". 

IV. POSITION INV ARIANCE 

.A special class of standard routines, which includes a large proportion of the 
most useful and frequently used routines, can be made invariant with regard to 
store position by use of the normal functions of the machine. The principal 
device used for this is the command of the type 

n±"S, 

which causes a relative shift of control by n + 1 locations. In the example of 
Table 1 the command m+1-..-S could be replaced by -7±"S (where -7 is 
considered modulo 1024). Within any routine the various values of n defining 
internal relative shifts of control are independent of the positioIl: of the routine 
in the store. 

Numbers such as working constants, e.g. e-I, 1tj4, etc., could be stored at 
the end of the routine by which they are used, that is in locations depending 
on the position of the routine in the store. This location reference can be 
avoided by storing such constants in two parts within two successive commands. 
Thus the sequence of commands 

n--,..A, 
m--,..Hu, 

(HI).:!;..A, 

places (n2 10+m)2-19 in register A. Quantities may be similarly assembled into 
register 0, but not in D, since the digit space occupied by n includes also the 
space specifying the location of D and may be incompatible. 

By means of the further device of initially storing variables in various 
standard registers most of the simpler routines can be made invariant with regard 



PROGRAMME DESIGN FOR C.S.I.R.O. MARK I COMPUTER. II 339 

to store position. Output routines and routines for division, square root, and 
simple transcendental functions are members of this class and are called" sub
routines ". Those which require the use of parameters are called simply 
" routines ". 

Not all functions which would help in rendering routines invariant have 
been included as functions of the machine. Another would be a function which 
would allow a "transfer to the store location now indicated by the sequence 
register" to take place. By this means direct reference to positions within the 
routine could be made, so that a command constructed with the aid of a position 
reference value dTawn from the sequence register could be adopted for immediate 
use. Such a procedure would involve a considerable number of additional 
commands. 

v. PARAMETERS 

The use of standard routines may be greatly increased by use of parameters 
which may be given different values in different programmes. Sub-routines 
do not possess such parameters. Standard routines which possess internal 
references and cannot conveniently be made invariant may be provided with the 
store position of a particular command contained within it, usually its leading 
command, as one of its parameters. 

Consider the example listed in Table 1. The values depending upon the 
particular context are (a) 149, the first location summed, (b) 100, the last location 
summed, and (c) m, the location of the leading command of the routine. There 
are three parameters, only one of which is determined by the way in which the 
routine is entered into the computer. 

At this stage it is essential to distinguish between commands as they appear 
in the store after entry and the way in which the input tape is punched. 
Commands m+1, m+2, m+4, m+5, and m+7 may be entered in a special way 
dependent upon an extra character punched so as to distinguish them from 
the remaining commands. This character may precede or follow the command 
affected and cause the value of the required parameter to be added to the 
command actually punched. This may be done by use of a specially designed 
programme which must be placed in the store before the entry into the store of 
the programme. If 0(, ~, y, and 8 denote special characters, associated each 
with a parameter and with the commands of Table 1 into which the parameters 
are introduced, the programme designed for punching on the tape becomes that 
shown in Table 2. 

The quantities entered into the second and sixth commands by ~ and y 
must previously have been entered into the store. The character 0( will have 
the effect of adding the location of the leading commood of the routine to the 
sub-address immediately follow,ing. This location number will have been stored 
upon reading the character 8 at the head of the routine. . 

The details of the procedure whereby these operations are performed is 
described later. 

The use of parameters, although somewhat complicating the entry of 
routines into the store, greatly increases their flexibility and renders them 
invariant with respect to position in the store. 



340 T. PEARCEY AND G. W. HILL 

VI. VARIABLES 

Variables are normally held in the main arithmetical registers prior to entry 
by the programme into the routine or sub-routine which uses them. Thus 
the value 1lJ, of which the square root is required, is placed in register A before 
entry into a " square root routine". Such a routine replaces IlJ by viV. 

Consider in particular the adaptation of the routine of Table 1 to the use of 
variables in place of parameters. Suppose, for instance, 149 be stored in A 
and 100 in H. Additional commands placed ahead of the command (A)":;A 
place the appropriate values for later use by the routine. 

Relative 
Location 

of Command 

-.-. 
0 3 ; 

1 f3 ; 
2 IX ; 

3 
4 IX ; 

5 y; 
6 

7 IX ; 

8 

TABLE 2 
INCORPORATION OF PARAMETERS 

Example from Ta.ble 1 

Commands 
as Punched Action of Additional Symbol 

on Tape 

(A)'::;' A 3 records location m of 
command 

[(O).:t.A] Command enters 88 (149).:t. A 

(1)~0 

}comma.nd enters as (m+l)~O Pn'::;'O 
(0)~1 

0'::;'0 Command enters as 100'::;'0 

8(0)~S 
I.:t.S [1] Command enters a.s m + 1 ~S 

p2o~T 

first 

The programme so arranged is listed in Table 3 where the only parameter 
is the location of the leading command. The command (149).:t.A is formed 
from the constant or pseudo-command stored at the foot. The latter is never 
itself adopted as a command. The command thus formed is substituted in 
place of the [p20-rT]. This is a" stop" command which, if by some mistake not 
changed, when adopted stops the operation and acts as a warning. The procedure 
follows as before except that H stores the other variable, 100, and the command 
(H u) .::;.0 replaces 100'::;'0. 

Routines may be designed in which the roles of parameters and variables 
are interchangeable. By entering the routines at one or other of two possible 
points one or other type of data may be adopted. Such routines are used in 
cases where data may be fixed for one particular programme and th~n entered as 
parameters, but may vary during the course of a different calculation and must 
be set as variables by the programme. 

If many variables are required by a routine, beyond the capacity of the 
arithmetical registers, standard locations in the store may be used, e.g. locations 
0,1,2, etc. or m+1, m+2, etc. 



PROGRAMME DESIGN FOR C.S.I.R.O. MARK I COMPUTER. II 341 

VII. THE CONNECTION OF ROUTINES INTO PROGRAMMES 

• A complete programme consists primarily of a collection of standard routines 
selected from a library, together with any routines specially constructed. This 
part is called the "detail programme". New routines, whenever possible, 
are constructed in such a manner that they may later be incorporated into the 
library. The various parts of the detail programme are related to each other 
by a specially constructed "master programme". The main function of the 
master programme is to control the course of the calculation and the passage 
to and from the various routines. 

Relative 
Location 

of Command 

- .. --

0 8, ex: 

1 ex: 

2 
3 ex: 

4 
5 ex: 

6 

7 
8 ex: 
9 

10 

TABLE 3 
USE OF PROGRAMME VARIABLES 

Example from Table 2 

Command 
as Punched Action 

on Tape 

(10)-.:t A Stores head location m and com· 
mand enters as (m+lO)~A and 
makes (A)'=(149)~A 

e(A)~2 Enters as e(A)~+2, causes 
(m+2)'=(149)~A, leaving A'=O 

[P2o~T) 
(2)~O 

} Has effect of increasing r by unity Pll-.:tO 
(O)~2 

(Hu)~O Subtracts 100pll from 0 
8(O).!!,.S 
2~S [2) Return if r<49 

p2o~T Stop if r=50 

< (O)-.:t A> Constant or pseudo-command 
, 

It is usual for most routines to be separated from the master programme 
which calls them into use. This is essential for routines which are frequently 
used or which are used more than once in different contexts by one particular 
programme. 

Some routines, 'frequently special routines, may be incorporated directly 
into the master programme, that is, the master programme leads into and out 
of such routines. without special shifts of control. Following EDSAC termin
ology, such routines are called" open routines ". 

" Closed routines ",. into which class the great majority of library routines 
fall, are entered and left in a special manner involving shifts of control. A 
convention is adopted, namely, that a closed routine, called into use by one 
command, finally transfers control back to the command immediately following 
in the store that from which it was entered. This is not, however, an inflexible 
rule. 



342 T. PEARCEY AND G. W. HILL 

The D register provides storage space for the" linking" data which orga.nize 
the return of control to the master programme. Normally the lower-numbered 
locations in D are reserved as working space used by routines, e.g., Do, Du D 2, 

and D3 say. The higher-numbered locations, Du-DI5 say, are left free to store 
linking data. 

Thus a routine entered at location t by the command at location m, transfers 
control back to m+1 from, say, location t+r. The set of commands organizing 
these shifts of control is shown in Table 4. 

TABLE 4 
STANDARD LINK PROCEDURE 

I, Programme Transferring 
Location R . Location 

____________ , _____ t_o ___ ou_t_ln_e ______________ _ 

m-l 
m 

m+l next command ~-- t+r 

Routine 

The command in m-1, known as the" plant" command, places mpw the 
content of the sequence register at the instant of transfer, intQ D 15 ; the next 
command, the " cue", transfers control to the routine. The command in t, 
the" adjustment" command, changes the value of (D15) to m+1 Pu whilst the 
return to m + 1 is controlled by the " link ", which is the command in t +r by 
which (D15) is substituted into the sequence register. As written, the adjustment 
is the leading command, but this may be placed anywhere convenient within the 
routine before the link. 

Four commands only are needed of which only one, the cue, requires a 
special datum, the location to which to shift. All others are standard. An 
advantage of this device for linking to and fro is that no arithmetical register 
normally used for storing variables is required to perform the shifting so that 
all variables may be set before the cue. 

The scheme adopted is very flexible, for control may easily be returned to 
one of a set of alternative locations. For instance, before m -1 is reached Du 
may receive a special datum, npu say, which may depend upon the previous 
course of the calculation. The command in m-1 may be replaced by (S)~Du 
so that control is returned by the routine to m +n + 1, where n may take one of a 
number of values. Further, routines may sometimes be entered at one of a 
number of positions and return' of control may depend upon the position of 
entry or upon a variable. In such cases the adjustment command is replaced 
by a command which sets the required value in D I5. 

Some routines may call upon other or auxiliary routines during their 
operation. The frequent use of standard routines as auxiliaries to other standard 
routines helps to reduce the size of a library of routines, since the auxiliary 
routines may also be used individually. The method of linking in such cases 



PROGRAMME DESIGN FOR C.S.loR.O. MARK I COMPUTER. II 343 

may be extended to the auxiliary routines without special reference by the 
master programme. Those routines which do not use auxiliary routines use D15 
for linkingJ Such routines are said to be of the "first" or " lowest order". 
Those which use only one additional routine at any instant are of the" second 
order". Second order routines may use more than one auxiliary routine but 
always return control back to the main routine before entering the next auxiliary 
routine. 

Linking into a second order routine is made from the master programme 
by the use of D14, and such a routine places successive links into D15 upon entering 
each auxiliary routine. "Third order" routines are linked via D 13 to the master 
programme and use auxiliary routines linked via D14I which in turn use further 
routines of first order linked via D15• This procedure may be extended and 
once the master programme transfers to the highest order routine no reference 
to the master routine is made during the operation of the routine or its succession 

Location 
of Command 

m 
m+l 
m+2 
m+3 

TABLE 5 
CONTRACTED LINK PROCEDURE 

Command Action 

(S)~Du Plants (m+l)pll into DlIl 
P~S Cue to 1st routine 
q~S 

" " 
2nd 

'1'~S 
" " 

3rd 
" 

of auxiliary routines. A routine of lower order may be placed in a standard 
position relative to the routine using it, e.g. at the end of the latter routine, or 
the linking data may be supplied to it as a parameter. 

Some programmes require the use of a sequence of routines and sub-routines 
in immediate succession. For a group of routines of the same order, as frequently 
occurs with first order routines, the linking data may be planted once only for 
the group by the master routine before entry into the first of the group. Thus, 
for instance, if a group of first order routines is entered at positions p, q, and r 
the master programme will contain the set of commands shown in Table 5. 

On return of control to m +2 the link datum is already stored in D15 and is 
changed to m +3 by the adjustment in the routine entered at q and so is already 
set, upon return to m+3, for immediate entry into the third routine at r. This 
allows of considerable simplification of a master programme. 

VIII. FUNCTIONS REQUIRED DURING INPUT OF DATA 

During the input of routines· some of the data entered must be adjusted to 
make the routine suited to the programme of which it is a part. The, special 
functions required can be stated. 

If a standard routine is available in a medium suitable for machine use, e.g. 
punched tape, it should be incorporated into the programme as it stands. It 



344 T. PEARCEY .AND G. W. HILL 

should thus have in it such characters punched as will allow parameters to be 
introduced. These characters are called " control designations ". Parameters 
must be supplied to the machine prior to the entry of the routine which requires 
them and may be stored in groups of standard locations in the store, from which 
they will be extracted one by one according to the designations detected. 

Normally commands will enter sequential store locations. At the com
mencement of a group of parameters the normal manner of assembly and storage 
of data must be broken off and the parameters entered into their appropriate 
positions, after which the normal process must be restored, fresh data being set 
into the store in locations immediately following the last routine inserted or at 
any chosen place. 

It must also be possible to store the number of the location into which the 
data being assembled would normally be inserted, and to treat this number as a 
parameter. 

At some stage in the input of a programme it may be necessary to break off 
the input procedure and to start all or part of the programme so far inserted. 
This is best done by adopting the last datum assembled from tape as a command. 

IX. THE PRIM.ARY .AND CONTROL ROUTINES 

The assembly and storage of data not associated with special designations 
are performed under the control of the" primary routine". This is a set of 20 
commands which is inserted whenever the computer is started from the " all 
cleared" condition via a group of stepping switches, where they are permanently 
wired. With the primary routine stored in locations 0-19 inclusive and the 
sequence register cleared to zero, data are transferred from punched tape in 
groups of 10 binary digits per row. A hole is registered as unity and absence 
ofa hole as zero. 

As described in Part I each row of the tape possesses 12 positions, 10 binary 
digits and two controlling positions called X and Y. An X punch is transferred 
to the input register as a unit P19 and a Y as a unit P20. 

The action of the primary routine, which is listed in Appendix I, is to add 
together successive rows which are not X-punched, the partial sums being placed 
at each stage in the Pn-P2o group of register A. Upon reading a row possessing 
an X punch the accompanying 10 digits are added into the PCPIO group of digits 
in register A from where it is placed into store. 

Before placing a datum into store the next row of holes is " read " and if it 
possesses no Y punch (A) is then transferred to the store location indicated by 
the sub-address of the command in 'location 6. This command is commonly 
called the "transfer command". Upon transfer to store the sub-address 
of (6) is increased by unity by commands 7-9. If, however, a Y is encountered, 
control is shifted from 3 to 20, the first place beyond the primary routine. 

Simple programmes and those which involve only sub-routines can frequently 
be constructed without the use of parameters, so that the assembly and storage 
is straightforward. The first command entered is placed in location 20 and this 
may be the first command of the programme or one causing a shift of control, 



PROGRAMME DESIGN FOR C.S.I.R.O. MARK I COMPUTER. II 345 

and a Y punch, placed on the last row read, will cause contr()l to be shifted to 
20 and thus start the programme. 

Where parameters are required the first routine entered is the "control 
routine". This is assembled in the standard manner and possesses no Y punches 
and is an open routine. It is entered whenever a Y-punched row is encountered 
by the primary routine. It is also listed in Appendix I and consists of only 
12 commands which are always stored in the locations 20-31 inclusive. Each 
Y-punched row is accompanied by a group of holes which determines the action 
taken with regard to the particular parameter already entered or to follow. 

Control will be transferred to 20 on the detection of a Y punch. The first 
command of the control routine clears Do of any P20 digit it may contain. The 
next command, 21, stores the sub-address of the transfer command in H. At 
this stage the P20 due to the Y has been removed by the command in 1 and the 
accompanying digits are counted into the sequence register by the command in 
22. One of the following actions will take place : 

(a) If no units are associated with the Y the control designation is zero; 
the next command adds (31) to (A) and then shifts control to 9. Then (A) is 
placed in location 6, which therefore becomes a new transfer command. The 
sign of Do is now zero and control is passed to zero via 11 and so to read the next 
row of holes. Suppose (A), at the stage of command 13, is npn' Then the 
addition of (31) causes (A) to become c(A)---,..n. Eventually the transfer command 
becomes c(A )---,..n and the next data will enter locations n, n + 1, etc. The number 
nPn may be entered into A from a row preceding the Y-punched row. (A) 
must be zero before reading n as it will be if the previous command had been 
normally compiled and stored. 

(b) If the Y is accompanied by a single unit, then 23 is omitted and 24 
causes the transfer command to be replaced by (A), a datum which may have 
been compiled from preceding tape rows. It should be noted that the transfer 
command may be changed by this designation from one causing a storage opera
tion to any other operation, in particular a shift of control. Thus, for instance, 
the tape command 75---,..8 followed by this designation will cause (6) to become 
75---,..8. This command will be performed if the next two rows are X-punched. 
These X punches are needed because the primary routine always reads one 
column " beyond" the data assembled in order to detect the possible presence 
of any control designation which mayfollow and affect the datum just assembled. 
The same applies to case (a). 

(c) When the Ypunch is associated with two or more units, one of a different 
set of operations occurs. In the case of two units control is transferred to 25. 
This command adds the pseudo-command «O)---,..T> to (A) followed by the 
addition of (31).:t.A; (30) and (23) added together form the command (H.)---,..31. 
If previous rows have formed nPn in A and control moves to 25, then 27 fills 28 
with the command (H u)---,..31 +n, which is immediately obeyed, and control passes 
to 29, and thence to read the next row of holes. If n is replaced by a pseudo
command 28 will imply a different operation, e.g. a command demanding a 
transfer of control. 



346 T. PEARCEY AND G. W. IDLL 

The example quoted, in which (28) becomes (H u)-,.-31 +n, causes the sub
address of the transfer command to be placed into location 31 +n. This corres
ponds to a store location n places beyond the pseudo-command in 31. Locations 
immediately following 31 are those normally used for storing references of this 
type which are usually the leading locations of routines. 

(d) A Y punch associated with three units causes control to pass to 26, 
omitting 25. This causes (28) to become (31 +n).:t.A, where (A) is nPn at the 
detection of this control designation. Register A is cleared by command 27 
and thus the next row is read with (A) equal to (31 +n). By this means the 
data stored in a group following a designation of the type (a) or (0) may be 
selected at will from the store. Thus a command following punched as 25~S, 
if preceded by nPn and a designation of this type, will be accumulated in A as 
25 +m~S, where mPn is set by a designation of type (0). 

Designations of this kind may be used also to refer to parameters set after a 
designation of type (a). 

(e) When a Y-punched row contains four units control is shifted to 27. 
Then (A), whatever at this stage it may be, is obeyed as a command since (A) 
is transferred to 28 by 27. A command may thus be compiled in A by the 
primary routine and may be obeyed directly upon detection of a designation 
of this type. In particular this function is useful for producing immediate 
transfers of control without returning to read further rows, and for rearranging 
sets of parameters, a function sometimes necessary when the same parameters 
are needed by more than one routine. 

(1) A Y and five units transfers control immediately to 28. This causes 
the sequence to stop if (28) has been unchanged. The command last placed in 
28 by a designation of the types (0), (d), or (e) may be repeated by subsequent 
designations of this type. 

(g) A Y and six units transfers control back to zero and recommences 
reading with no further action. 

(h) A Y and seven units transfers control to 30 and therefore stops the 
sequence. 

(i) A Y and eight units causes control to pass to 31 and thus replaces the 
first command by whatever is in A. 

The cases of nine and ten units would shift control outside the control 
routine. However, if extra functions are required a special routine may be 
entered following 31. Allowance for this must be made in placing parameters. 
Designations of types (g), (h), and (i) are rarely used. 

The control routine discussed here is not unique and may be replaced by 
any other control routine specially constructed. It is usual to adopt that 
illustrated since designations in standard routines are adopted for this control 
routine. 

X. USE OF THE CONTROL ROUTINE 

The system of control designations resembles the " control combinations" 
used for programming the EDSAC* and are used in a similar manner. Certain 

* The two systems were developed independently. 



PROGRAMME DESIGN FOR C.S.loR.O. MARK I COMPUTER. II 347 

designations are used more frequently than others and designations may follow 
each other on the tape without the interpolation of commands between them. 

Programmes are written in the form in which they are to be punched onto 
tape, with special symbols representing control designations. Designations are 
written in the column to the left if preceding, or in the column to the right if 
following, a datum to which they refer. Sequences of control designations are 
written in lines as convenient. They are punched in the order they are read 
from the programme sheet. 

The symbols used are as follows : 
(a) mT: The symbol m may be replaced by a group of symbols such as a 

pseudo-command if necessary, but usually will be an integer less than 
1024. Thus mT implies changing (6) to c(A)--,.-m. 

(b) R: This symbol is placed after a command or pseudo-command and 
implies the replacement of (6) by the datum preceding it. 

(c) nS: This designation causes the sub-address of the transfer command 
to be placed in 31 +n where n:> 1. 

(d) nA: This causes the addition into register A of (31 +n). It usually 
precedes the datum which it eventually affects. The number n may be 
replaced by a pseudo-command which may, when added to the command 
(31)--tA, form a different command to be obeyed in location 28. 

(e) D: This is a single symbol following the datum to which it refers and 
implies that datum to be obeyed as a command immediately. 

(f) This is denoted by U and follows a datum or control designation. It 
causes repetition of the last nS, nA, or D function performed. 

In all these designations the component m or n is punched onto tape as a 
binary number without an X punch if to be used as a sub-address, or with an X 
if as a pseudo-command, and immediately precedes the designation proper which 
is represented by the letter symbol. The letter symbol corresponds to the 
Y punch and the set of control digits corresponding to the operation 
required. Thus T is punched as a single hole in the Y position only, 
R as a Y and one unit and so on. The same keyboard is used for punching both 
commands and designations. 

As an example of the manner in which control designations are used consider 
the routine listed in Table 2. Olearly the parameters 149Pn and 100Pn must 
precede the routine on the tape. Location 32 is normally reserved for the storage 
of the head location of the routine entering and 33 onward reserved for other 
parameters and data such as the locations of heads of other routines. The 
programme corresponding to Table 2, written in a form suitable for transfer to 
tape, is shown in Table 6. 

Here m -1 is the location last filled before the entry of the routine. The 
first four rows on the tape store m and change (6) sO'that the two parameters 
following are entered into locations 33 and 34. These have been written in 
numerical form and not as pseudo-commands. Then follow two control designa
tions which place mPn in A and change (6) back to c(A)--rm so that the next 
command is placed immediately following the last routine, that is, in m. 



348 T. PEARCEY AND G. W. HILL 

The routine itself follows on the tape and is now in a standard form. The 
initial IS, which is always placed at the head of each self-referring routine; again 
places mpn in 32. This value is added into all commands immediately following 
IA designations. The parameters in 33 and 34 are entered into the commands 
immediately following the 2A and 3A designations respectively. 

At the foot of the routine the spop command shown in Table 2 is replaced 
by adjustment and link commands in the standard: manner. 

Location 
Filled 

TABLE 6 -

USE OF CONTROL DESIGNATIONS 

Tape Entry Action 

--------1----------,------1----------------

33 
34 

IS 

2A 

1A 

1A 

3A 

1A 

IS, 33T 

149pu 
100pu 
IA,OT 

(A)~A 

(O).:i;.A 

O~G 

Pn.:i;.Du 

I (D15)~S 

[1 ] 

Store m in 32, changes (6) to 
c(A)~33 

} Parameters 

Places ~Pu in A and changes (6 
back ,to c(A)~m 

Routine is entered here by pro 
gramme, mpu sent to 32 again 

Adds (33) to command and enters 
as (149):T..A 

Adds (32) to command and enters 
as (m+1)~G 

Adds (32) to command and enters 
as' (G)~m+1 

Adds (34) to command and enters 
as lOO~G 

Enters as m + 1 ~S but may be 
replaced by -7:T..S 

XI. THE ORGANIZATION OF COMPLETE PROGRAMMES 

Once the main scheme for carrying out a calculation has been decided upon, 
the necessary sub-routines and routines may be chosen from the library and 
special routines may be constructed. Any of these may require parameters 
and control designations. 

The manner and order in which the routines are to be entered into the store 
are then fixed and a list made of the routines, together with the necessary control 
designations and parameters. This list describes the detail programme. The 
master programme must then be designed. This will be largely devoted to the 



PROGRAMME DESIGN FOR C.S.I.R.O. MARK I COMPUTER. II 349 

organization of the course of the programme from one routine to another. The 
master routine will frequently require a number of control designations associated 
with it, particularly those giving the positions of the routines of the detail 
programme. It must be entered into the store after the detail programme and 
will follow the detail programme on the programme tape. 

The construction of a complete programme is illustrated by the example 
which follows. Suppose we have a tape containing a sequence of decimally 
punched values of a variable x (O<;x<l) and that the corresponding values 
of cos- I [exp (-sin 1txj2)) are required to be printed for each entry on the tape. 
The following routines, which are briefly described, would be required from the 
library for the detail programme : 

(1) Decimal Input A: Sub-routine; closed. Length; 22 commands. 
Entry; position O. Link; DIS' 

This reads a single positive or negative decimally punched fraction from the 
tape and converts it to binary form leaving the result in register A. 

(2) Exponential A: Sub-routine; closed. Length; 13 commands. 
Entry; position O. Link; D I5• 

This replaces (A) by its negative exponential, i.e. (A)' =exp'[ -(A)). 

(3) Sincos A: Routine; closed; 1st order. Length; 33 commands and 
coefficients. Entry; position 0 for sine, 1 for cosine. Link; DIS' Parameters; 
nil. 

This replaces (A) by sin 1t(A)j2 or cos 1t(A)j2 according as the entry is made 
via the first or leading, or the second command respectively. The routine is 
headed by the control designation IS. 

(4) .Arcos A: Routine; closed; 2nd order. Length; 19 commands. 
Entry; position O. Link; Dl4' Parameters; location of leading command 
of sincos A. This routine replaces (A) by its inverse cosine, i.e. 
(A)'=2j1t.cos- I (A), -1 <;(A)' < +1. It uses sincos A which is placed immediately 
ahead of this routine into which it is linked via Du. 

(5) Print A: Sub-routine; closed. Length; 33 commands. Entry; 
position O. Link; DIS' 

This sub-routine converts positive or negative numbers in A considered as 
integers (i.e. multiples of 219) into a series of binary-decimal tetrads which it 
prints as decimal characters, together with a sign, onto paper. No layout 
commands are included. 

The detail programme is now arranged as in Table 7. 

The first control designations cause the first routines to enter from location 38 
onwards thus leaving 32-37 free for parameters which are locations of the various 
leading commands of the routines. These are used by the master programme 
which is now constructed as illustrated in Table 8. 

The first two commands of the master programme enter una flected and 
demand a line feed and carriage return of the output printer for which the printer 
code numbers happen to be 29 and 30. Command No. 3 is changed by the 2A 
designation and shifts control to the decimal input sub-routine. In order to 

H 



350 T. PEAROEY AND G. W. HILL 

retain the number x entered, it is stored in D2• Control is moved to No.4, 
and x is printed out by the shift to the print routine following. The value of x 
in .A. is destroyed by the printing operation and is replaced by command No.7. 
Two routines are entered by 9 and 10 without further plant commands. The 
second order link is planted in D14 by 11 and the inverse cosine routine is entered 
by 12. Commands 13-15 form the product of the computed value in .A. with 
the content of the 19th position which converts the result from the grade scale 
to degree scale. The result is printed and control is returned to the head of the 
master programme, where the next value is read from the tape. 

Routines and Control 
Designations 

Control routine 
38T, 2S 

Decimal input A 
3S 

Exponential A 
4S 

Inverse cosine A 
Sincos A 

58 
Print A 

TABLE 7 

DETAIL PROGRAMME 

Action upon Entry 

Enters positions 20-31 
Changes (6) to c(A)~38, stores 38Pll 

in 33 
Enters positions 38-59 
Stores 60pll in 34 
Enters positions 60-72 
Stores 73Pll in 35 
Enters positions 73-91 
Enters positions 92-124; it is headed 

by a IS designation 
Stores 125Pll in 36 
Enters positions 125-157 

It will be noticed that the print routine is used twice, the value from the 
tape and the corresponding computed value of the function being printed 
alongside each other. Spacing control is made by the first two commands. 

Further, the sincos .A. routine although used twice is called by the master 
programme only once, the arcos .A. routine calling it the second time. This second 
use is facilitated by the use of a l.A. function in the arcos routine which has its 
position previously placed in location 32 by its initial IS function. 

The last entry of the master programme, which is written as it is to be 
punched onto tape, calls the computer to transfer control to the head of the 
master programme, and to start the computation, and to commence the reading 
of the tape containing the values of x in decimal punch code. 

This master programme consists of only 20 commands and controls the 
passage to and from the detail programme of about 120 commands. Most of 
the operations of the master programme are associated with the sequence register. 
This is as it should be with a programme intended to supply the highest order 
of control to a calculation. 



PROGRAMME DESIGN FOR C.S.I.R.O. MARK I COMPUTER. II 351 

XII. THE OONSTRUCTION OF PROGRAMME AND DATA TAPES 

The computer is capable of -accepting data only from punched paper tape 
and of punching results onto similar tape. Punched' cards are used as an 
auxiliary medium. The two media are associated through the use of special 
editing equipment used for coding programmes. 

Location 
Entered 

Serial 
No. 

TABLE 8 

MASTER PROGRAMME 

Commands and 
Control Designations 

-----1--------.------
1
--

1 

158 

159 
160 
161 

162 
163 
164 

165 
166 
167 

168 

169 

170 

171 

172 
173 

174 
175 

176 

177 

HH 

o 

1 
2 
3 

4 
5 
6 

7 
8 
9 

10 

11 

12 

13 

14 
15 

16 
17 

18 

19 

6S 

2A 

5A 

1A 

3A 

4A 

6A 

5A 

6A 

(A)~D2 

(S)~D15 
O----rS 

(D2)~A 

(S)~D15 

2~S 

O"7S 

<0·1716614> 

[(33) ] 

[(36) ] 

[(34) ] 

[(34) ] 

[(38) ] 

[(36) ] 

[(37)] 

I 

I 1 

I-I-----,--I--J 
I D I 

6A 

Action 

Stores 158 in 37; causes 
line feed 

Causes carriage return 
Link-plant command 
Enters as 38~S; shifts to 

"dec. input" 
Stores x in D2 
Link-plant command 
Enters as 125~S; shifts to 

print values of x 
Restores x to A 
Link-plant command 
Enters as 94~S; shifts to 

compute sin n-(A)/2 
Enters as 60~S; shifts to 

compute exp [-(A)] 
Link-plant command (2nd 

order) 
Enters as 73 ~S; shifts to 

compute 2/n-. cos-1 (A) 
Places multiplicand from 

177 in C 

I Forms product to reduce 
~ (A) to (degrees of arc 
1 X 103 X 2-19 and rounds 

J off 
Link-plant command 
Enters as 125~S ; shifts to 

print result as an integer 
Enters as 158~S; returns 

control to head of master 
programmes 

Constant used to convert 
result to degrees of arc 
equal to 9 X 10-3 X 2-19 

Enters as 158~S and 
obeyed immediately 



352 T. PEARCEY AND G. W. mLL 

The library of routines is stored on punched cards of the usual Hollerith or 
I.B.M. type. Each routine or sub-routine occupies one or more cards, and 
commands and binary"data are punched in a columnar fashion in groups of 10 
digits, the address group being X-punched. Control designations are included. 
Punched columns on each card are terminated by a single column punched with 
an X and Yonly. This punch, when read by a card reader, causes the card to be 
ejected and the next in the deck fed into the reading position. The card reader 
consists of an electric duplicating key punch in which the punches have been 
replaced by reading brushes. 

The advantage of the use of cards is that they are easily stored in a small 
space and that many copies of each routine or sub-routine may be stored and 
replenished when required. Damage sustained in use by such copies is of little 
importance . 

.After the design of the detail and master programmes has been completed 
the necessary routine cards are selected from the library and placed into the card 
reader in the order in which they are to be transferred to tape. Blank tape is 
fed into the tape punch. The routines are copied from the cards directly onto 
the tape column for row except for the final XY of each card. Data such as 
control designations and parameters are supplied via the keyboard between 
successive routines. Finally, the master programme is punched via the keyboard 
together with open routines which it may incorporate. The latter are reproduced 
from cards if standard. Before a tape is used a second tape is prepared in the 
same way and the two are compared by a special tape comparator. This ceases 
comparing when any corresponding non-identically punched rows are detected. 
Punching errors, but not programming errors, can then be eliminated. Tapes 
may also be duplicated by connecting a tape reader to the editing tape punch 
in place of the card reader. This also allows correct portions of tapes to be 
copied and errors to be corrected from the keyboard. 

Cards are also used to provide decimal data. This provision is due to the 
great distances between populated areas in Australia. A distant user may 
punch decimal data onto cards in the conventional manner. These data are 
transferred for input directly onto tape without translation of code. 

Results may be punched onto tape in the same code as cards are decimally 
punched. .After the output tape has been edited the results are transferred to 
cards through a tape reader and a special card punch. The cards may then be 
sorted, reproduced, and listed in any desired manner. This procedure is useful 
for the production of printed tables. The form of the page may be chosen and 
the cards may then be li!ted in a suitable manner for reproduction as a volume. 
The card punch is used also for recording" routines onto cards for the library 
from the keyboard. 

XIII. CHECKING 

The computer possesses no independent or automatic checking devices . 
.All responsibility for adequate checking of results is left to the programmer. 
There are, of course, two main aims in checking, firstly to ensure that the 
programmes are correctly designed and, secondly, to ensure the absence of 



PROGRAMME DESIGN FOR C.S.I.R.O. MARK I COMPUTER. II 353 

instrumental faults. Special devices are applicable to one or other of these aims, 
although in some circumstances the same device may be used for the detection 
of either type of error. 

Much source of error in the construction of programmes is diminished by 
the use of library routines whose properties are known precisely. However, 
although the correct routines may be chosen for a particular calculation, errors 
in the assembly of data and in the master programme may exist and editing 
checks must always be applied before placing the tape into the machine. Coding 
errors may most easily arise from false keying on the keyboard. These are 
detected by comparing a pair of independently punched tapes. Similarly, 
before placing a new routine in the library two sets of cards are punched inde
pendently and are compared before reproduction in bulk. 

Each routine or sub-routine is tested on the machine before being placed 
into the library. In such tests registers Nl and Ns are useful for setting data. 
to be used by the routine being tested. The manual control made possible by 
these registers allows of the rapid detection of . logical faults in both routines 
under test and in full-scale programmes . 

.Although it is possible to go through each new programme being tested by 
performing each command one by one (depression of a " single operation" key 
on the control panel allows one command to be obeyed) and inspecting the 
register content, such a procedure is very tedious. Programmes are usually 
broken into distinct parts during test~ng, each part being separated by a stop 
command. These commands are placed in positions at which the content of the 
registers may be of particular importance. 

The special stop commands may, when a programme is known to be correct, 
be replaced by " record" commands which transfer the content of one register 
to another to be used for inspection, e.g. a spare position in register D or the 
store. The contents of registers A, B, 0, and H are shown on cathode-ray 
oscillograph faces as also is the entire content of D and any group of 16 consecutive 
locations of the store. The state of a calculation may be seen by a glance at the 
tube faces. 

Special routines are sometimes used in tracing logical faults in programmes. 
These are less highly developed than are checking routines used in the EDSAC 
mainly because their use has not been found essential in this machine. This is 
not because such faults have not occurred but that the more elementary devices 
of viewing results, u~ing stop and record commands together with the use of the 
hand-set registers Nl and N s, have been adequate. 

Of the few checking routines used, one will cause the calculation to proceed 
through the programme tested and will print out the locations of the programme 
at which a shift of control occurs. The route taken through the programme 
may then be traced. Another routine will print the content of registers A, B, 
and 0 over a chosen range of the programme. 

Programmes, once known to be correct in the store, are page printed by use 
of a special routine. A record of the entire programme in its final form is obtained 
in case repunching should be necessary. The programme prints the addresses 
ina letter code as close to t4~ wrttwn !!lource and destin~tioll syrnbol!!l !liS pO&flible. 



354 T. PEARCEY AND G. W. HILL 

The sub-address is printed in the scale of 32 for simplicity in repunching. .A 
programme of similar type can be used to punch a tape of the final programme, 
as it lies in the store. This is particularly useful in cases of programmes required 
in identical form at a later date. 

To check that no electrical faults develop during running of a calculation, 
program~es are designed to include whatever mathematical checks may be 
applied to the calculation, and special calculations whose results are known are 
repeated at intervals. In calculations which have short programmes applied to 
large amounts of data, selected samples of the data are submitted to calculation 
before proceeding to the main bulk of the work. The results for the selected 
data must be reproduced in the main calculation. 

Before daily use all units of the machine are subjected to standard tests. 
The early tests are manually controlled. Later stages, designed to test the 
arithmetical registers and function gates, involve specially designed programmes. 

XIV. USE OF THE Low SPEED STORE 

The low speed store comprises four independent groups of 1024 locations 
with an access time of 10 msec. It is used for storing incidental results, matrices 
of coefficients, tables of functions, approximations to solutions to partial 
differential equations, etc. 

One of these stores is used to hold one or more programmes which may be 
in use. Thus if a programme is to be used for a number of days it is convenient 
to hold it in one of these stores, preferably in locations corresponding to those in 
which it lies in the high speed store when in operation. When required the 
programme is transferred to the high speed store. This takes only a few seconds. 

Although the access time of this store is 10 msec, use of it during calculation 
does not seriously reduce the rate of operation. This is due partly to its 
infrequent use even if referred to for much arithmetical work. The speed of 
operation IS controlled primarily by the access time to commands and not to 
calculation data, to which relatively few commands refer. This is so since the 
major part of a programme is concerned with its own control, a function which 
does not require the low speed store. 

Programmes which are too extensive to be held entirely within the high 
speed store may be adopted for action from the low speed store as required. 
This may be done in two ways, either by taking the commands one by one from 
the low speed store and obeying them with the aid of a special routine or by 
transferring portions of the programme from the low speed store to the high 
speed store, as and when required for immediate use. The latter method is 
that usually adopted, for greater operating speed can be attained if each routine 
is used for relatively long periods before being over-written by the next routine. 
The proportion of time spent in transferring routines is then small. 

Programmes may be placed in the low speed store directly from the pro
gramme tape. When they are transferred to the high speed store for use the 
space normally occupied by the primary and control routines and the parameters 
may be occupied by the programme placed in the low speed store from location 
.zero onward. Tpj.s ~av~& Up to 40 locations in the high speed &tore. 



PROGRAMME DESIGN FOR O.S.loR.O. MARK I COMPUTER. II 355 

When programmes are withdrawn from the low speed store in blocks, each 
block is assembled from the tape into the high speed store and then transferred 
to the low speed store by a special routine before proceeding to reading in the 
next block of commands. 

XV. MANUAL CONTROLS 

The manual controls include those for starting and stopping the computer 
at will, for clearing registers, and for setting certain 20-digit data. Others, 
intended to help the operator, allow the computer to operate in special ways. 

Three rows of 20 switches each provide for the adjustment of the content of 
registers Nl and N2 and of the input register. Register Nl possesses an added 
facility which allows its content to be accepted as a command irrespective of the 
content of the sequence register. This allows the operator to change the content 
of any arithmetical register or of the stores at will, and so allows of manual 
adjustment of programmes when corrections to them are needed. 

Besides the independent application of individual commands via Nu a 
succession of commands differing only by sequential sub-addresses may be 
accepted. The sub-address in each case is the current content of the sequence 
register. By use of this facility data from the low speed store may be transferred 
to the high speed store or vice versa item by item, and the whole of the content 
of a store may be transferred within a few seconds without the use of any 
additional programme. This facility is also useful in maintenance tests . 

.A further device called a " trigger unit", useful for maintenance tests and 
in programme tests, provides a cathode-ray oscillograph trigger pulse whenever 
the content of the sequence register coincides with that set on a special group of 
switches or will stop the computer so that the content of the register may be 
inspected. 

XVI. REFERENCES 

PEARCEY, T., and HILL, G. W. (1953).-Aust. J. Phys. 6: 316. 
WILKES, M. V., WHEELER, D. J., and GILL, S. (1951).-" The Preparation of Programmes for an 

Electronic Digital Computer." p. 10. (Addison-Wesley Press Inc.: Cambridge, Mass.) 

APPENDIX I 
PRIMARY ROUTINE AND CONTROL ROUTINES USED DURING THE ENTRY OF DATA INTO THE COMPUTER 

Primary routine: locations 0-19; control routine: locations 20-31 

Position 
of Command Action 

Command 

---------------------

0 (I)~C Reads column of 10 digits, X, Y to 
register C 

+ 
P2 0-"C Alters most significant digit (Y) 

2 p2o.(C)~8 Tests most significant digit 
3 20-,.8 [20] Shifts to 20 if Y on current column 

.l p2o.(Do)~8 If no Y punch, tests most significant 
digit of Do 



356 

Position 
of 

Command 

T. PEARCEY AND G. W. BILL 

APPENDIX I (Continued) 

Command Action 

------ 1-1--------
5 
6 

7 

8 
9 

10 

11 

12 
13 

14 
15 

16 
17 

18 
19 

20 
21 

22 

23 
24 

25 

26 

27 
28 

29 
30 

31 

12~S 

[c(A)~20] 

(6)~A 

Pll.t.A 
c(A)~6 

Pao.(Do)~S 

O~S 

Pl.~C 
Pao·(C)~Do 

(C)~Hi 
(Hl)~C 

Pao.(Do)~S 
(Hu)~C 

(C).t.A 
O~S 

(Do)":;Do 
(6)~Hu 

·(C)~S 

(31).tA 
9~S 

(30).tA 

(23).tA 

c(A)~28 

pl~T 

O~S 

«O)~T> 

<c(A)~M> 

[12] 

[0] 

[0] 

[9] 

[0] 

If no Pao in Do, shifts to 12 
"Transfer command "-plants A and 

clears A; called if previous column 
X-punched and current column no 
X or Y 

}
Increases store address of transfer 

command by unity 

Tests most significant digit of Do 
again, Pso if previous column X
punched and current column no X. 

Returns to read if no . X on previous 
column 

If current column X-punched, Pao in 
C is read to Do; if no X, Do cleared 

} Clears out 1'19 and Pao digits from C and 
leaves 10 digits in C and H 

Tests for X on current column 
If no X, shift column digits to Pu-Pao 

groups 

If no X, add 10 digits Pll-Pao to A 
Return to "read" 

Clears Do for fresh assemblage to follow 
Stores address of transfer command 

sent to H register 

Digits associated with Y punch 
counted to sequence register 

If (A)=n, then (A)'=c(A)~n 
Ca:uses transfer command to be re

placed by (A); (6)'=r.~ 

This and following cause Hu~31+(A) 
to be placed in 28 

Causes (31).tA+(A) to be placed in 28 

Assembled (A) planted for use 
Command assembled placed here and 

performed 
Return to continue reading data 
Constant when added to (23) forms 

(Hu)~31 

Constant used by command 23 




