
PROGRAMME DESIGN FOR THE C.S.I.R.O. MARK I COMPUTER

I. COMPUTER CONVENTIONS

By T. PEARCEY* and G. W. HILL*

[Manuscript received December 5, 1952]

Summary

The organization of the C.S.I.R.O. Mark I computer is described. The code
system is of a two-address type in which each operation called by an " order " or
" command " is thought of as a quality of a transfer of the content of one " register"
to another. Each command indicates a source and a destination. A special notation
of mnemonic t~ is adopted for written programmes IIiIiI an aid in the various stages
of programme design. The written programme may be translated, by aid of a special
encoding key-punch, from the written sheet onto paper tape, the medium through
which the machine accepts data.

I. INTRODUCTION

The basic principles of programme construction for automatic computers
have been known for some time, at least since the attempt by Charles Babbage
to construct an analytical engine. These principles apply to modern automatic
computers, and only the details differ from machine to machine. It is one of
the aims of the machine designer to make the programming procedures as simple
as possible for users.

Two technical developments, the use of electronic techniques and of rapid
access" variables stores ", have made fully automatic computers possible in
recent years. The introduction of electronic techniques has increased the
computing rate by at least a thousandfold beyond the speeds attainable by
electromechanical systems using punched cards and relay equipment. This
has allowed of great simplification in the organization of modern computers,
the main being that sufficient speed can be maintained by performing at one
time only one of a small class of different actions, such as addition, subtraction,
reading new data, recording results, and transferring numbers and so on.

Automatic computers, particularly those operating at electronic speeds,
require an extended set of single steps, known as a " programme", which controls
the course of a calculation. Thus, each step, called a " command", must be
expressed as one of the restricted class of actions which the computer is capable
of performing.

Until recently automatic computers have been provided with programmes
from punched cards or paper tape, each command being read from the card or
tape and performed immediately, whereupon the computer proceeds to the next

• Division of Radiophysics, C.S.I.R.O., University Grounds. Sydney.

PROGRAMME DESIGN FOR C.S.I.R.O. MARK I COMPUTER. I 317

card or position of the tape. The development of rapid access "stores" or
blocks of number registers of large capacity allows the entire programme to be
supplied to the computer in the form of sequences of numbers, and entered into
the same store that is used for holding the incidental computing data etc. This
makes it possible to subject the programme itself to changes as the computer
progresses through the calculations.

The facility for a computer to change its current programme greatly reduces
the number of commands required and the effort needed to construct the pro­
gramme and code it into a suitable medium for transfer into the computer.
Part of any programme, constructed according to this principle, must be devoted
to controlling the changes to be made to itself, so that useful computing
speed is somewhat reduced. The extra flexibility obtained far outweighs the
disadvantages.

The problems of design and construction of modern computers have been
discussed more frequently and at much greater length than have the problems
of their programming and use. Only in the case of one particular computer, the
EDSAC (Wheeler 1950; Gill 1951 ; Wilkes, Wheeler, and Gill 1951), has much
been published on the latter subject.

The programming techniques developed for use in the EDSAC bear close
resemblance to those developed for the present machine. This is so particularly
in the use of basic programme elements or " sub-routines" which are designed
for frequently repeated sets of operations, and in some of the techniques adopted
for simplifying their method of use and incorporation into complete programmes.

Although the techniques used for EDSAC render programming work
remarkably simple, no detailed knowledge of the machine being needed, it is
believed that in some ways the method developed here is made even easier, and
the demand on store space even smaller, by the incorporation into the machine
of certain special features.

The terminology adopted here closely resembles that used by the Cambridge
Mathematical Laboratory. Terms not well known or not immediately obvious
will be defined when first introduced.

The initial aim of the programmer is of course to obtain the accuracy he
needs in the results required, and this may decide for him the particular methods
by which the computation is made. The programme will usually be compiled
so as to use as little store space as possible, at the same time maintaining an
adequate rate of output of results. These are very broad principles and subject
to wide variations. Thus, a programmer designing a basic component or sub­
routine will tend to occupy the least possible store space, almost irrespective of
its speed, whilst a programmer designing a programme for a full-scale calculation
using sub-routines is likely first to ensure that his demands do not exceed the
store capacity and then choose the method requiring least machine time.

Detailed programming techniques adopted for any particular machine
depend largely upon the " address system", that is, the manner in which the
machine interprets a command as a meaningful operation. Any programme
implies a sequence of such operations, and must be written down in a manner
easily read and understood. A programme initially designed on paper must

F

318 T. PEARCEY AND G. W. HILL

be transcribed onto some medium which is directly accepted by the machine,
usually punched paper tape or punched cards, although magnetic tapes and wires
are in use by certain machines. In our case the machine accepts paper tape
although punched cards are used as an auxiliary medium. It is essential for
simplicity in the last stage of programming, the stage which may be called
" coding", that the written programme be coded directly into the medium
without further writing or extra mental effort.

In the present paper the organization of the machine is described only so
far as is necessary for the understanding of the programming method, and this
is followed by a description of the address system. The basic actions of the
machine are listed in detail in Tables 2 and 3, together with a notation used in
the construction of written programmes, which, although not ideal, appears to
be suitable. The manner of coding from the written sheet is described, but a
description of details of the construction of complete programmes will be given
in Part II (Pearcey and Hill 1953). .

For recording written programmes it is convenient that the notation symbols
be available on a typewriter.

II. THE STRUCTURE OF THE COMPUTER

The C.S.IoR.O. Mark I computer is of the electronic serial-transfer type,
and operates entirely in the binary scale. The programmer need know very
little about the details of the machine but a general picture of its structure and
its mode of operation is useful.

The stores, those components which hold the programme of commands and
the data operated upon, are of two kinds. First, a main or high speed store
(access time 1 msec), capable of storing 1024 separate data or " words" or basic
groups of digits, is used always to hold the programme currently in use and
incidental data as desired. This store consists of a group of mercury-filled
acoust.ic delay lines each holding 16 words placed end to end. The register
positions or " locations" in the store are numbered serially from 0000 to 1023.

The second store, of slow access (10 msec), is divided into four groups each
of a capacity of 1024 separate numbers and is of the magnetic drum type. The
high speed store is of the" volatile" type, that is, the numerical content is
destroyed whenever the power is removed; in the magnetic drum type this is
not so and information is retained.

The arithmetical unit consists of a group of acoustic delay registers known as
registers A, B, 0, H, and D. The main arithmetical register is A, and has a
capacity of one word only, as also have Band O. Register H, however, stores
only half the digit capacity of a full number, whilst D can store 16 words end
to end.

Other registers, not part of the arithmetical equipment, are the "input
register" from which data fed to the computer may be read into the stores or
the arithmetical components; the" output register" via which results may be
recorded; and" constant registers ", two of which have full digit capacity for
a complete word and may be adjusted manually by sets of switches. Three
others provide single unit digits in prescribed places.

PROGRAMME DESIGN.FOR C.S.I.R.O. MARK I COMPUTER. I 319

The operation of the computer is controlled according to the numerical.
content of three registers. The" sequence register" specifies from which location
in the high speed store a command is to be withdrawn for use. The" interpreter
register" receives and holds the command in use. The" store control register"
indicates which location in one or other of the stores is prepared for immediate
use.

OESTINATION

FUNCTION

GATES

OIGIT TRUNK

STORES

STORE CONTROL REGISTER /

SEQUENCE REGISTER

CONTROL UNIT

____ DIGIT TRANSFER LINES

--.- CONTROL.LING LINES

t
SOURCE

FUNCTION.

GATES

Fig. I.-Block schematic diagram of the computer.

Figure 1 shows a block diagram of the major components of the' computer
and indicates the main interconnections. .All the aforementioned registers
are connected in various ways to a conductor known as the " digit trunk", and
it is along this conductor that the numbers are transferred from one register to.
another in the form of trains of suitably timed electrical pulses.

III. THE NUMBER AND COMMAND CODE

.A. single location in the stores contains a single word or datum consisting of
20 binary digits, the distribution of which represents a single number, command,
or partitioned datum according to the manner in which the programme uses the
word. The positions or periods of the digits of a 20-digit word are denoted by

320 T. PEARCEY AND G. W. IDLL

symbOls, PI) P2' ., P20' and 'are written in the time sequence at which the
digits appear on the digit trunk. Each digit held within anyone register may
possess a weight of either unity or zero, according as at the appropriate digit
instant an electrical pulse respectively does or does not appear in the digit trunk.
Single digits are frequently referred to by their corresponding period symbol,
that is, a unit digit at the instant Pr is called a Pr digit, and the time of appearance
of such a digit is the Pr period.

(a) Numbers
In the case of numbers a weighting is applied to the digits which relates

one digit to that which immediately follows in the time sequence. Thus, a
unit Pr digit is given the additional weighing of 2r- 20. Negative numbers are
stored in their complementary form and the "binary point" is considered as
lying between the digit periods of P19 and P20' Hence a single number can take
values equal to integral multiples of 2-19 from -1 to 1-2-19.

Such a convention considers numbers as fractions, but by suitable programme
design it is possible to compute with numbers as though the binary point were
between any pair of adjacent digits.

(b) Partitioned Data
Not all data held in the store are modulo two numbers. Some 20-digit

data may be used by a programme according to any desired convention of
partition. Thus a word may, in the course of a programme, be divided up
into a number of separate components either related to one another or not, e.g.
into the groups PCPlO and Pll-P20' Examples of partitioned data are the two
components of a complex number, numbers which bear" tags ", that is, special
digits describing the meaning of the accompanying main group of digits, and
numbers in floating form which possess variable indices.

All commands are a form of partitioned data.

(c) Commands
A single command is coded as a sequence of 20 binary digits. The address

convention of partitioning adopted, however, affects the entire design of the
computer and the method by which programmes are designed.

An operation defined by anyone command is regarded as the transfer of
the digital content of one register to a second register. Any arithmetical
operation which takes place during a transfer depends on the manner in which
the first or "source" register transmits, and the second or "destination"
~egister receives. In this sense the command code system is of the two-address
type.

The digits of any command are partitioned into three groups; the first
those in periods P1-P5' the second in P6-P10' and the third in Pll-P20 inclusive.
The first group contains the code for the destination and the second the code for
the source. The third, the largest group, is a "sub-address " and indicates
one of the 1024 serially numbered locations in one or other of the stores if
required. This last group may also contain any desired group of 10 binary

PROGRAMME DESIGN FOR C.S.I.R.O. MARK I COMPUTER. I 321

digits even if neither the source nor the destination calls upon the stores. The
command code allows for a total of 32 sources and 32 destinations and stores of
up to 1024 locations. It is believed that the C.S.I.R.O. Mark I is the only
computer to use an address system of this type.

In cases of commands which refer to a location in the D register the digits
in PU-P14 indicate which location is called for use irrespective of the digits in

P15-P20'
The address groups and the digit periods are illustrated in Table 1.

Digit periods
Address groups ..
Mod. 2 number weightings
Typical command c(A)~16
The number 4/5 ..

TABLE 1

THE ADDRESS SYSTEM

P.o P19 PIS Pn PIO P. Ps Po P.
+-Store sub-address-+ I +-~Source--+

Sign 2-1 .•.••.•••. 2-9 2-10 .••.••••••

0000010000 1 01001
0110011001

1
10011

IV. FUNCTION GATES.

Ps P4 Pa P. PI
1 +- Destination -+

. _ 2-19

100000

100110

To every source code number there exists a " source function gate" which
becomes activated and able to transmit a datum to the digit trunk, whenever the
current command contains the appropriate number in the source group. Similarly
every destination code number corresponds to a " destination function gate"
which is activated according to the destination address of .the current command
.and allows a datum to pass through it from the digit trunk. These are indicated
in Figure 1.

V. THE OPERATION SEQUENCE

Commands to be performed in succession are normally stored in and with­
drawn from successively numbered locations iIi the high speed store. For.any
one command to be satisfied four transfers must take place in the following
sequence:

(1) The content of the sequence register is transmitted to the store control
register, thus preparing the store to transmit out the next command.

(2) The store transmits the contents of the position indicated by the content
of the store control register, i.e. the new command, to the interpreter
register.

(3) The sub-address group (PICP20 digits) of the current command is
transmitted back from the interpreter register to the store control
register, being substituted in place of the previous contents. This
prepares the store for action if either of the addresses requires it.

(4) The appropriate source and destination function gates indicated by the
addresses of the command are activated by suitable circuits connected
to the interpreter register, thus allowing the desired transfer to take
place.

322 T. PEARCEY AND G. W. HILL

This sequence of transfers, called the" computer routine" is invariable and
is controlled by the " main control unit " shown in Figure 1, which provides the
necessary electrical waveforms.

The content of the sequence register at stage 1 of the computer routine is
known as the " control number". The term " control at n " implies that the
current command is selected from location n. Any change in the value of n is
" shift of control". Normally control shifts from n to n + 1 during a single cycle
of the computer routine. A single unit Pn is added to the control number in the
sequence register during stage 3 of each computer routine cycle.

VI. THE SOURCE AND PESTINATION CODES

The following tables list the operations for which the various function gates
are responsible. Table 2 lists the sources and Table 3 the destinations in the
numerical order of the code from 0 to 31.

Code
Number

o

I
2
:3
4
5

6
7
8

9
10

11
12

13
14
15

16

17

18

TABLE 2
SOURCE FUNCTION GATES

Function

Read out and hold the content of the high speed store location n
(0<n<1023). indicated by the sub-address digits Pl1--P.o

Read out the content of the input register (20 digits, P,--P.O)
Re'ad out the content of hand-set register No, 1 (20 digits, PcP.o)
Read out the content of hand-set register No.2 (20 digits, P,--P.O)
Read out the content of register A (20 digits, PcP.o)
Read out the most significant digit of the content of register A

(unit P20 if 1, zero if 0)
Read out the content of register A divided by 2 (20 digits)
Read out the content of register A multiplied by 2 (20 digits)
Read out the least significant digit of the content of register A

(unit P, if 1, zero if 0)
Read out the c.;mtent of register A and leave it cleared to zero
If the content of register A is non-zero transmit a unit P, digit,

otherwise transmit zero
Read out the content of register B
Read out a unit P, digit if the most significant digit of the content

of register B is unity, otherwise transmit zero
Read out the content of register B shifted to the right one place
Read out the content of register 0
Read out the most significant digit of the content of register 0

(unit P20 if 1, zero if 0)
Read out the content of register 0 shifted one place to the right

(zero in P20 position)
Read out the content of the location in register D indicated by

the number m (0<m<16), represented by the digits Pl1--P"
Read out the most significant digit in the location in register D

indicated by the number m (0<m<16), represented by the

digits Pl1--P14

Symbol

I-
i (n)

(1)
(N,)
(N.)
(A)

p.o·(A)
or 8.(A)

t(A)
2(A)
p,.(A)

or l.(A)
c(A)
z(A)

(B)
(R)

r(B)
(0)

P20'(0)
or 8.(0)

r(O)

p.o·(Dm)
or 8.(Dm)

Code
Number

19

20
21

22

23

24
25
26

27

28

29

30

:n

PROGRAMME DESIGN FOR C.S.I.R.O. MARK I COMPUTER. I

TABLE 2 (Oontinued)

SOURCE FUNCTION GATES

Function

Read out the content of the location in register D indicated by
the number m (O<:m<16). represented by the digits Pn-Pw
shifted one place to the right

Read out zero
Read out the 10-digit content of register H in the position group

PI-PIO
Read out the 10-digit content of register H in the position group

Pn-P2o
Read out the 10-digit content of the sequence register in the

position group Pn-P2o
Read out a single unit digit in the Pn position
Read out a single unit digit in the PI position
Read out from the interpreter register the content of the digits

of the current command held in positions Pll-P20
Read out the content of the low speed store No. I from the

location 11, (0<:11,<1024). indicated by the 10-digit Bub-address
of the current command

Read out the content of the low Bpeed store No.2 from the
location 11, (0<:11,<1024). indicated by the 10-digit sub-address
of the current command

Read out the content of the low speed store No.3 from the
location 11, (0<:11,<1024). indicated by the 10-digit sub-address
of the current command

Read out the content of the low speed store No_ 4 from the
location 11, (0<:11,<1024). indicated by the 10-digit Bub­
address of the current command

Read out a unit digit in the position PIO

Symbol

(Z)
(Ht)

(8)

Pn
PI
(K)

PIO

323

Most of the entries in Tables 2 and 3 are self-explanatory. The following
notes will assist in defining more clearly the action of some of the functions.

Not all registers are associated with both source and destination gates;
ior instance, the output register possesses only destination gates, whilst the
-various constants have only source gates.

The output from any source gate may be transferred to any destination
gate which may be consistently coded. Thus, to transfer the content of location
11, in the high speed store to location m (11, =1m) in the high speed store is an invalid
transfer and cannot be coded, except in the case n=m when the transfer is
possible. Similarly a transfer from a store location 16r+p (O";;;p <16) to
location q (O";;;q<16) of register D is possible only if p=q. Simil:a.r remarks
apply to the low speed store.

The input register possesses 20-digit hand-setting facilities like those of NI
and N 2 and the entire 20 digits are transferred if called as a source.

324 T. PEARCEY AND G. W. HILL

The destination It affects the mode of reading data from the medium, in
this case punched paper tape, from which data are placed into the input register.
In the" read binary" condition the row of digits represented by the configuration
of holes or the current column of the tape is accepted directly into the register.
In the " decimal read " state the configuration of digits is subjected to some
transformation upon entering the input register. The effect in this state is that
of interpreting tape punched with one hole per row in a 1 to 10 code for decimal
digits and transferring each digit to the input register as the equivalent binary
tetrad. This is more fully described later.

In the right-shift sources of registers B, 0, and D, i.e. r(B), r(O), and r(D),
the lowest digit (at PI) is omitted from transfer; a unit digit in the Pr period
is transmitted as a unit Pr-l and the digit transmitted in the P20 position is zero
irrespective of the digit in the P20 period held in the register.

In the case of multiplication the modulo 2 convention is adopted and the
product of the content of register 0 and the number entering register B, both
stored modulo 2, is added into the combined registers A and B as though the
binary point of the product lies between the P20 and P19 periods in register A.
The original multiplier is lost in the process of multiplication and is replaced by
the less significant 19 digits of the product. The multiplicand is retained in
register O. In cases of the multiplier or multiplicand being negative (i.e ..
possessing unit P20 digits) suitable corrections are made to the product to provide
a negative product in complementary form.

A loudspeaker has been found useful for providing audible signals which
help the operator to follow the course of a· calculation. It is selected by
destination number 10.

VII. NOTATION

A special notation is adopted for writing programmes. Each command is.
represented by at least two symbols, one for the source and one for the destina­
tion. The symbols are those indicated in Tables 2 and 3. Usually these
symbols involve a letter denoting the register involved and an accompanying
symbol to indicate the particular function of the function gate selected.

The source symbol is written to the left of a rightward pointing arrow with
a lower half-head only, i.e. ~, to the right of which the destillation symbol is.
written. To aid the eye the functional component of the destination symbol
is moved to a point over the arrow. This symbol does not exist Qn standa.rd
typewriters, but this is not a great inconvenience since programmes are fina.lly
typed on standard forms· which have the arrow printed upon them.

The content of a register is implied by surrounding the letter representing
the register referred to by round brackets, thus (A) means the numerical content
of register A and is the symbol shown in Tabl~ 2. The bracket notation is used
in indicating some source functions. In cases of the remaining sources the
brackets are not necessary as, for instance, when a constant digit or set of digits
is transmitted, e.g. sources of P17 Pm and P20 units. . Further, if the source is the
interpreter register, it is convenient to write the actual number transferred
out in place of the source symbol omitting brackets, the interpreter register being

Code
Number

o

1

2

3

4
5
6
7

8

9

10
11
12

13

14.
15
16
17

18

19

20
21

22

23

PROGRAMME DESIGN FOR C.S.loR.O. MARK I COMPUTER. I

TABLE 3

DESTINATION FUNCTION GATES

Function

Read and substitute into the high speed store in location n
(0 < n < 1023), indicated by the digits Pll-P'O of the current
coinmand

If at least one unit received, change the mode of input reading
from decimal code to straight binary or vice versa, otherwise
no change

Read into the output register the digits received in positions
PlCPlO and print the corresponding character

Read into the output register the digits received in positions
Pl-P5 and punch onto tape

Substitute into the register A (20 digits)
Add into the content of register A and hold the sum
Subtract from the content of register A and hold the difference
Replace the content of register A by the digit by digit product

of its content and the entering digits (e.g. conjunction)
Replace the content of register A by the digit by digit logical

sum of its content and the entering digits (e.g. disjunction)
Replace the content of register A by a unit digit wherever the

content differs digit by digit from the digits entering
Transfer the entering digit train into the loudspeaker
Substitute into register B
Read into register B, form the product of the content of Band

register C (modulo 2) and add into the content of register A,
retaining the lowest 19 digits of the product in B with a zero in
the Pl position of B

Only if a unit P.o is received shift the content of registers A
and B one place to the left, the digit in P20 position of B shifting
to the Pl position of A

Substitute into register C
Add into the content of register C and hold the sum
Subtract from the content of register C and hold the difference ..
Substitute into the locationm (0 <m< 16) of register D,indicated

by the Pll-P14 digits of the current command
Add into the content of location m (0<m<16) of register D,

indicated by the Pll-PU digits of the current command, and
hold the sum

Subtract from the content of location m (0 <m < 16) of register D,
indicated by the Pll-PU digits of the current command, and
hold the difference

Null
Substitute into register H the digits from group PI-PIO of the

entering number
Substitute into register H the digits from the group Pll-P20 of

the entering number
Substitute into the sequence register the digits entering in the

group Pu-P.o

Symbol

n

A
+A
-A
.A

VA

P
B

xB

L

s

325·

326 T. PEARCEY AND G. W. fiLL

TABLE 3 (Continued)

DESTINATION FUNCTION GATES

Code
Number Function Symbol

24

25

26

27

28

29

30

31

Count the number of digits entering into the content of the
sequence register (each unit digit has unit weighting)

Add into the content of the sequence register the digits entering
in the group Pl1--1'20 and hold the sum

Substitute the Pl1--1'2o digit group of the interpreter register by
the Pl1--1'20 group of digits entering. Hold the content until
the next command enters when the corresponding group will
be added in

Substitute in the low speed store No. 1 into the location n
(0 <n< 1024), indicated by the Pl1-P20 group of the current
command

Substitute in the low speed store. No. 2 into the location n
(0<n<1024), indicated by the Pl1--1'20 group of the current
command

Substitute in the low speed store No. 3 into the location n
(0<n<1024), indicated by the Pl1--1'2o group of the current
command

Substitute in the low speed store No. 4 into the location n
(0<n<1024), indicated by the PICP20 group of the current
command

If one or more unit digits received, stop the sequence; do not
proceed to the next command

c8

+8

+K

T

then understood as the source. The symbol (K) for the interpreter source is used
(mly in the early design stage of a programme when the sub-address number may
be unknown until a later stage in the design when the symbol is replaced by the
actual number.

The following examples illustrate the notation:
(i) (G)-,.-A: Read out the content of register G and substitute it into

register A.
(ii) (57)J;;.A: Read out the content of store position 57 and add it into

register A.

(iii) 57 -,.-8 : Read from the interpreter the digits in positions Pn-P2o,
i.e. 57 Pw and substitute them into the sequence register.
Note that (K) has been replaced by the number 57 with no
brackets.

(iv) PnJ;;.D4: Read a Pn unit from the Pn source and add it into location
No.4 of the register D.

Commands comprising a programme are written one under the other in the
-order in which they are entered into the store. Usually commands are placed
into successive locations. To the left of each command symbol a serial number

PROGRAMME DESIGN FOR C.S.I.R.O. MARK I COMPUTER. I 327

.or the store location into which the command is to be transferred upon entry
jnto the computer is written. To the right of the list of commands the effect or
,action of commands or groups of commands is stated and any additional notes
are made.

Two vertical lines placed to the left and three to the right of the list of
{;ommands provide one column between the location number and the commands
and two adjacent spaces between the commands and the notes on the right. An
~xample of the layout will be found in Table 4.

Commands which change during the course of the operation of the
programme are surrounded by square brackets, [], whilst commands which
.are not actually used by the machine directly as such, but which are used as
quantities from which other commands may be built, are surrounded by angle
brackets, < >, and are called "pseudo-" or "latent commands". When

written symbols are to be grouped together they are overlined, e.g. n +p +1'.

It is sometinies necessary in descriptions of programmes to refer to the
,content of a register at the completion of a particular command. Such a
quantity is indicated by a prime. Thus (A)' =x written to the right of a
.{lommand means " the content of register A at the completion of the command
is x ".

During the normal course of the operation of the machine through the
programme, commands are adopted from successively numbered locations in a
uniform sequence. Such a sequence is frequently broken, the next command
being adopted from a location other than the next in numerical order. In such
cases the serial number of the command next selected is indicated to the right of
the current command in the second or rightmost of the blank columns formed by
the vertical lines and is enclosed in square brackets.

A list of commands is sometimes broken into convenient groups of commands
by underlining the last of such a group.

It is not always possible to denote quantities entered into the computer
in the form of commands or pseudo-commands. Special numbers may be
written in the decimal scale during the initial stages of design of a programme and
later converted into a form which is suitable for recording onto the input medium,
the paper tape. Such special symbols which the programmer may use should
be placed in a position which would otherwise be occupied by a command symbol.

Sometimes, but- only rarely, the sub-address may not be entered directly
into the command symbols constructed from Tables 2 and 3. In such cases
the sub-address number is written to the left of the command symbol, e.g.
57; (C)-?"A has the effect of the command (C)-o>-A, but is also the number
-57 X 2-9 +46 X 2-19, and may be used as such. The number 57 affects only the
time in the computer routine at which the transfer takes place.

It is sometimes convement to use the notation for digit-periods to represent
the important unit occurring in a sub-address. Thus a number, say n, repre­
,senting a location, is 'normally stored in the P1CP20 group only and may be
written in the command in the form npw but usually the Pu is implied. In
{)ther cases the notation is extended to cover digits in which the Pu unit is not
the important unit, e.g. mp1S'

328 T. PEARCEY AND G. W. IDLL

VIII. PROGRAMME DEVICES

Not all the 32 x 32 possible combinations of source and destination transfers
are useful and some inefficiency in the use of digit space in a programme must be­
accepted. However, compared with a straight one-address system considerable
extra flexibility and some saving in the total number of commands in programmes.
which serve similar purposes is attained.

Certain elements in the design of the machine distinguish the method
adopted for programme design from those used for other computers. These·
are the main factors; first, the computer possesses more than one accumulating­
register. In fact A and 0 and all 16 locations in D are capable of the elementary
arithmetical functions, although register A has extra facilities and in practice­
becomes the main accumulator and is used in preference to other registers when
available. The accumulating registers and the registers Band H may be used
as " working space" during a calculation and a considerable saving of commands·
is attained, compared with an equivalent programme designed for a one-address.
system, by calling transfers between these registers without reference to the main.
store. Further, these registers are frequently uSE,Jd at one stage of a programme·
for the assembly' of data to be operated upon by parts of the programme
immediately to follow. Thus, for instance, prior to a programmed division the
dividend is transferred to register A and the divisor to 0 and the division which.
follows uses only one further register, B, and the quotient appears in register A.

Facilities are available for making discrimiriation, that is, choosing alter-·
native paths through a programme according as a condition is or is not satisfied
by the content of a particular register. Discrimination is usually made according­
to the state of the sign of a register content, that is,the P20 digit of the content,
in question is either unity for negative content or zero for positive content·
including zero. Sign conditions of (A), (0), and (Dm) (0 <.m <16) may be
detected by the sources 8(A), 8(0), and 8(Dm), and also on the content of B by the·
source (R). The evenness or oddness of (A) may be detected by the source,
Pr(A). Digits from these gates may be transferred to any desired destination
but the most common ones are described below.

Breaks in the normal sequential course through a programme of commands
are frequent. Commands which cau8~ these breaks involve sequence register­
destinations. The choice of alternative paths through a programme can b&
made via the destination cS. Usually only one digit is allowed to enter this
gate. Thus, the command

8(A)-"...S

from location n in the store will cause the next command to be selected from the­
position n+1 immediately following if the sign digit of (A) is zero, or from the·
position n+2 if unity.

Sometimes, however, numbers of digits may be counted in the same tra.nsfer,
. thus making possible a choice between a number of alternative operations to-
follow. Thus the command in position n r-

(A)-"...S

PROGRAMME DESIGN FOR C.S.I.R.O. MARK I COMPUTER. I 329

will, if r unit digits are contained in (A), cause the next command to be selected
from position n +r + 1. Such a break in the uniform progress through a pro-
gramme is called a " conditional shift of control ". .

The substitution of an entirely fresh number into the sequence register via
the destination B causes an " absolute shift of control ". Thus the command
in position n

(A)-,..B

-replaces (B) by the 10 most significant digits of (A), i.e. those in the period
Pn-P20' neglecting any digits in the group of lower significance, PI-PIO. Thus, if
~A) is the partitioned datum

0';;;;q<1024, 0';;;;r<1024,

,(B) becomes qPn and the next command is withdrawn from position q, that is,

(B),=q.

A "relative shift of control" can be attained via the destination +B.
'Thus the command in location n

. (A)±...B,

where again (A)=qPn +rPl' causes control to be shifted" forward" to n+q+1,
-that is, '

(B)'=n+q+1.

The extra unit is introduced because the addition of a Pn unit, which
.controls the normal advance of (B) from n to n+1, is not removed. Normally
.such an operation represents an increase in the actual value of (B). Since,
however, (B) is a number stored modulo 1024 in terms of Pn as a unit, the
addition of the complement of q, i.e. 1024-q Pw will cause (B)' to be n-q+1
-to which control will be shifted "backwards ".

The sequence register may also be called as a source. Thus a command in
location n

(B)-,..A

;substitutes n -+:i Pn into register A. Such an operation is usually followed by a
.command causing (B) to change, say, to q, a point in the programme which might
be reached by more than one route. As the programme proceeds from location
.q a reference to the route along which q was reached is stored for use as (A).

Many of the functions just described are used in conjunction with the
interpreter register as source. In this case the digits in positions Pn-P2o of the
current command are available for use. This is so whenever the sub-address
,of the current command does not refer to a position in the stores or register D.
Thus, in accordance with the notation previously stated, the command in
location n

57-,..B

would cause the number 57Pn to be transmitted from the interpreter and to be
Bubstituted into the sequence register. Control would be shifted to 57.

330 T. PEARCEY AND G. W. IDLL

The command in location n
572:,..8

would cause control to be shifted forward to 57 +n + 1.

The notation is important here; the round bracket is not present and the
interpreter is implied as the source. By contrast, the command if written as

(57)2:,..8

would cause the most significant group of 10 digits of the content of store position
57 to add into (8).

In conjunction with the H register current commands may be used to store
useful constants. To form a full 20-digit datum from a pair of 10-digit groups,
available in the current commands the H register is used for shifting one group
from the Pn-P2o period to the PCPlO period. A typical set of commands would,
be:

Location of Command
n

n+1
n+2

Command
r--r-A
s~H

+u
(Hl)~A,

where the first places rPn into A, the second places sPn into H, which is read out
by the third as SPI and added into A. Thus (A)' =rpn +SPI or r2-9 +92- 1\1.­

numerically.

The basic constants, the P20' Pw and PI unit digits, are used largely as.
follows: P20 for the constant -1 and sign reversals and modulo 2 counting, Pn
for unit counts, in particular for changes by unity to the sub-address of commands.
changed by the programme, and PI for unit counts to complete 20-digit numbers­
etc.

The operation of the computer may be stopped either conditionally or­
unconditionally. Thus the command

s(A)~T

will stop the sequence of operation if (A) contains a P20 unit, otherwise not. An
unconditional stop is obtained by a command such as

P2o-,.-T or Pn--r-T.

Manual control may be applied in any case by u~e of the switches in registers:
Nl and N 2• Thus

(N1)-,.-T

will stop the operation only when at least one switch of Nl is depressed.
Registers Nl and N2 are frequently used to hold parameters which may be­

varied at will by the operator, e.g. parameters which control the rate of con­
vergence of an iterative process.

A register may read out of one of its source gates and receive into one of its
destination gates at the same time. Thus the command

(A)~A

PROGRAMME DESIGN FOR C.S.I.R.O. MARK I COMPUTER. I 331

causes (.A) to be read out and subtract into itself so that (.A)' is zero.
Alternatively,

c(.A)':::;".A

causes (.A) to be read out and at the same time cleared to zero and the original
content transmitted is received and subtracted from zero. The effect is to
replace (.A) by -(.A).

Simple multiples of (.A) may be obtained by the sources 1(.A) and 2(.A)
functions. Thus

2 (.A)-=!;..A
gives (.A)' =3 (.A) and so on.

Operations of the form (Dm)-=!;.Dm and (Dm)~Dm' i.e. doubling and clearing
the mth location in D are permissible.

Multiplication by a quantity already stored in register B may be caused by
the command

(B)"?;'B,

which causes (B) to be read out and to enter the multiplying gate and re-enter B
and so start the multiplication process.

The command c(.A)..?;.B is frequently useful in forming continued products
when (.A) is already the product of a previous multiplication.

Occasions arise when " time wasting" must take place as when a command
is removed from the programme leaving a "free space". Such spaces may be
filled with what may be called" null commands ", either (.A)--r-.A, which reads
(.A) back to the same place, or by any" store to store" command like (n)--r-n.

It will be noticed that the code representing such a command is equivalent
to the number nPn +OPl1 so that a blank space 0Pn +OPI causes the content
of store location 0 to be resubstituted into the same location. Thus, blank
spaces, if adopted as programme commands, affect no registers or stores .

.As a simple example of the construction of a programme consider the
commands which will cause the product of the modulus of the content of store
location 47 to be multiplied by 2-', rounded off to 19 binary places, transferred to
location 12, and control shifted to 132. This set of commands, listed in Table 4
in the standard manner, is entered at the leading command placed in location m.

The action caused by these commands may be followed from the description
in the right-hand column. The command in m+1 tests the sign of (.A), and
causes a conditional shift of control, and, if positive, (.A) is replaced by its
complement twice, thus leaving it positive. This set of commands is not unique
and other arrangements can be contrived which will provide the same final
effect.

IX. INPUT AND OUTPUT

. Programmes, following the initial design stages, are written in the symbolic
form in the order in which they are to be provided to the computer. Thence
they may be transcribed onto the input medium. Both commands and numerical
data are supplied to the machine on punched paper tape onto which up to 12

:332 T. PEARCEY AND G. W. IDLL

holes per row can be recorded. Single commands when punched onto tape
normally occupy two rows consisting of two groups of 10 binary digits each
corresponding to 10 of the 12 punching positions in a row. The remaining two
positions are reserved for special controlling purposes. One column is punched
with the binary representation of the sub-address intended to be placed in periods
Pll-P20 and the following column with the other addresses to enter PcPw The
latter is supplied with a hole in the 11th or X position, and distinguishes PCPIO
rows from Pll-P20 rows. .

When the machine is switched on all registers and the store are cleared to
zero and a group of 20 commands is transferred to the first 20 locations in the
.store (0-19) via the fixed wiring on a set of rotary stepping switches. This set

TABLE 4
A " ROUNDED MODULUS" ROUTINE

Location I Command

m+O (47)~A

m+1 s(A)-E,..S

m+2 erA):;' A

m+3 e(A)':::;"A
,

m+4 32~C

m+5 c(A)~B

m+6 (R).:i;.A

m+7 (A)-~12

m+8 132---...S [132]

,

Action

(A)'=(47)

Tests (A)~O

Skipped if (A) <0, if (A) »0,
(A)'=-A

If at m+1 (A) <0, the n
e (A)'=-(A), otherwis

(A)'=(A)
Sets a P16 unit to C fro m

interpreter

Forms 1 (47) 1 X2-4 =(A),
Round-off to 19 binary digits

(12)'=1 (47) 1 x2-4

Shifts control to 132

-of commands is sufficient to assemble the digits from pairs of adjacent rows of
the input tape into full 20-digit data and to store them in successive positions in
the store immediately following those already filled. This set of commands is
·called the "primary routine ".

In cases of commands which have zero as the sub-address the first of the
pairs of rows may be omitted. In all commands a punch in the X position is
provided on the column containing the source and destination addresses so that
the total number of such holes is equal to the number of commands punched.

A special keyboard of 32 keys is provided for transcribing programmes
onto tape. Each key corresponds to a number in the scale 32, to a source, and to
a destination. The number and the corresponding address symbols of Tables 2
and 3 are indicated on each key. Two keys are depressed in succession before
one of a .set of " punch keys" is depressed which initiate the punching. Thus
the sub-address is punched by depressing first the key m, say, followed by nand
the pUIWh key is depressed when the 10 binary digits are punched in order on the

PROGRAMME DESIGN FOR C.S.I.R.O. MARK I COMPUTER. I 333

tape row currently under the tape punches. The most significant digit is punched
in the first position, the others follow in order to the lowest in the 10th position.
The integer thus punched will be: 32m +n. Following the punching of a row
the tape is automatically moved forward to the next row. The source key is
depressed followed by the destination key and the" X-punch" key is depressed.
The source and destination code is then punched together with punch in the X
position. There is no need to remember the actual code numbers of the addresses.
The keying for a typical command is therefore:

m, n, punch; source, destination, X punch.

As an example, the programme at the end of the previous section would be
punched by depressing keys in the sequence shown in Table 5. In this table
semicolons imply the depression of the punch key, whilst the colons imply the
depression of X-punch key.

TABLE 5
PROGRAMME ENCODiNG METHOD

Example shown for the routine in Table 4

Depression of
Keys

Corresponding Written
Command

1 , 15 ; (0) , A (47)~A

8(A) , cS 8(A)~S
c(A) , -A : c(A)':;'A

c(A) , -A : c(A)':;'A
1 , o . , (K) , a 32~G

c(A) , xB : c(A)~B
(R) , +A (R).i;..A

o , 12 ; (A) , 0 (A)~12

4 , 4 . , (K) , S 132 S

All the symbols in Table 5 are those listed in Tables 2 and 3 and almost all
are the same as are used in writing programmes onto paper. The exception,
symbol (K), exists on the key representing the interpreter as source and is
implied in the written commands. With this latter provision the list of written
commands may be translated into keying operations with no rewriting and very
little mental effort.

In cases where a 20-digit binary number to be entered into a programme is
not a command and is not necessarily in the form of a pseudo-command, the
number, multiplied by 219, must first be converted to the scale of 32 and keyed
in the same manner as a normal command. Such data are constants like e-I,
11:/4, 2- t , etc. Thus, for instance, in the final steps of compiling the programme
11:/4 would be entered by keying the sequence:

12, 18, punch; 3, 31, X punch,

since 0·7853982 X 219 =12, 18, 3, 31 to the nearest unit in scale of 32.
G

334 T. PEARCEY AND G. W. HILL

Normally very few such cases occur, as decimal data in large quantities are
normally punched in one of two ways; each decimal digit is punched either in a
decimal code similar to that used on cards of the Hollerith type, i.e. the 1 in 10
position code, or as an equivalent binary tetrad. When using either of these
codes part of a programme previously entered into the store must be designed
so as to assemble the digits transferred from the punch holes into the binary
representation needed later by the programme.

Results are normally page printed or punched onto tape. The computer
is provided with a suitable printing or output punching programme, which
controls the transformation of the results from binary form as stored internally
to the corresponding decimal digits, which are printed or punched in descending
order of significance. The printer is provided with a full range of letters,
brackets, stops, and positive and negative signs, which may be used by suitable
programmes. .

Decimal results may be punched in the form of binary tetrads or as single
holes in the 1 in 10 code system. This allows punched results to be reinserted
into the computer during a later calculation.

x. REFERENCES
GILL, S. (1951).-The diagnosis of mistakes in programmes in the EDSAC. Proc. Roy. Soc.

A206: 538.
PEAROEY, T., and HILL, G. W. (1953).-Programme design for the C.S.I.R.O. Mark I Computer.

II. Programme techniques. Aust. J. Phys. 6: 335.
WHEELER, D. J. (1950).-Programme organization and initial orders for the EDSAC. Provo

Roy. Soc. A 202: 573.
WILKES, M. V., WHEELER, D. J., and GILL, S. (1951).-" The Preparation of Programmes for an

Electronic Digital Computer." (Addison-Wesley Press Inc.: Cambridge. MaRS.)

