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Summary 

It is shown how the general relativistic eleetromagnetic equations for a material 
medium can be expressed in the form of a single four-vector density equation. The 
field tensor has six different complex components instead of three, as in the case of a, 
free medium. The classical equations are obtained by separating the real and imaginary 
parts. 

1. INTRODUCTION 

It has already been shown how, for empty space, Maxwell's equations in 
General Relativity may be expressed as a single complex vector density equation 
from which the complete set of classical equations can be deduced by equating 
the real and imaginary parts (Taylor 1952). It was pointed out (loc. cit.,. 
Section VI) that this seems to be the natural generalization of the quaternionic 
form used by Silberstein (1924, pp. 46, 206) for classical and special relativistic 
theory. The purpose of the present investigation is to extend this method 
of the complex field components to the case of a material medium, for which 

D=eE, B={LH. 

Some work related to this topic has been attempted before. Following 
the success of the quaternionic notation in dealing with the electromagnetie 
equations for a vacuum in classical theory and in Special Relativity, Silberstein 
(1907) tried a similar treatment for material media. He considered the classical 
equation (our notation) 

~i = -iv curl 1), 

where 

and 

v=cjVe{L. 

This is obviously unsuitable for inclusion in a relativistic theory, and beSides" 
the equations div B=O, div D=p cannot be brought into this scheme. Using 
a different line of attack (1924, p. 260) he obtained the complete set of Maxwell's 
equations for a ponderable medium in Special Relativity in terms of two quaterIl­
ionic equations involving the two different bivectors (our notation) 

B±iE, H±iD. . ................. (a) 
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In the usual method there are two tensor equations depending on the two 
:a,ntisymmetrical tensors, each with six independent components, corresponding 
to the bivectors (a). In our notation, the components of these tensors a.re, 
respectively, 

o -Ba B2 iEI 
Ba 0 -Bl iE2 and 

-B2 Bl 0 iEa 
-iEl -iE2 -iEa 0 

(b) 

In this form the equations may be readily extended to the continuum of General 
Relativity~ Examples of this tensor method are given in works by Silberstein 
(1924, pp. 288, 462), McConnell (1936), Costa de Beauregard (1949), and Schouten 
(1951). The method is based on the investigations of Minkowski (1910) in Special 
Relativity. He uses a matrix notation, obtaining two equations (loc. cit., p. 38, 
equations {A} and {B}) in terms of the two matrices corresponding to (b). By 
simply adding Minkowski's two equations we have the equivalent of the single 
field equation of the present theory (equation (1)), for the special case of Cartesia.n 
coordinate systems. 

Sommerfeld (1948) mentions two bivectors similar to (a), but gives the 
electromagnetic equations in their usual tensor form. 

II. MAXWELL'S EQUATIONS AND THE FIELD COMPONENTS 

Consider the equation* 

. . . . . . . . . . . . . . . . . . . . .. (1) 

where J!J. is the current four-vector density 

J 1(....) 
!J.= -- 3H 32' 3a, lOp , 

C 
. . . . . . . . . . . . . . .. (2) 

a.nd D!J.V is the field tensor density derived from the field tensor D!J.v, whose 
.components in the geodesic Cartesian system (x, y, z, iet) are 

D!J.v= 0 Fa -F2 Nl} 
-Fa 0 Fl N2 .......... (3) 

F2 -FIONa ' 
-Nl -N2 -Na 0 

where 

NF1=iEiD: 1 -BHH ettc.,} ................ (4) 
1- 1- H e c. 

:It will be noticed that (3) may be obtained from (b) by combining one with 
the dual of the other. However, (4) are not the components of Silberstein's 
bivectors (a) except in a free medium, the case previously considered. 

If (1) is written out in the geodesic Cartesian system, we have, from the 
real part, 

aD. I H ar+J=c cur , 

div B=O, 

* Roman type shall denote tensor densities, while italics shall refer to tensors. 
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and from the imaginary part, 
oB at =-c curl E 

div D=p. 

Equations (1), (2), (3), and (4) therefore define the complete set of Maxwell's. 
equations in macroscopic terms, for a material medium at rest relative to the 
observer. Instead of two sets of equations depending on two field tensors, 
each with six terms, we now have one equation depending on one tensor with 
six distinct components. 

If it is assumed that (3) and (4) determine the classical components of the· 
field in any system of coordinates, an inconsistent set of equations is obtained 
for the transformation of the field components. We must therefore postulate· 
some other tensor, having fewer distinct terms, whose transformation is to define 
the field in all systems of coordinates. This tensor shall be, in the geodesic. 
Cartesian system, 

where 

EfLv= 0 
-Ma 

M2 
-Ml 

. . . . . . . . . . .. (5) 

M1=iE1-BH etc. . ................. (6) 

This is constructed from the first of (b), the tensor which defines the transforma­
tion of the field components in the usual relativistic theory of the material 
medium, and it has the same form as the FfLV which was used in the case of fields 
in ~ree space (Taylor 1952). 

The relation of the field components in one Cartesian system of coordinates 
(XfL) to the components in another system (x'fL) is then given by the transforma­
tion equations 

E ' ox'fL ox'v E (.). fLV--- -- ex .. - oxex ox~ , 

where, according to our postulate we have 

E'12=M'l =iE'l -B' H etc. 

as well as (5) and (6). Writing this out, using the coefficients Ox'fL/oxex calculated 
from the Lorentz transformation, we obtain the required classical equations 

E'l=EH B'l=BH 

E' - E 2,a=F (v/C)Ba'2 B' _ B 2,a ±(v/c)Em 
2,a- V1-v2/c2 ' 2,a- V1-v2/c2 ' 

for the case where the space of (x'fL) is moving relative to the space of (XfL) with' 
velocity v in the xi direction. 

The fact that the components of EfLv are arranged as shown in (5) can be 
stated in the covariant form 

EfLV= !e:fLva't'Ea't'. • .• . . .• •. •• . . .• •.• (7) 

.A tensor which .satisfies an equation of this type is described by the term " se1£­
dual" since the operation indicated on the right-hand side (that is, the formation 
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of the" dual") reproduces the original tensor. Guided by (7) we shall try 
expressing EfLv in terms of a potential function as follows: 

./- (oxcr ox~) EfLV=(vggfLcrgn+tefLvcr~) ox~-oxcr' ........ (8) 

This identically satisfies (7). By comparing with the similar treatment for 
FfLv in the case of empty space, we find that (8) includes the classical equations 

B=curl A, 

E= -grad V -A/e, 
where 

XfL=(Al) A 2, As, iV). 

We now show that the six-component system DfLv can be expressed in terms 
of EfLv and another three-component system, BfLv. Take, for the case of the 
geodesic Oartesian system at rest in the medium, 

BfLv= 0 0 0 Ll 
o 0 0 L2 
o 0 0 Ls 

-Ll -L2 -Ls 0, 
where 

Ll =Nl -Pl =i(Dl -El) -(Bl-Hl), etc. 
'This tensor vanishes in an empty region, and is of an appropriate form for 
matter at rest, since it attributes a special distinction to components invohing 
a time index. It therefore seems a suitable tensor for describing the departure 
of the field, in the presence of matter, from the completely isotropic (i.e. invariant 
in form under coordinate transformations) part represented by EfLv. We then 
have 

DfLV=EfLv+lBfLv-tefLvcr~RBcr~, .............. (9) 

where the I, R operators denote that the imaginary and real parts, respectively, 
are taken, the factor i being preserved in the imaginary part so that 
BfLv=(R+I)BfLv. For the Oartesian system, 

IBfLV= 0 0 0 i(Dl -El) 
0 0 0 i(D2-E2) 
0 0 0 i(Ds-Es) 

-i(Dl-El) -i(D2-E2) -i(Ds-Es) 0 
:and 
-tefLvcr~RBcr~= 0 (Bs-Hs) -(B2-H2) 0 

-(B3-H S) 0 (Bl-Hl) 0 
(B2-H2) -(Bl-Hl) 0 0 

0 0 0 0 
Hence (9) implies 

as required. 

D12=iEs-Bs+0+(Bs-Hs)=iEs-Hs, etc. 
D14=iEl -Bl +i(Dl-El) +O=iDl -Bl) etc. 

Using (9) the field equations can be expressed by one equation involving two 
tensors with complex terms, each having three distinct components. 
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It will be observed that the space-space components of the tensor Df1.v, 

given by equation (3), are the components of the self-dual tensor F[J.v, which 
has been used in the treatment of fields in free space. Since F[J.v is independent 
of the properties of the medium, and since it is a characteristic of the self-dual 
part that it does not indicate motion relative to the medium (being preserved 
in the same form for transformations of coordinates), it might at first seem 
more reasonable to choose Ff1.v ,instead of E[J.V as the self-dual portion of Df1.v. 

However, if this were done, results would not agree with those of classical theory 
except when (1.=1. Hence Ef1.v, but not Ff1.v, is an isotropic tensor in a material 
medium in which (1.#1. 

III. RELATIONS BETWEEN THE FIELD COMPONENTS 

The next step is to express the classical equations 
D=eE, B=(1.H 

for a homogeneous medium, as a single tensor equation. Since there are six 
different equations involved here, we shall attempt to solve the problem by 
assuming a completely self-dual set such as 

D[J.V +tef1.vO"1."DO"1."=aREf1.v +blEf1.v, . . . . . . . . .. (10) 
the E[J.V being split up into its (self-dual) real and imaginary parts to admit the 
appearance of two constants. The comparison of (10) with the classical 
equations provides a, b in terms of e, (1.. 

When the indices (1.,v=1,2 or 3,4 in a Cartesian system at rest in the medium, 

Fa+Na=aRMa+bIMa· 
Therefore 

(iEa-Ha) +(iDa-Ba)= -aBa+biEa, 
with similar expressions for the other components. The real and imaginary 
parts of this will respectively reduce to the third components of the classical 
equations quoted above, provided 

~:~t!!(1.=l+cp, say, } ................ (11) 

From (10) and (11) therefore, 
Df1.v +tef1.vO"1."DO"1."=Ef1.v +cpREf1.v +dEf1.v. .......... (12) 

Other forms may be obtained by substituting from (9) in this equation, or they 
may be derived directly by the method just described. For example, 
commencing with the completely self-dual equation 

D[J.V +tef1.vO"1."DO"1."=aE[J.v + ~(Bf1.V + te[J.vO"1."BO"1.") , 
we find 

2(e-(1.) (1.e-1 
a= (1.e-2(1.+1' ~= (1.e-2(1.+1' 

In the case of a crystalline medium we require an equation reducing in the 
rest system to 

Di=eijEj , Bi = (1. ijHj , 

where i,j =1,2,3. The second equation may be solved to give 

Hi=CPijBj • 

There is also the additional requirement that the nine-component systems 
eij' CPu should be symmetrical. 
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Consider the equation* 

DfLV +te:IJ.vO"'t'DO"'t'-EfLv=H(jl~~R +e:~~I)EIX~. . ....... (13) 

Since there are only three independent terms in the tensor which constitutes 
the whole of the left-hand side, and only three in the EIX~, the ~~ and e:~~ must 
each have only 3 X 3 independent components, as required. 

Using geodesic coordinates at rest in the medium, (13) gives for [1-,',/=1,2; 
2,1; 3,4; or 4,3 

D12 + Da4 _ E12 =.l( m 12R +e: 12I)EIX~ 
4 TIX~ IX~ . 

In the sums over ex,~ there are four terms equal to that in which ex,~=1,2. 
Similarly for ex, ~ =2,3 and 3,1. Hence 

D12+D34_EI2=((jli~R +e:gl)EI2+((jl~~R +e:~~I)E23+((jl~iR +e:nl)E31. 

Equating real and imaginary parts, this gives 

Hs =(jli~s +(jl~iB2 +(jl~~Bl' 
D3 = e:gEs + e:~iE2 + e:~:El' 

The formulae for H 2, D2 and HH Dl are found similarly. The results can be 
summarized by 

~=~ ~ ~ ~ ~ ~ } 
e:~~ e:~i e:~~ e:i~ e:~~ e:~~ , etc., 

e:~~ e:~i e:i~ e:~~ e:~~ e:~~ 
each independent e:~~ corresponding to one of the e:ij' Similarly for the (jlij' 

, The symmetry of e:ij shows that 

and similarly 
(jlfLV=(jlIX~. 
IX~ fLv 

These two latter equations are not transformable in general coordinate systems. 
In the usual theory, different methods of deriving covariant forms of the 

classical relations D=e:E, B=[1-H have been used. Schouten (1951) obtains a 
single tensor equation with six components, while McConnell (1936) takes, for 
the more general case of the crystalline medium, two tensor equations. 

Consider 
IV. THE PONDEROMOTIVE FORCE 

1 
WfL=-DfLvJv=DfLvJv . ..•....•........ (14) 

g 

Take the case of geodesic Cartesian coordinates. In such a system a force/power 
four-vector pfL would be given by 

PfL=R(Wl, W2, W3), I(W4). 

* The dielectric constants must not be confused with the e;.systems, in which the suffixes 
will always appear as superscripts. 
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Now 

Also 

Therefore 

pI = R(.D12J2 +D13J3 + D14J4) 

=Rf -~(F':J2-F'2j3)-NIiP} 

=!(H:J2-H Ja)+DIp. c 

P'=I(D41J1+D42J2+D43J3) 

i. D =cJ • • 

( Ii ) P!L = pD +-oj X H, oj. D . 

Hence (14) corresponds to the classical force/power per unit volume. 
The conservation of charge is deduced exactly as before. 
The law of propagation of electromagnetic wa.ves has lost its fundamental 

significance-the velocity is no longer the same for all observers-and so the 
wave equations cannot be derived as neatly as before from the general four­
dimensional equations. They can best be obtained by way of the classical 
equations. 

V. THE PROPAGATION OF POTENTIAL 

We now attempt the deduction of the wave equation for the potential 
function from the four-dimensional expressions. Oonsider the case of a homo­
geneous isotropic medium at rest with respect to.a geodesic system of coordinates. 
Equation (12) becomes 

( 15) 
.Also, from (9), 

D!LV =E!LV + lB!Lv -te:!Lvo"'RBcr-r. ...•.••••..••. (16) 

From the definition of the potential function (8) and equation ,(7) which it 
includes, 

, oXfL OXV I (oxcr Ox-r) 
E!LV = OXV - axfL +2e:fLvcr-r ox-r - oxcr ' ........... . ( 17) 

E!LV = !e:fLvcr-r Ecr-r. " ...•..•..••...........•...... ( 17') 

From (16) and (17') 
!e:!Lvcr-rDcr-r=E(J.v +te:fLvcr-rlBcr-r -RBfLv. ....•... (18) 

Substituting from (18) in (15), 

DfLv + te:fLvcr-rlBcr-r - RBfLV - ( cp R +d )EfLV = o. ( 19) 

We shall let Greek suffixes range from 1 to 4, and Latin suffixes from 1 to 3. 
In (19) we take [L,v =4,i. Then in the second term IT," must be of the type j,k. 
But Bjk=O. Hence 

D4i-RB4i-cpRE4i-dE4i=O. . ........ , (20) 

Assuming that there are no currents or free charges, we have, from (1) 
oD4i/oxi=O, 
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and so, operating on (20) with ojoxi, and choosing the imaginary part, 

But, from (17) 

Hence 

oE4i . 
-e:I-:;--" =0. . ................... (21) 

ux' 

OE4i _ ~(OX4 _ OXi) 
oxi - oxi oxi ox4· 

For a reason which will appear later we cannot here use fJx(J.j~x(J.=O, as in the 
case of empty space. Since X4 and x4 are both imaginary, (21) becomes 

~(OX4_ OXi) =0 
oxi oxi ox4 . 

Writing xi=A, x4=iV, this gives 

\72 V +! div .A.=O. . ................. (22) 
c 

Now let us take fL,v=i,j in (15) and (16), noting that Bij=O, and also that 
e:ijm has the two sets of components e:ijk4 = _e:ij4k. Subtracting the two equations 
thus obtained in order to eliminate Dij, 

e:ijk4Dk4 -(cpR +e:I)Eij -e:ijk4RBk4=O. 

We next differentiate this with respect to x4. Now 
oDkVjoxV=O, 

and so 

Hence 

_e:ijk40Dkn _ ~(cpR+e:I)Eij-e:ijk4~(RBk4)=0 
oxn ox4 ox4· 

From (19), using Bkn=O again, 

Dkn= -e:knp4IBP4+(cpR +e:I)Ekn. 
Hence 

_e:ijk4~{ -e:knp4IBP4+(cpR +e:I)Ekn} -~ (cpR +e:I)Eii _e:ijk4 ~ (RBk4)=0. 
own . ox4 ox4 

The real part of this is obviously 

-e:ijk4~(cpREkn)-~(e:IEij)=0. (23) oxn ox4 •••••••••••• 

Now, from (17) 

Eij-OXi_ OXj +(OXk_ Ox4) 
- oxj oxi ox4 oa:k ' 

where i,j,k is an even permutation of 1,2,3. Hence, 

IEij=(OXk_ OX4) 
ox4 oxk ' 

~ REln) _ ~(OXl_ OX2) ~ (Ox1 _ Oxs) 
oxn ( - ox2 ox2 oxl + oxs oxs ox1 • 
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Putting i,j=2,3 in (23) and substituting from these, 

-~l O:2(~~~- ~~i) +O:3(~;~- ~~i) } -ZO:4(~~!- ~~l) =0. 
Substituting for xiJ. ana X 4 this is seen to be the x-component of 

Z·· Z • 
-2A+- grad V +~ grad div A_~\72A=0. 
c c 

Putting i,j =3,1 and 1,2 gives the other components. This can be written 

:rX-\72A+grad (diV A+Z:V) =0. . ..... (24) 

In order that the propagation of the scalar potential V and the vector 
potential A should be consistent, we require 

(25) 

where k is a constant, usually taken to be zero. This causes (24) to be reduced 
to 

and on substituting in (22) gives 

\72 V = ZfLV. 
c2 

The condition (25) shows why it was not possible to assume oxiJ./oxiJ.=O, 
as for empty space. This equation must be replaced by the (covariant) statement 
that all components of the potential function are propagated with the same 
velocity. 
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