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Abstract

The molecular field equations for the allowed spin directions for dimer and trimer molecular
species have been solved numerically for a range of values of the exchange and anisotropy
interactions and of the applied magnetic field. The results may be used for the evaluation of
the exchange and anisotropy constants from high field Mössbauer spectra or for selecting the
best conditions for proposed experiments in order to determine these parameters.

1. Introduction

Many molecular species contain coupled iron ions in the form of dimers, trimers
or more complicated arrangements. In trying to deduce the bridging ligands for
such species, determination of the exchange and anisotropy constants can be an
important piece of information. Although application of a magnetic field can
break the magnetic coupling, the measurement of bulk properties, such as the
magnetisation, does not provide an easy method of evaluating these microscopic
magnetic parameters, particularly on powder samples. However, Mössbauer
spectra in applied magnetic fields provide two independent pieces of information
on the internal magnetic arrangements, namely the measured hyperfine field
and the intensities of the ∆m = 0 lines. Together, these should be sufficient
to determine the exchange and anisotropy constants, at least when the results
from several spectra at different fields are used. A recent study which illustrates
this point was for the iron(III) sites in ferreascidin (Taylor et al . 1995) in which
three iron species, two dimeric and one trimeric, were found but could not be
completely identified at that stage.

The magnetic properties of simple two sublattice antiferromagnets in an applied
magnetic field are well known. In the case of strong anisotropy, one obtains a spin
flip at some critical value of the applied field when it is strong enough to break the
exchange coupling. In the case of weak anisotropy, one obtains a spin flop when
the applied field overrides the anisotropy, provided the applied field direction is
sufficiently close to the anisotropy direction, followed by a linear approach to
saturation as the directions of the two sublattices come closer together.

∗ Refereed paper based on a contribution to the International Workshop on Nuclear Methods
in Magnetism, held in Canberra on 21–23 July 1997.
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There have been three related previous analyses of this type. Beckmann et al .
(1968) obtained the anisotropy constant of FePO4 from analysis of the spectra
during field-induced spin rotation, while Mørup (1985) analysed the spin-flop
transition in antiferromagnetic microcrystals. A detailed approach to the fitting of
applied field Mössbauer spectra using a molecular field theory approach has been
given by Pankhurst and Pollard (1990). This allows evaluation of the exchange
and anisotropy constants, preferably by fitting several spectra simultaneously,
and has proved very useful, for example, in identifying poorly crystalline iron
oxide species in a variety of contexts (Pollard et al . 1992; Pankhurst and Pollard
1993; Pankhurst 1994). We would like to point out that their method should
be equally useful for molecular dimer and trimer species. However, since their
program is unfortunately not widely used, we set out here a complete set of the
numerical solutions for the spin arrangements in a form that can be used by
Mössbauer spectroscopists who only have access to a conventional least squares
program for fitting sums of sextets.

This paper evaluates all the possible configurations for ferric ions in dimer and
trimer systems as a function of applied field, nearest neighbour exchange constant
and anisotropy constant. The results can be used in two different ways. The first
is to extract the values of exchange and anisotropy constants from conventional
fitting of Mössbauer spectra taken at different fields. The second is to enable
the prediction of the most useful regions of applied field in which to take spectra
when there is some reasonable knowledge beforehand of the approximate values
of the exchange and anisotropy constants.

Fig. 1. Spin arrangement for dimer configuration.
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2. Theory

(2a) Dimers

Using a conventional molecular field theory approach, we may set up the
dimer situation as in Fig. 1 which shows the two spins at angles θ1 and θ2 to
the applied field direction, while the local anisotropy direction is at an angle α.
The exchange coupling is assumed to be antiferromagnetic and hence, for each
spin, it will be directed antiparallel to the direction of its neighbour. Writing
down the total magnetic energy for each spin we get:

E1 = 2JS2 cos(θ2 − θ1)− gµB BS1 cosθ1 +Ksin2(α− θ1) ,

E2 = 2JS2 cos(θ2 − θ1) + gµB BS2 cosθ2 +K sin2(α− θ2) ,

where J is the exchange constant, K is the anisotropy constant and B is the
applied field.

The conventional procedure would then be to differentiate the two equations
with respect to the appropriate θ, equate the derivatives to zero and solve them
simultaneously for θ1 and θ2 for that particular (B , J , K , α) set. However,
this leads to two coupled equations which cannot be solved analytically. It is
thus necessary to solve the equations numerically and it becomes easier to search
for the minima in the sum function for the total energy, taking account of the
self-energy, rather than search for the zeroes in the derivatives.

The search for the minimum, for a particular (B , J , K ) set, was started by
calculating the total energy for (θ1, θ2) values in a grid search, using increments
of 1◦ and the position of the minimum estimated. These angle estimates were
then used in the IMSL routine DUMING to determine the exact angles at the
function minimum. The calculations were repeated for values of α in the range
0 ≤ α ≤ π/2 in 2◦ steps. These results, weighted by sinα as appropriate for a
sphere, were used to calculate the average values of θ1 and θ2 over the anisotropy
directions. The calculations were carried out for values of B , J and K in the
ranges:

0 ·1 ≤ B ≤ 15 T, 0 ·1 ≤ J/kB ≤ 100 K, 0 ·01 ≤ K/kB ≤ 10 K .

(2b) Trimers

The trimer was assumed to be a linear, or approximately linear, array with
no direct interaction between the end members. It was also assumed that the
arrangement is symmetrical about the central atom and that the anisotropy
direction is the same for all three atoms. The convention is the same as in Fig. 1
except that both spins 1 and 3 point along the spin 1 direction, so this gives
the following free energy equations:

E1,3 = 2JS2 cos(θ2 − θ1)− gµB BS cosθ1 +K sin2(α− θ1) ,

E2 = 4JS2 cos(θ2 − θ1) + gµB BS cosθ2 +K sin2(α− θ2) .
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The analysis for finding the minima in the total energy function, again having
halved the self-energy terms, was carried out the same way as for the dimer case
and for the same range of interactions.

3. Results

(3a) Dimers

The computer generated minimisations were carried out for values of B , J
and K equally spaced on a logarithmic scale. The problem of choosing the
best method of presenting such a considerable amount of data is a complex
one. For experimentalists, we believe that it is easiest to visualise plots of the
data when the applied field is the chief independent variable because this is the
one over which we have control. Thus, one technique is to give the data as
three-dimensional (3D) plots, for example θ1 as a f (B , J ) for a particular K value.
We believe that such plots give the best visualisation for selecting experimental
conditions. However, it lacks the accuracy needed for reading off numerical values
for the other use, namely evaluating constants from experimental data. This
use really requires 2D slices of the 3D graphs which are very space consuming.
Accordingly, we have selected out sufficient 3D plots for this paper to cover the
range of circumstances. Readers who would like additional data or the complete
set can obtain them by downloading either the plots which we have produced
(as postscript files) or the complete data with instructions for producing their
own plots from our home page at www.monash.edu.au/physics/.

Figs 2–5 show the plots for (a) spin 1 and (b) spin 2 for four different values
of the anisotropy constant, as a function of applied field and exchange constant.
It was found to be easier to interpret the θ2 diagrams if they were plotted as
(π−θ2), that is the angle from the positive magnetic field direction as for θ1.
Thus for spin 1, θ1 is always in the first quadrant, while for spin 2, positive
values of (π−θ2) are in the second and third quadrants. Some diagrams also
have negative values of (π−θ2), which are in the first quadrant. Thus in Fig. 2,
if we consider medium values of J , then initially the spins are antiparallel, with
the average direction being approximately at the tetrahedral angle, 57 ·5◦ and
(180◦−57 ·5◦), from the field direction. Increasing the applied field brings on
the spin flop, with both spins being at the same angle (approximately 80–90◦)
on opposite sides of the applied field direction. The field at the onset of the
spin flop is proportional to J at constant anisotropy values. Further increase in
the applied field causes both spins to rotate together towards the field direction,
maintaining their mirror image configuration until saturation is reached. At very
low values of J , the spin flop has already been induced by the 0 ·1 T field at
which the simulations commenced.

Increasing the anisotropy value as in Fig. 3, results in the flop region moving to
higher applied fields, but without appreciably changing the approach to saturation.
In Fig. 4a, the process continues, although the flop is becoming less distinct at
low J values since these no longer satisfy the condition that the anisotropy field
is much smaller than the exchange field. By Fig. 5a, the flop has been replaced
by a smooth rotation over the near half of the diagram.

The plots for θ2 in this region have also become more complicated. In Figs 4b
and 5b it can be seen that the plot splits into two branches above 0 ·3 T. This is
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Fig. 2. Angular variation of (a) θ1 and (b) (π−θ2) for the dimer configuration and anisotropy
constant K/kB = 0 ·01 K. Note that for Figs 2–10 J is negative and in units of K. The units
for B are T.
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Fig. 3. Angular variation of (a) θ1 and (b) (π−θ2) for the dimer configuration and anisotropy
constant K/kB = 0 ·1 K.
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Fig. 4. As for Fig. 3, but for the anisotropy constant K/kB = 1 ·0 K.
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Fig. 5. As for Fig. 3, but for the anisotropy constant K/kB = 10 K.
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Fig. 6. Angular variation of the standard deviations of θ1, for the dimer configuration and
anisotropy constant K/kB equal to (a) 0 ·01 K and (b) 1 K.
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due to the occurrence of a spin flip for spins whose local anisotropy direction is
close to the applied field direction, while those spins more perpendicular to the
applied field direction undergo a smooth rotation. The proportion of spins in this
flip branch increases as the anisotropy constant increases. Both branches should
be visible in a high resolution Mössbauer spectrum as two separate sextets.

In the regions where a spin flip or flop is occurring, the first spins to change
direction will be those with their local anisotropy direction closest to the magnetic
field direction. Both processes will take place over some range of applied field
values and there is useful information in the spread of θ values occurring, since
this will be observable in the Mössbauer spectrum as a line broadening. As an
example of this, Fig. 6a shows the corresponding standard deviations for the θ1

value in Fig. 2. It can be seen that the standard deviation is initially large and
then drops dramatically at the spin flop, remaining low during the rotation to
saturation. The variation of the standard deviation for θ2 is visually identical, in
spite of the considerable difference in the angle plots. Fig. 6b shows the standard
deviation for the θ1 value in Fig. 4, where again there is a drop at the spin
flop. However, there is now a peak near the approach to saturation because this
is no longer an entirely smooth rotation since some of the spins are coupled to
spins in the flip branch of θ1. The plot for θ2 shows a very similar structure
but is complicated by having two separate standard deviations in one section.

For the high anisotropy plots, the standard deviation in the upper (rotation)
branch is much smaller than in the lower (flip) branch. For readers who access
the plots from our web page, we note that as a convention for the plotting, the
standard deviations for the flip branch have been plotted as negative in order
to preserve the structural similarity with the angle plots, although standard
deviations strictly cannot be negative.

(3b) Trimers

The trimer case is somewhat simpler to understand because, with the mirror
symmetry arrangement relating spins 1 and 3, the magnetic field now has an
unbalanced or ferrimagnetic system to operate on. Thus spins 1 and 3 will align
closely with the magnetic field very quickly and remain there with increasing
field. At some value of the applied field, spin 2 will flip, but there will not be a
flop phase for any values of the anisotropy.

Fig. 7 shows the situation for the lowest anisotropy value in which the spins
have already aligned parallel and anti-parallel to the field for the lowest values of
applied field. At some critical field, the moments start to rotate and the strength
of the exchange coupling causes spins 1 and 3 to move away from the applied
field direction during the rotation of spin 2 until saturation is achieved. The
higher anisotropy value in Fig. 8 shows greater randomisation at low fields, with
a correspondingly increased standard deviation. By K/kB = 1 ·0 K, in Fig. 9, the
bulge in the θ1 contour due to the flip has started to disappear at low values
of the exchange constant, while the θ2 plot now shows two branches for the flip
and rotation possibilities. At the highest anisotropy value (Fig. 10) the spin (1,
3) behaviour has become very smooth, while spin 2 has an enhanced branched
region. In all cases, the standard deviation for spins 1 and 3 were less than
those for spin 2.
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Fig. 7. Angular variation of (a) θ1 and (b) (π−θ2) for the trimer configuration and anisotropy
constant K/kB = 0 ·01 K.
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Fig. 8. As for Fig. 7, but for the anisotropy constant K/kB = 0 ·1 K.
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Fig. 9. As for Fig. 7, but for the anisotropy constant K/kB = 1 ·0 K.
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Fig. 10. As for Fig. 7, but for the anisotropy constant K/kB = 10 K.
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(3c) Magnetisation

As an additional check, we also computed the magnetisation for each of the
arrangements described. These show the expected behaviour of steeply rising
contours corresponding to the flop and flip transitions, with the transition region
becoming more rounded with an increase in the anisotropy. However, the variation
in the plots is small compared to the variations in the angular dependences,
emphasising the difficulty of extracting the detailed microscopic parameters from
magnetisation measurements.

4. Conclusions

We have evaluated the allowed configurations for ferric spins in both dimer and
trimer situations for a range of values of the exchange and anisotropy interactions
and of the applied magnetic field. The figures show the main configurations
which may be useful for either interpreting Mössbauer data or for selecting
the experimental conditions for a proposed set of experiments. More detailed
information on the numerical output is available from the authors at the web
site as listed in the results section.
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