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Abstract

Local stability analysis of three-dimensional magnetically confined plasmas is presented using
the energy principle. Fluid displacements with long parallel wavelengths by short perpendicular
are retained. To lowest order in the mode fluteness the total energy density variation depends
on the local magnetic shear, normal and geodesic magnetic curvatures, parallel current density,
and magnetic field strength. The perpendicular fluid displacement is written in terms of a
slowly-varying amplitude and a phase angle which varies rapidly in (or across) the magnetic
surface. Assuming that the fluid displacement is quasi-incompressible, the solution for the
phase angle is found in two limiting cases. Local stability analysis of stellarators with low or
strong global magnetic shear is discussed.

1. Introduction

The plasma physics problems encountered in controlled thermonuclear fusion
can be separated into four basic areas. These are (a) equilibrium, (b) stability,
(c) transport and (d) heating. Issues (a)–(d) are intimately related but the
solution of the self-consistent system is not tractable.

Where stability and equilibrium are concerned, the ideal magnetohydrodynamic
(MHD) model is the simplest model for describing the interaction between a
perfectly conducting fluid (the plasma) and a (confining) magnetic field. The
basic requirement for the validity of the ideal MHD equations is that the bulk of
the plasma be collisional. However, it is well-known that the ideal MHD limit is
not valid for high-density, hot plasmas (Freidbreg 1982). However, experimental
evidence suggests that the ideal MHD model provides a reasonable description
of slow, macroscopic plasma phenomena.

Linearised MHD equations can be cast in a variational form known as the
energy principle (Greene and Johnson 1968; Furth et al. 1966). The energy
principle, valid for arbitrary magnetic geometry, gives exact information about
instability thresholds and estimates the mode eigenfrequencies (growth rates).
Because of its inherent mathematical simplicity, the energy principle offers an
attractive method to consider plasma stability of fully three-dimensional plasma
geometries (such as stellarators and tokamaks with coil ripple effects).

Ideal MHD instabilities can be driven by the parallel current density (current-
driven modes) or by the perpendicular pressure gradient (pressure-driven modes).
One of the most dangerous current-driven modes, at least for the tokamak
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configuration, is the kink instability (Schneider and Bateman 1974; Todd et
al. 1977). For currentless stellarators this type of instability is usually absent
during plasma discharges. Pressure-driven modes include the interchange mode
(Bateman 1978) and the ballooning mode (Coppi 1977). Ballooning modes set a
threshold βc [β ≡ plasma kinetic pressure/magnetic energy]. Below the threshold
βc, that is for β < βc, some slowly-growing modes might survive.

In this paper we consider the energy principle for three-dimensional plasma
geometries with β < βc. The potential energy variation is derived by using an
expansion in terms of a smallness parameter ∆ ≡ k||/k⊥. Here 2π/k|| and 2π/k⊥ are
the parallel and perpendicular wavelengths of the fluid displacement respectively.
Assuming that the fluid displacement satisfies the quasi-incompressibility condition,
the potential energy variation is shown to depend on magnetic field key attributes
such as the local magnetic shear, the normal and geodesic curvatures, the magnetic
field strength and the parallel current density. In the low and strong global
shear limits, the phase angle of the fluid displacement can be obtained by an
expansion method.

The paper is organised as follows. In Section 2, the energy principle is
considered for fluid displacement with ∆ ≡ k||/k⊥ ¿ 1. Analytical expressions
for the local magnetic shear, the normal and geodesic curvature are presented.
In Section 3, the incompressibility condition (assumed in Section 2) is derived
for arbitrary three-dimensional plasma geometry. The phase angle of the fluid
displacement is found in the low and strong global shear limits. Conclusions are
presented in Section 4.

2. The Energy Principle

In the context of ideal MHD theory, viscosity effects, heat flow, ohmic
dissipation and resistivity are neglected. The plasma is seen as a dense, highly
conducting medium and the displacement current is neglected (Greene et al. 1962).
Plasma fluid elements move with the magnetic field (Newcomb 1958) (frozen-in
condition). Furthermore, steady-state plasma flows are neglected (Greene et al.
1962). The macroscopic plasma stability can be studied by introducing small
perturbations in the equilibrium configuration (Berstein et al. 1958). If ξ measures
the displacement of a fluid element from its equilibrium position, a variational
principle can be constructed (Berstein et al. 1958; Greene et al. 1962). The plasma
potential energy variation due to the perturbation ξ is conveniently written as
follows (Greene and Johnson 1968; Furth et al. 1966):

δW = δW 1 + δW 2 + δW 3 + δW 4 , (1)

where

δW 1 ≡
1

2µ0

∫
d3x

[
δB⊥2 +

(
δB|| − µ0

ξ .∇
B2

)2]
, (2)

δW 2 ≡ − 1
2

∫
d3x

j||

B
(ξ ×B) .∇× (ξ ×B) , (3)
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δW 3 ≡ 1
2

∫
d3xγp(∇ξ)2 , (4)

δW 4 ≡
∫
d3x(ξ .∇p)(ξ .κ) . (5)

Terms of order ξ3 and higher have been neglected and linear terms vanish because
we perturb around equilibrium; d3x is a plasma volume element and integration
is carried out over the entire plasma volume. The plasma is assumed to be
surrounded by a conducting wall at which the normal component of the fluid
displacement vanishes. Here B and δB ≡ ∇× (ξ ×B) are the equilibrium and
perturbed magnetic fields respectively; subscripts ‘||’ and ‘⊥’ refer to the directions
parallel and perpendicular to the equilibrium magnetic field respectively; γ is the
adiabatic index and γ = 5

3 for a system with degrees of freedom; p and j|| are
the equilibrium plasma pressure and parallel current density respectively; and κ
is the magnetic curvature.

The first term in δW1 represents the energy required to bend the magnetic
field line while the second term corresponds to the energy necessary to compress
the magnetic field. The second term, δW2, is the free energy coming from the
parallel current density and is responsible for kink instabilities (Schneider and
Bateman 1974; Todd et al. 1977). The third term in equation (1) represents the
energy required to compress the plasma and it is the main source of potential
energy for sound waves. The remaining contribution to the potential energy
variation δW4, proportional to the perpendicular current density, is responsible
for interchange (Bateman 1978) and ballooning (Coppi 1977) instabilities. This
term is related to the tension of magnetic field lines. This tension leads to a
force that is proportional to the curvature of the field lines and to the magnitude
of the tension which, in turn, is proportional to B2.

The positive-definite contributions δW1 and δW3 are always stabilising but the
current-driven terms, δW2 and δW4, can be positive or negative and can lead to
an instability.

In three-dimensional plasma geometry it is convenient to perform analytical
and numerical calculations in curvilinear coordinates. At equilibrium, magnetic
surfaces are assumed to consist of a family of nested tori. In this case, the plasma
pressure is a flux surface quantity, i.e. p is uniform on a given magnetic surface.
The existence of magnetic surfaces ensures that the enclosed poloidal magnetic
flux (≡ 2πψ) and the toroidal magnetic flux (≡ 2πΦ) are flux surface quantities.
There are mild advantages to using a normalised radial label. The normalised
radial label is denoted s ≡ Φ/Φa (where 2πΦa is the toroidal magnetic flux at
the plasma edge) and runs from 0 (at the magnetic axis) to 1 (at the plasma
edge). The radial label s is supplemented with curvilinear (or magnetic) poloidal
and toroidal angles θ and ζ respectively.

However, in order to get physical insight, intermediate analytical calculations
are carried out using local coordinates. A local vector system attached to the
magnetic field lines can be defined:

e|| ≡ B/B (6)
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is a unit vector parallel to the magnetic field direction. Since a magnetic surface
is defined as s = const, so that ∇s is normal to the magnetic surface, one can
introduce a unit normal vector:

n ≡ ∇s/(∇s .∇s) 1
2 . (7)

Finally,

b ≡ e|| × n (8)

is the so-called unit binormal vector. By construction, b is perpendicular to both
the magnetic field and the normal to the magnetic surface. The orthonormal
basis vectors set {e||,n,b} is sometimes called the moving Frenet–Serret trihedron
(D’haeseleer et al. 1983). Each basis vector depends on all three magnetic
coordinates {s, θ, ζ} and their explicit forms are computed from the magnetic
field components obtained from an equilibrium code. Any vector F can be
decomposed onto the moving Frenet–Serret trihedron: F = F|| e|| + Fn n + Fb b,
where F|| ≡ e|| .F, Fn ≡ n .F and Fb ≡ b .F are the parallel, normal and binormal
(or geodesic) components of the vector F respectively. Each vector quantity that
enters the plasma potential energy variation (1) can be decomposed onto the
moving Frenet–Serret trihedron. In particular the perturbed magnetic field can
be written in the following form:

δB =
{
B2(e|| .∇)(ξ||/B)−B(∇ . ξ + 2ξ .κ) +

µ0

B
ṗ
√
gssξn

}
e||

+
{

B√
gss

(e|| .∇)(
√
gssξn)

}
n

+
{√

gss(e|| .∇)
(

B√
gss

ξb

)
− S(∇ψ .∇ψ)ξn

}
b . (9)

Here κ ≡ (e|| .∇)e|| is the magnetic curvature, gss ≡ ∇s .∇s is a metric element
and 2πψ(s) is the enclosed poloidal flux. A dot denotes a derivative with respect
to s. Further, S is the local magnetic shear (Dewar et al. 1984; Greene and
Chance 1981). In equation (9) we note that the parallel component of the
fluid displacement does not enter the perpendicular component of the perturbed
magnetic field.

Following Dewar et al. (1984), the local magnetic shear (LMS) is defined as

S ≡ −s .∇× s , (10)

where s ≡ (B×∇ψ)/(∇ψ .∇ψ) is a vector lying in the magnetic surface and its
direction is perpendicular to the equilibrium magnetic field direction. As noted
by Ware (1965), the last term in equation (9) is the amount a field line must
be stretched if it is to exactly replace a neighbouring field line in the course of
the perturbation.

Since the enclosed poloidal flux is a flux surface quantity, this implies that
the vector ∇ψ is directed along the normal to the magnetic surface. In view of
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equation (8), it follows that the vector s is directed along the binormal direction.
After straightforward algebra, the LMS can be rewritten in the following form:

S = −Pb . (∇× b) , (11)

where P ≡ (B/ψ̇
√
gss)2 > 0 is a positive definite quantity. Therefore, the LMS

is proportional to the projection of the rotational of the binormal vector onto
itself. After straightforward algebra, we get the LMS in curvilinear coordinates:

S = P

{
bs

(
∂bθ

∂ζ
− ∂bζ

∂θ

)
+ bθ

(
∂bζ

∂s
− ∂bs

∂ζ

)
+ bζ

(
∂bs

∂θ
− ∂bθ

∂s

)}
, (12)

where the covariant components of the binormal vector are

bs ≡ b ·es = J (Bθgsζ −Bζgsθ)/(B
√
gss) ,

bθ ≡ b ·eθ = JBζ
√
gss/B ,

bζ ≡ b ·eζ = − JBθ
√
gss/B . (13)

MHD stability, plasma transport and microinstability theories have shown that
the surface average of the local magnetic shear is a key attribute of a confinement
device. The local magnetic shear is written as

S = Ŝ +R , (14)

where the global magnetic shear Ŝ is a surface average quantity,

Ŝ(s) ≡ A(s)−1
∫ 2π

0

dθ

∫ 2π

0

dζJS(s, θ, ζ) , (15)

where J is the Jacobian of the transformation, J−1 ≡ ∇s . (∇θ ×∇ζ), and

A(s) ≡
∫ 2π

0

dθ

∫ 2π

0

dζJ (16)

is a flux surface quantity proportional to the area of the magnetic surface. Here
R is the so-called residual shear Dewar et al. (1984). By construction, the surface
average of the residual shear identically vanishes. The existence of global shear
eliminates the possibility of a plasma perturbation for which all stabilising terms
vanish (Greene and Johnson 1968).

A second key attribute of a confinement device is the curvature of the magnetic
field lines. Projecting the gradient operator onto the contravariant basis vectors,
the magnetic curvature reads

κ = (bθ∂/∂θ + bζ∂/∂ζ)e|| , (17)

where bθ ≡ Bθ/B and bζ ≡ Bζ/B. After straightforward algebra, the magnetic
field curvature in arbitrary curvilinear coordinates assumes the following form:
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κ =
[
bθ
∂bθ

∂θ
+ bζ

∂bθ

∂ζ

]
eθ +

[
bθ
∂bζ

∂θ
+ bζ

∂bζ

∂ζ

]
eζ

+ 2bθbζGθζ + (bθ)2Gθθ + (bζ)2Gζζ . (18)

Here, eθ ≡ ∂r/∂θ and eζ ≡ ∂r/∂ζ, where r is the local position vector on a given
magnetic surface. The last three terms in equation (18) include the curvature
effects

Gαβ ≡
∂2r
∂α∂β

, (19)

for (α, β) = {θ, ζ}. It is customary to decompose the magnetic curvature into two
components. The component of the magnetic curvature along ∇ψ is the so-called
normal curvature. The component of κ lying in the magnetic surface is the
geodesic curvature. As we shall see below, the normal and geodesic components
of the magnetic curvature enter in concert in the final form of the potential
energy variation.

Dotting the magnetic curvature vector with the unit normal vector (7) leads
to the normal curvature:

κN = 2bθbζes .Gθζ + (bθ)2es .Gθθ + (bζ)2es .Gζζ , (20)

whereas, dotting equation (18) with the unit binormal (geodesic) vector, the
geodesic curvature reads

κG =
1

J√gss
[bζκθ − bθκζ ] , (21)

where

κθ ≡
[
bθ
∂bθ

∂θ
+ bζ

∂bθ

∂ζ

]
gθθ +

[
bθ
∂bζ

∂θ
+ bζ

∂bζ

∂ζ

]
gθζ

+ 2bθbζeθ .Gθζ + (bθ)2eθ .Gθθ + (bζ)2eθ .Gζζ , (22)

κζ ≡
[
bθ
∂bθ

∂θ
+ bζ

∂bθ

∂ζ

]
gθζ +

[
bθ
∂bζ

∂θ
+ bζ

∂bζ

∂ζ

]
gζζ

+ 2bθbζeζ .Gθζ + (bθ)2eζ .Gθθ + (bζ)2eζ .Gζζ . (23)

For the remainder of the paper we shall restrict our attention to perturbations
that are localised near a line of force. The fluid displacement is assumed
to be slowly varying along the equilibrium magnetic field direction. Typical
perpendicular wavelengths for perturbations are assumed to be small but much
larger than the ion gyro-radius (k⊥ρi ¿ 1) so that the use of a fluid model
remains valid. In view of this strong anisotropy, it is convenient to introduce a
smallness parameter
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∆ ≡ k||/k⊥ , (24)

where k|| ∼ ∇||ξ/ξ and k⊥ ∼ ∇⊥ξ/ξ are the effective parallel and perpendicular
wavelengths of the fluid displacement respectively. The parameter ∆ measures
the degree of the mode ‘fluteness’. The most pessimistic perturbations are
characterised by large parallel wavelength because the stabilising effect associated
with magnetic field line bending is significantly reduced. In this paper, ∆ is used
as an ordering parameter and it is assumed to be small but finite.

Equilibrium quantities are assumed to slowly vary in space with a characteristic
scalelength L. We allow a long parallel wavelength for perturbations so that
k|| ∼ 1/L. The fluid motion is assumed to be quasi-incompressible, ∇ . ξ ∼ 0 (see
next section). To lowest order in the mode fluteness the normal component of
the perturbed magnetic field vanishes. This can be easily derived from equation
(9) by setting e|| .∇ ≡ ∇|| 7→ 0. The perturbed magnetic field reads

δB
B

= −
{

2ξ .κ+
β

2

√
gss

λ(s)
ξn

}
e|| +

{
S∇ψ .∇ψ

B2 ξn

}
b . (25)

Here λ−1(s) ≡ −d ln p(s)/ds > 0 is the normalised plasma pressure gradient
scalelength and β ≡ 2µ0p(s)/B2 is the ratio of the plasma potential energy to
the magnetic energy. The fluid displacement compresses the magnetic field lines
[first term in equation (25)] and bends them in the magnetic surface [second
term in equation (25)]. Magnetic curvature and pressure gradient are responsible
for the compressional term. The change in the direction of the total magnetic
field due to the fluid displacement is related to the amount of shear (Greene and
Johnson 1968). The parallel component of the perturbed magnetic field is

δB||
B

= −
[
2ξ .κ+

β

2

√
gss

λ(s)
ξn

]
e|| . (26)

The component of the perturbed magnetic field which is orthogonal to the confining
magnetic field, correct to lowest order in ∆, is

δB⊥
B

= S∇ψ .∇ψ
B2 ξnb . (27)

The normal component of the perturbed magnetic field is O(∆). The term
involving the magnetic curvature can be simplified as follows:

κ . ξ = (κNn + κGb) . (ξ||e|| + ξbb + ξnn)

= κNξn + κGξb , (28)

where we have made use of the fact that the parallel component of the magnetic
field curvature identically vanishes, e|| .κ = −e|| . [e||× (∇×e||)] ≡ 0. Substituting
equation (28) in (26) leads to



928 J. L. V. Lewandowski

δB||
B
−

[
2(κNξn + κGξb) +

β

2

√
gss

λ(s)
ξn

]
e|| . (29)

Using equations (29) and (27) the field line bending contribution (δW1) becomes

δW1 =
1

2µ0

∫
d3xB2

{
S2 (∇ψ .∇ψ)2

B4 ξ2n + 4(κNξn + κGξb)2
}
, (30)

where we have noted the cancellation of finite-β terms. The integrand of the
‘kink term’, δW2, can be simplified as follows:

(ξ ×B) .∇× (ξ ×B) =
δB
B

. [(ξ||e|| + ξnn + ξbb)× e||]

=
δB
B

. (ξbn− ξnb) = −S∇ψ .∇ψ
B2 ξ2n , (31)

since δBn = δB .n = 0 to lowest order in ∆. We have also made use of equation
(27). The term responsible for ballooning instabilities, δW4, can be written

δW4 =
∫
d3x(ξ .∇p)(ξ .κ)

=
∫
d3x

dp

ds
(ξ .∇s)(ξnκN + ξbκG)

=
∫
d3x

dp

ds

√
gssξn(ξnκN + ξbκG) . (32)

Collecting equations (30)–(32), the plasma potential energy variation becomes,
to lowest order in the mode fluteness,

ρ = ρmag{4(ξnκN + ξbκG)2 + S2Q2ξ2n

− ξn

λ(s)
β
√
gss(ξnκN + ξbκG) + σSQξ2n} , (33)

where ρmag ≡ B2/2µ0 is the equilibrium magnetic energy density and σ ≡ µ0j||/B.
Here Q ≡ ∇ψ .∇ψ/B2 is a positive definite quantity. The first two terms in
equation (33) are always stabilising. The finite-β term can be either stabilising
(κN < 0) or destabilising (κN > 0). The LMS enters the energy density as a
stabilising effect through field line bending [second term in equation (33)] but
can be either stabilising or destabilising through the free energy of the parallel
current density [last term in equation (33)]. If the normal component of the fluid
displacement is directed outwards from a magnetic surface (ξn > 0), the normal
magnetic curvature can be stabilising [first term in equation (33)] or can drive
instability [third term in equation (33)].

The first two terms in (33) represent the stabilising effect of the magnetic
field line bending. The local magnetic shear enters as a positive definite quantity
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and it is therefore stabilising. Using equation (14), the stabilising contribution
of the LMS scales like

S2 = Ŝ2 +R2 + 2ŜR . (34)

In order to get physical insight, we consider four distinct configurations: the
conventional and reversed-shear tokamak configurations, the low-shear stellarator
configuration and the high-shear stellarator.

For the conventional tokamak configuration, the global shear dominates so that
S2 ≈ Ŝ2 > 0. This situation is favourable for plasma stability. For low-β tokamak
plasmas (β ∼ ε2 where ε ≡ a/R is the inverse aspect ratio), an analytical form for
the LMS can be found by expanding the LMS in powers of the smallness parameter
ε. The LMS for low-β tokamak plasmas reads, correct to O(ε) (Lewandowski
and Persson 1995, 1996):

S = Ŝ − r

R0

cos θ
[
1 +R0

d2∆?

dr2
+
R0

r
∆?(1− 2Ŝ)

]
, (35)

where Ŝ = r(dq/dr)/q is the global shear, r is the local minor radius and θ is
the local poloidal angle measured from the plasma outboard. Here ∆? is the
Shafranov (1963, 1966) shift. The second term on the right-hand side of (35) is
the residual shear and it is negative around θ ≈ 0, where the normal curvature is
strongly destabilising. For the reversed-shear configuration, Ŝ < 0, the residual
shear becomes more negative so that the second term in (34) becomes more
positive. More importantly, the last term in (34) is negative for the conventional
configuration but becomes positive for the reversed-shear configuration. Therefore,
a negative global shear increases the stabilising contribution of the field line
bending term. This can partially explain the improvement of plasma confinement
and stability observed in recent reversed-shear configurations in TPX (Kessel et
al. 1994), TFTR (Rice et al. 1996; Phillips et al. 1996; Batha et al. 1996), JET
(Hugon et al. 1992) and DIII-D (Strait 1994; Lazarus et al. 1991).

For stellarators with low global shear, such as H1-NF (Hamberger et al. 1990;
Gardner and Blackwell 1992), TJ-II (Aledaldre et al. 1990) and WII-AS (Grieger
et al. 1985), spatial variation of the LMS in the magnetic surface dominates:
S ≈ R. In this case, the region of the magnetic surface with small residual shear
and unfavourable curvature is expected to be unstable.

For the conventional stellarator, such as LHD, the global shear is negative in
the bulk of the plasma, vanishes at some radial position s = s? and becomes
positive for s > s?. In the region of negative global shear, the last term in equation
(34) is stabilising (destabilising) if the residual shear is negative (positive). In
general the sign and magnitude of R have to be determined numerically.

3. The Incompressibility Condition

In the previous section we have assumed that the fluid displacement is quasi-
incompressible. For localised perturbations, gradients perpendicular to the line
of force must be large and compressive terms in the energy density will dominate
unless ∇ . ξ ∼ 0. The condition ∇ . ξ ∼ 0 imposes constraints on the form of ξ.
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The most pessimistic perturbation is obtained by minimising δW with respect
to ξ||, provided the parallel gradient operator is nonsingular (Freidbreg 1982). If
the Wentzel–Kramers–Brillouin (WKB) representation is used to formulate the
form of ξ, the total energy density yields the general ballooning mode energy
principle (Dewar and Glasser 1983). The resulting high-n ballooning equation
is essentially one-dimensional (Dewar and Glasser 1983) and sets a threshold βc

that the plasma can sustain before becoming unstable. However, for β < βc, one
has to retain the two-dimensional nature of the fluid displacement.

To lowest order in the mode fluteness, the parallel component of the fluid
displacement does not enter the expression for the energy density. Therefore,
without loss of generality, the fluid displacement can be written

ξ = ξ̂(cosϕn + sinϕb) , (36)

where ϕ ≡ tan−1(ξ .b/ξ .n) is the angle between the binormal and normal
components of the fluid displacement. The amplitude ξ̂ is assumed to be a
slowly-varying function of the position. For the strong global shear case, the
phase angle ϕ is allowed to vary rapidly across the magnetic surface. For the
low global shear case, the phase angle varies rapidly in the magnetic surface.
Solutions for ϕ are presented in the next section for the low and strong global
shear limits.

Substituting representation (36) for the fluid displacement element in the
energy density (33), the plasma potential energy variation is conveniently written
as follows:

δW =
∫ 1

0

〈ρmag〉ds
∫ 2π

0

dθ

∫ 2π

0

dζF ξ̂2 , (37)

where the function F is given by

F ≡ J B2

〈B2〉
cos2ϕ{4 [κN + tanϕκG]2 + S2Q2

− β

λ(s)
√
gss[κN + tanϕκG] + σSQ} . (38)

As before 〈 ... 〉 denotes an average over the magnetic surface. Substituting
representation (36) into the incompressibility condition and assuming∇⊥ξ̂ ¿ ∇⊥ϕ
leads to the following nonlinear differential equation for the phase angle:

(∇ .n + b .∇ϕ) cosϕ+ (∇ .b− n .∇ϕ) sinϕ = 0 . (39)

There is an infinite number of periodic solutions for ϕ satisfying equation (39).
However, approximate solutions can be found in the low and strong global shear
regimes. Using equation (10) we note that the global magnetic shear scales like
R̄−3, where R̄ is the average major radius of the configuration. The characteristic
shear length is LS ≡ |Ŝ|−1/3. For configurations with vanishing global shear LS
is readily infinite.
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(3a) Low Global Shear Case

For a configuration with low global shear one can introduce a smallness
parameter εls ≡ R̄/LS ¿ 1. The phase angle for the fluid displacement is
expanded in terms of εls,

ϕ = ϕ(0) + ϕ(1)(θ, ζ) + ϕ(2)(s, θ, ζ) + ... , (40)

where subscripts indicate the corresponding order in εls. Substituting representation
(40) in the differential equation (39), the lowest order contribution satisfies the
relation

tanϕ(0) = −〈∇ .n〉
〈∇ .b〉

. (41)

The solution to next order satisfies the following linear differential equation:

Qθ
∂ϕ(1)

∂ζ
−Qζ

∂ϕ(1)

∂θ
− tan(ϕ(0) + ϕ(1))∇ .b−∇ .n = 0 , (42)

where we have introduced Qθ ≡ Bθ/JB
√
gss and Qζ ≡ Bζ/JB

√
gss. Equation

(42) can be solved numerically with periodic boundary conditions in the poloidal
and toroidal angles.

(3b) Strong Global Shear Case

When the shear length is much shorter than the plasma major radius, one can
introduce a small parameter εhs ≡ LS/R̄ which is the reciprocal of the smallness
parameter introduce in the previous case. In the strong shear case, the lowest
order solution for the phase angle is a flux surface quantity. To lowest order, we
get

tanϕ(0) dϕ
(0)

ds
= H(s) , (43)

where

H(s) ≡ 〈∇ .n +∇ .b〉〈
√
gss〉 , (44)

is a flux surface quantity. The normal component of the fluid displacement at
the conducting wall must vanish, ξ .n = 0. Therefore equation (43) has to be
solved with the following boundary condition,

ϕ(0)(s=1) = ±(2m+ 1)
π

2
, (45)

for any arbitrary integer m. Using the boundary condition (45) the term dϕ(0)/ds
must be small at the plasma wall so that the right-hand side of equation (43)
remains finite. Writing ϕ(0) ± (2m+ 1)π/2 + Θ, we get
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cos Θ
dΘ
ds

= − sin ΘH(s) . (46)

Equation (46) can be solved by expanding Θ and H(s) in a Taylor series around
s− 1. In practice one keeps one or two terms in the Taylor expansion because
of the complicated dependence of H(s).

4. Conclusion

Local stability analysis of three-dimensional plasmas was presented. The energy
principle was considered for strongly elongated modes. The theory presented here
is valid below the critical β set by ballooning modes. A function F , proportional
to the potential variation, was derived. This function depends on magnetic field
key attributes (local magnetic shear, normal and geodesic magnetic curvatures,
magnetic field strength and parallel current density) as well as the form of the
fluid displacement. For quasi-incompressible motion, the fluid displacement can
be found by an expansion method in the low and strong global shear limits.

Our method is particularly suitable for numerical work. A comparative stability
analysis of various confinement devices will be reported in a separate paper.
Preliminary results indicate that the F -method is typically two orders magnitude
faster than full modal calculations (Cooper et al. 1996).

Acknowledgments

Professor R. L. Dewar is gratefully acknowledged for fruitful discussions. The
author was supported by a Canadian NSERC research grant and by an Australian
National University research grant.

References

Alejaldre, C., et al. (1990). Fusion Tech. 17, 131.
Bateman, G. (1978). ‘MHD Instabilities’ (Cambridge: MIT Press).
Batha, S. H., et al. (1996). Phys. Plasmas 3, 1348.
Berstein, I. B., Frieman, E. A., Kruskal, M. D., and Kulsrud, R. M. (1958). Proc. R. Soc.

London A 244, 17.
Cooper, W. A., Singleton, D. B., and Dewar, R. L. (1996). Phys. Plasmas 3, 275.
Coppi, B. (1977). Phys. Rev. Lett. 39, 939.
Dewar, R. L., and Glasser, A. H. (1983). Phys. Fluids 26, 3038.
Dewar, R. L., Monticello, D. A., and Sy, W. N-C. (1984). Phys. Fluids 27, 1723.
D’haeseleer, W. D., Hitchon, W. N. G., Callen, J. D., and Shohet, J. L. (1983). ‘Flux

Coordinates and Magnetic Field Structure’ (Springer: Berlin).
Freidbreg, J. B. (1982). Rev. Mod. Phys. 54, 801.
Furth, H. P., Killeen, J., Rosenbluth, M. N., and Coppi, B. (1966). In ‘Plasma Physics and

Controlled Fusion Research’, Vol. 1, p. 617 (IAEA: Vienna).
Gardner, H. J., and Blackwell, B. D. (1992). Nucl. Fusion 32, 2009.
Greene, J. M., and Chance, M. S. (1981). Nucl. Fusion 21, 453.
Greene, J. M., and Johnson, J. L. (1968). Plasma Phys. 10, 729.
Greene, J. M., Johnson, J. L., Kruskal, M. D., and Wilets, L. (1962). Phys. Fluids 5, 1063.
Grieger, G., Renner, H., and Wobig, H. (1985). Nucl. Fusion 25, 1231.
Hamberger, S. M., Blackwell, B. D., Sharp, L. E., and Shenton, D. B. (1990). Fusion Tech.

17, 123.
Hugon, M., et al. (1992). Nucl. Fusion 32, 33.
Kessel, C., Manickam, J., Rewoldt, G., and Tang, W. (1994). Phys. Rev. Lett. 72, 1212.
Lazarus, E. A., et al. (1991). Phys. Fluids B 3, 2220.



Local Stability Analysis 933

Lewandowski, J. L. V., and Persson, M. (1995). Plasma Phys. Controlled Fusion 37, 1199.
Lewandowski, J. L. V., and Persson, M. (1996). Aust. J. Phys. 49, 1121.
Newcomb, W. A. (1958). Ann. Phys. 3, 347.
Phillips, M. W., Zarnstorff, M. C., Manickam, J., Levinton, F. M., and Hughes, M. H. (1996).

Phys. Plasmas 3, 1673.
Rice, B. W., et al.. (1996). Phys. Plasmas 3, 1983.
Schneider, W., and Bateman, G. (1974). In ‘Plasma Physics and Controlled Fusion Research’,

Vol. 1, p. 429 (IAEA: Vienna).
Shafranov, V. D. (1963). J. Nucl. Energy C 5, 251.
Shafranov, V. D. (1966). ‘Reviews of Plasma Physics’, Vol. 2 (Consultants Bureau: New York).
Strait, E. J. (1994). Phys. Plasmas 1, 1415.
Todd, A. M., Chance, M. S., Greene, J. M., Grimm, R. C., Johnson, J. L., and Manickam, J.

(1977). Phys. Rev. Lett. 38, 826.
Ware, A. A. (1965). Tech. Rep. CLM-M53 (unpublished), Culham Laboratory.

Manuscript received 23 September 1996, accepted 12 February 1997


