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Abstract

We consider modification of kaons and the implications for dilepton production in the early
stage of high-energy heavy-ion collisions. Constructing the equation of state of hadronic
matter, including kaons as well as hyperons Λ with recourse to the relativistic mean-field
theory, we study the production rate of dileptons. The possibility of K+ condensation is also
revisited in this framework.

1. Introduction

In the course of relativistic heavy-ion collisions with several GeV/u high density
and/or high temperature, hadronic matter will be formed, where strangeness
degrees of freedom as well as pions or other hadrons can be excited. Some
years ago the possibility of strange hadronic matter was indicated within the
relativistic mean-field (RMF) theory, where the abundance of lambda or other
hyperons is very large and even overwhelms that of nucleons [1, 11].

On the other hand, kaon (K+) condensation has been postulated from a simple
consideration [2]; in heavy-ion collisions strangeness particles are created through
the strangeness-conserving strong interactions, and especially kaons or lambda
hyperons are rather easily created due to their small mass. Since the number of
K+ or K− mesons becomes different due to their different creation mechanisms,
there is a nonzero strangeness-chemical potential (µS) equal to that of the K+

meson. When the lowest-excitation energy of kaons reaches the chemical potential
µS , kaons begins to condense at that density. In this context, degrees of freedom
of strange mesons besides hyperons become important.

The behaviour of kaons in matter is currently an interesting and important
subject, triggered by K− condensation in cold dense matter [3]. Many works have
been carried out on the onset mechanism, the equation of state or its implications
for neutron star physics, based on chiral symmetry [4, 5, 6]. Unfortunately a lack
of precise information on the in-medium properties of kaons prevents us from a
definite conclusion on the possibility of kaon condensation. In 1988 Nelson and
Kaplan also suggested the possibility of K+K− pair condensation in heavy-ion
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collisions in a similar way [7]; the frequencies of K+ and K− excitations in
nuclear matter (without any hyperons) both decrease as the density increases and
K+K− pair condensation occurs around four times the nuclear density, where the
strangeness chemical potential crosses the K+ effective mass at the same time.
However, their result seems unlikely now, to be true since subsequent calculations
have given qualitatively different results, especially on the K+ excitation energy:
it should receive a repulsive effect instead of attractive [4, 5, 6].

We shall explore here strange hadronic matter at high density and/or temperature
phase by explicitly treating kaons as well as hyperons. We use an extended
RMF to include strange particles and take into account the matter effects on
the kaon through the KN interactions based on chiral symmetry. We shall see
that kaons are easily excited and an important constituent in matter in thermal
equilibrium. Their chemical potential grows rapidly and seems to indicate K+

condensation at relatively low density.
To extract information on such matter, especially kaon modification in dense

and/or hot matter, it is most desirable to study dilepton production at an early
stage of relativistic heavy-ion collisions [8].∗ Since the pion contribution is still
dominant for the low invariant-mass region about 1 GeV, we could see the kaon
contribution above this regime. In particular, the φ-meson peak is interesting
because the threshold from the free K+K− is located just below the φ-meson
mass by 30 MeV. Hence the peak should be sensitive to the modification of kaons.
We also consider the broadening effect of the φ-meson peak due to the same
modification of kaons [10]. If the K+ meson forms a condensate, it would bring
about new observable effects. We propose here a new peak for a signal of the
condensation in the dilepton production, and discuss how the new peak grows
up.

2. Strange Hadronic Matter

First we briefly describe our model Lagrangian within an extended RMF theory
[1, 13]:

L = N(i 6∂ −MN )N + gσN̄Nσ + gωNγµNω
µ

+ Λ(i6∂ −MΛ)Λ + gΛ
σΛΛσ + gΛ

ωΛγµΛωµ − Ũ [σ] + 1
2m

2
ωωµω

µ

+ (DµK)†DµK −m2
KK

†K +
ΣKN

f2 NNK†K , (1)

where we have used a covariant derivative,Dµ = ∂µ+(i/2f2)jµV with jµV = 3/4NγµN ,

and Ũ [σ] is the self-energy potential of the sigma-field given as [12]

Ũ [σ] =
1
2m

2
sσ

2 + 1
3Bσσ

3 + 1
4Cσσ

4

1 + 1
2Aσσ

2 . (2)

∗ Gale and Kapusta suggested a remarkable change of the production rate from pion-pair
annihilation if the dispersion relation of pions is much modified by the strong π −N p-wave
interaction [9].
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This Lagrangian should be regarded as a minimal model including strangeness
degrees of freedom, but still it retains essential features of the baryon-meson
system. Indeed we have performed a full calculation with SU(3) octet baryons
and mesons and found that kaons and the Λ are surely the main constituent
strange particles in matter. Since pions are, of course, the dominant constituent
in hot and/or dense matter, we cannot discuss bulk properties of hadronic matter.
Instead, we concentrate our attention here on some specific quantities which
are irrelevant to pion contamination: the particle fraction of strange particles,
strangeness chemical potential and excitation energy of kaons in a medium. We
shall see later that these quantities provide the production rate of dileptons from
matter.

Fig. 1. Lowest excitation energies of kaons and their average ω.

We have incorporated the kaon–nucleon interaction through chiral theory:
mainly the KN sigma term ΣKN and the Tomozawa–Weinberg-type vector
interaction [6, 12, 13]. In Fig. 1 we show, for example, the lowest excitation
energy of kaons (ωk=0), where we can see the net effects of these terms [see
Eq. (8) below].

The parameters in the mean-field Lagrangian are chosen so as to reproduce
the bulk properties of nuclear matter and lambda hypernuclei. It is known
that the parameters, except for the Λ-mean-field couplings, are rather well-fixed,
while there is large ambiguity in the latter ones. The SU(3) symmetry suggests
that values of these coupling constants are two-thirds of the nucleon ones:
gΛ
σ = 2gσ/3 and gΛ

ω = 2gω/3. They should, however, be different from the bare
ones, since they are effective ones including many-body effects and higher-order
correlations. Recently Rufa et al. showed that the coupling constants cannot be
fixed unambiguously from the single-particle spectra of lambda hypernuclei [1].
We shall mainly use the two parameter sets in Table 1, keeping in mind that
there is the error ellipsis in the two-dimensional gΛ

σ − gΛ
ω plane.
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Table 1. Parameters where (M∗/M )0 denotes the ratio of the effective nucleon mass to the
free one at the normal nuclear density ρ0

PRM (M∗/M)0 gσ gω Bσ (fm−1) Cσ Aσ (fm2) gΛ
σ /gσ gΛ

ω/gω

PM1 0 ·70 9 ·94 9 ·99 23 ·5 0 ·0 5 ·65 0 ·67 0 ·67
PM2 0 ·70 9 ·94 9 ·99 23 ·5 0 ·0 5 ·65 0 ·21 0 ·0

Before showing our results, we would like to make a few comments. We assume
thermal and chemical equilibrium matter, which should be achieved by the strong
interaction. Then, there are some conserving quantities during the processes:
the baryon number B, isospin charge I and strangeness S. Correspondingly we
assign the chemical potentials µi (i = B, I, S). We, hereafter, consider the isospin
symmetric matter, µI = 0. Then the chemical potential for each particle can be
written in terms of them; e.g. µK = µS and µπ = µI . The number density of
each quasiparticle can be written in the same form of the noninteracting case
within the RMF theory: for kaons, e.g. it generally reads

ρK = ζK + ρ∗K , ρ∗K =

∫
d3k/(2π)3(f+ − f−) , (3)

where f± is the distribution function of K±, f± = 1/{exp[β(ω± ∓ µS)]− 1}, and
ζK denotes the condensate above the critical density.

Fig. 2. Particle fractions as functions of density at T = 50 MeV.

In Fig. 2 we first show the particle fractions as functions of density at
T = 50 MeV. We can see that the nucleon fraction is dominant over a range
of densities and the fractions of K and Λ are less than 0 ·1. This also means
that the strangeness fraction in the baryon sector is at most 10%. Here it
would be interesting to compare our result with the previous one. The Frankfurt
group emphasized that hyperons, especially the lambda, can be easily mixed in
hadronic matter; in the extreme case the strangeness fraction is almost one [1].
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On the contrary, our result shows that when the strangeness mesons are properly
included its fraction is not so large. On the other hand, we can see the steep
growth of the strangeness chemical potential µS in Fig. 3; for the parameter set
PM2, it will reach the lowest excitation energy of kaons around 6ρ0 (the nuclear
density ρ0 is 0 ·17 fm−3). In other words it signals kaon condensation. It is
interesting to note that a 10% fraction is sufficient for condensation.

Fig. 3. Frequencies of kaonic modes and the strangeness chemical potential at T = 50 MeV.

Fig. 4. Kaon condensation (BEC) in the parameter plane at T = 50 MeV. The error ellipsis
(shaded area) is estimated following Ref. [1].
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Fig. 5. Phase diagram of kaon condensation for two values of the sigma term ΣKN .

Taking into account the ambiguities of parameters, we depict the regions of
kaon condensation in the two-dimensional gΛ

σ −gΛ
ω plane (Fig. 4). The border lines

between condensation and non-condensation are drawn for the critical densities
5, 6 and 7 times ρ0, below which kaon condensation is possible. We also plotted
the line with UΛ = 2/3UN , around which the error ellipsis is formed. The
interesting region is then the intersection of both domains. We also examined
another case with ΣKN = 400 MeV and the results are summarized as a phase
diagram (Fig. 5).

3. Dilepton Production I

In this section we look at the dilepton production through the K+K− → e+e−

process, which carries information about the abundance of kaons in hot and
dense nuclear matter.

We assume thermally equilibrated hadronic matter at rest and the vector
dominance hypothesis with ideal mixing in the electromagnetic (EM) interaction of
kaons. The dilepton production rate with invariant mass M and total momentum
q is readily computed with obvious notation as [14, 8]

d4Ree

dq3dM
= e2/(q2)2HµνL

µν

=
∏
i=±

(∫
d4ki

(2π)4

ImDR
K(ki)

eβ(k0
i−µi) − 1

)∏
i=±

(∫
d3pi

(2π)32Ei

)
× |M|2(2π)4δ4(k+ + k− − p+ − p−)

× δ3(k+ + k− − q)δ(M −
√

(ω+ + ω−)2 − q2) , (4)
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|M|2 = (e4/q4)ΓµΓνTr(6p+γµ 6p−γν)|F (q2)|2 , (5)

F (q2) = 1
2

m2
ρ

q2 −m2
ρ + iΓρmρ

+ 1
6

m2
ω

q2 −m2
ω + iΓωmω

+ 1
3

m2
φ

q2 −m2
φ + iΓφmφ

. (6)

Here k± (p±) is the K± (e±) momentum, Lµν the leptonic tensor and Hµν the
hadronic tensor;

Hµν = 2 Im FT i〈〈[Jµ(x), Jν(0)]〉〉/(exp(q0/T )− 1) , (7)

where ‘FT’ means taking the Fourier transform. The kaon dispersion relation is
described by the in-medium propagator [6];

DR−1
K (k0,k) ≡ (k − jV /(2f2))2 −m2

K + ΣKNρs/f
2 + [dKi1(k · v)2 + dKi2k

2]ρB(i)

≡ Z−1ω2 + ωj0
V /f

2 − k· jV /f2 − Z ′−1
k2 − m̃2

K = 0 , (8)

where Z−1 = 1 + (dKi1 + dKi2)ρB(i), Z ′
−1

= 1 + dKi2ρB(i), m̃2
K = m2

K(1 −
ΣKNρs/f

2m2
K), and ρs is the scalar density. Here v is the nucleon velocity field,

vµ = (1,0), while dKi1 and dKi2 are the parameters so chosen as to reproduce the
S-wave KN scattering data (summation for i = p, n should be understood). We
can easily see that our Lagrangian (1) gives the same dispersion equation except
for the dK1,2 terms. In accord with the in-medium kaon dispersion relation, we
take the vertex function as

Γµ(k,−p) =

{
Z−1(k0 − p0)

Z ′
−1

(k− p)

}
+ jµV /f

2 , (9)

in order to respect EM gauge invariance (the Ward–Takahashi identity).
The most transparent connection between the kaon dispersion relation and the

dilepton spectrum occurs in the back-to-back kinematics [q=0, M = 2ω(k) with
2ω = k0

+ + k0
−], where Eq. (4) is reduced to

d4Ree

dq3dM

∣∣∣∣
q=0

=
α2

3(2π)4

k4

ω4

∣∣∣∣dωdk
∣∣∣∣−1

f+f−|F (M2)|2 . (10)

For a given value M = 2ω, the medium effect will appear in (i) the size of the
allowed phase space k3, and in (ii) the EM interaction, |F (M2)|2.

We show in Fig. 6 the dilepton production rate from kaon–antikaon annihilation
at ρB = 3ρ0 and T = 100 MeV, as well as the contribution from the pion-pair
annihilation (dash–dot curve). First, when we just neglect the modification of
the φ meson width due to the kaon softening, we see the larger enhancement
of the rate (dashed curve) than that from the free kaons (thin solid curve),
which manifests the enlargement of the corresponding kaon phase space. Kaon
softening will cause the broadening of the φ-meson width at the same time.
In our model, it will be 63 MeV at ρB = 3ρ0 compared with the free width,
4 ·4 MeV. Altogether, the sharp φ-meson peak is reduced to a bump structure
in the dilepton production rate.
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Fig. 6. Dilepton production rate from kaon-pair annihilation at ρB = 3ρ0 and T = 100 MeV.

4. Dilepton Production II

Next we consider dilepton production in the kaon condensed phase. As we have
already seen in Section 2, there is a possibility of kaon condensation. If the kaon
condensed state is created over an extended space–time region in the relativistic
heavy-ion collisions, it can generate observable effects in the production process
of the dilepton. We know that such a state can be described as a chiral rotated
one in the SU(3)× SU(3) space [6, 15];

|K〉 = UK |0〉, UK = exp(iµStŶ ) exp(iθF 5
4 ) , (11)

where Fα(F 5
α) are the vector (axial-vector) charges satisfying current algebra, and

Ŷ the hypercharge. Here θ denotes the chiral angle and it is an order parameter
of the condensed phase.

First, consider the matrix element of the EM current Jµ = V3µ + 1/
√

3V8µ of
hadrons in the condensed phase |K〉;

〈K; f |Jµ|i;K〉 = 〈f |J̃µ|i〉 , (12)

for a transition i→ f . Then the chiral-rotated current J̃µ can be calculated by
way of current algebra, as

J̃µ = U†KJµUK = aV µ3 + bV µ8 + cAµ5 , (13)

where the coefficients are a = 1
2 (1 + cos θ), b = 1

2

√
3(−1 + 3 cos θ) and c = − sin θ.

For the current–current commutator, which directly comes in the hadronic tensor
Hµν (7), we then find
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[J̃µ(x), J̃ν(0)] ' (1− θ2/2)[V 3
µ (x), V 3

ν (0)] + 1/3(1−−3/2θ2)[V 8
µ (x), V 8

ν (0)]

+ θ2[A5
µ(x), A5

ν(0)]− θ{[A5
µ(x), Jν(0)] + [Jµ(x), A5

ν(0)]} (14)

for the small condensate. From these equations we can clearly see vector–axial—
vector mixing in the condensed phase.∗ The first two terms are ordinary ones with
some reduction, while the last two terms are inherent in the condensed phase.
The vector dominance hypothesis tells us that hadrons can couple with not only
vector mesons but also axial-vector strange mesons (K1 for the lowest mass).
Considering the concrete process K+K− → e+e−, we depict each contribution in
Fig. 7. Substituting Eq. (14) in Eqs (4) and (7) we finally get the production
rate of dileptons. In Fig. 8 we show one result to demonstrate the effect of the
condensate. It would be interesting to compare this with Fig. 6.

Fig. 7. Three contributions read from Eq. (14) where the cross-circle represents the condensate.

Two remarks are in order: (i) since the hadronic matter |0〉 is isospin-symmetric,
U(α)|0〉 = |0〉, U(α) = exp(iα ·Q) ∈ SU(2)isospin, and we may generate various
condensed phases depending the parameter α. Our choice here corresponds to
α = 0, which in turn means there is only the K+ condensate. For other choices
of the parameter we see that there are K+ and K0 condensates at the same
time and Eq. (13) is slightly changed. The degree of freedom for this choice
is, however, redundant and they should give the same result for the physical
quantities as it does. (ii) There is another interesting effect coming from the
condensate. It is a generation of photon mass mγ ; since the order parameter is
complex, the photon can interact with surrounding condensate and get a finite
mass [15]. We can easily estimate its value as m2

γ = 2e2|〈K〉|2 ' e2f2θ2, and
find mγ ∼ several MeV. Although it is very small, it would modify the photon
propagator and thereby a new dilepton peak appears at very small invariant
mass. We think, however, it would be very hard to detect this peak, since in
this region there is a huge background due to Bremsstrahlung.

∗ We can refer to similar phenomena caused by thermal mesons [16] or a disoriented chiral
condensate [17].



      

32 Kaon Condensation and Dilepton Production

Fig. 8. Dilepton production from the kaon condensed phase.
The dashed curve corresponds to the case θ = 0. The case
without any interaction is also depicted for reference (thin
curve). Besides the φ-meson peak we can see a new peak
coming from the K1 meson.

5. Summary and Concluding Remarks

We have studied the bulk properties of strange hadronic matter in the relativistic
mean-field theory, where the single-particle energy levels of Λ hypernuclei are
reproduced. Contrary to previous studies of strange hadronic matter, we have
taken into account the kaonic degrees of freedom besides hyperons. We have found
the steep rise of the strangeness chemical potential, while the strangeness fraction
is not so large. In some parameter regions we have seen that K+ condensation
would occur at several times the nuclear density. In the light of ambiguities
in the values of the coupling constants we cannot hope to decide conclusively
on the basis of relativistic mean-field theory whether or not K+ condensation
occurs. We can say, however, that the critical density is much reduced from the
non-interacting case, the values of the parameters which lead to K+ condensation
are not unusual and condensation does not necessarily demand a large abundance
of strangeness. If stopping power is enough to create high-density ‘matter’ or a
shock wave rapidly compresses nuclear matter to very high density in heavy-ion
collisions [18], we can expect this possibility.

Next we examined how the medium effect on kaons shows up in the production
rate of dileptons. We have seen a large enhancement of the rate around the
φ-meson peak, if the modification of its width is discarded. However, once the
broadening effect of the φ-meson width is taken into account, kaon softening
results in a reduction of the sharp φ-meson peak to a bump in the dilepton
production rate. If the K+ condensate is created over an extended space–time
region following heavy-ion collisions, the chiral rotation can generate observable
effects in the process of dilepton production: the vector–axial-vector mixing
induced by the condensate gives rise to a new peak or bump around the K1

meson.
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