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OPEN ACCESS 

ABSTRACT 

Context. Human activities are having a significant impact on biodiversity worldwide, to the extent 
that we are in the midst of the sixth mass extinction event. Although a substantial proportion of species 
globally have an elevated risk of extinction, some species are poorly known and there is insufficient 
information available to adequately assess their risk of extinction. Aims and methods. One such 
species is the glossy grass skink (Pseudemoia rawlinsoni), a widespread but enigmatic lizard species 
in south-eastern Australia. In order to improve our knowledge of its life history, and particularly its 
generation length, we examined museum specimens collected from across the range of the species, 
supplemented with measurements from field-caught individuals. Key results. We estimated that the 
species reaches sexual maturity in 3 years, at approximately 40 mm snout–vent length. Its generation 
length was estimated as 5 years. Sexual dimorphism was evident, and female body size was positively 
related to litter size. Although there was no evidence for substantial variation in morphology across 
the range of the glossy grass skink, a phylogeographic analysis using mitochondrial DNA sequence 
data (ND4) revealed the presence of seven genetic sublineages (up to 5.1% genetic divergence) within 
the species. Conclusions. The glossy grass skink appears to be a single, but widespread and genetically 
variable, species. Implications. Our study demonstrates how a targeted, multifaceted study can be 
effective at rapidly gathering data that can be used to contribute vital information to the assessment 
of extinction risk in Data Deficient species. 

Keywords: Australia, extinction risk, IUCN Red List, life history, lizard, phylogeography, reproductive 
ecology, Scincidae. 

Introduction 

Biodiversity is currently under increasing threat from human-mediated impacts such as 
habitat loss and fragmentation, invasive species, overexploitation and climate change 
(Doherty et al. 2016; Pecl et al. 2017; IPBES 2019). The cumulative impacts of these 
processes have ushered in a sixth mass extinction event, which is predicted to intensify in 
the future (Barnosky et al. 2011; Ceballos et al. 2015, 2020). Predicting the impact of these 
threats on a species requires detailed information about the species biology, ecology, 
habitat requirements and likely resilience to each threat (Pimm et al. 2014; Johnson 
et al. 2017). Under the International Union for Conservation of Nature (IUCN) Red List of 
Threatened Species, the extinction risk of species is estimated using a range of parameters, 
including generation length, population size, geographic range size, number of populations/ 
subpopulations, and population connectivity/fragmentation (Mace et al. 2008; IUCN 
Standards and Petitions Committee 2022). However, where there is insufficient knowledge 
of these key parameters, it may not be possible to conduct an assessment of the conservation 
status of the species (IUCN Standards and Petitions Committee 2022). 

Species may be classified as Data Deficient due to a lack of knowledge regarding their 
distribution, biology and ecology (e.g. life history, generation length, habitat requirements), 
threats to the species, and/or taxonomic status (Bland and Böhm 2016; IUCN Standards and 
Petitions Committee 2022; Wotherspoon et al. 2024). Without this critical knowledge, it is 
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difficult to determine the threats that the species faces, assess 
their capacity to withstand and recover from any potential 
threats, and/or evaluate whether it represents a valid taxonomic 
entity. Although Data Deficient species are often overlooked by, 
or are a low priority for, conservation managers (Bland et al. 
2017), recent studies have highlighted that they are more 
likely to be threatened than already assessed species (Gumbs 
et al. 2020; Caetano et al. 2022; Graham et al. 2023). Thus, 
targeted studies are required to obtain the information necessary 
to resolve the knowledge gaps, allowing a conservation 
assessment to be conducted for the species. 

The glossy grass skink (Pseudemoia rawlinsoni) is an example 
of a Data Deficient lizard species that has a widespread, but 
disjunct, distribution in south-eastern Australia (Fig. 1), where 
the majority of the Australian human population resides 
(Gillespie et al. 2018; Chapple et al. 2019; Wilson and Swan 
2021). Described in 1988 (Hutchinson and Donnellan 1988), 
it is an enigmatic species that inhabits moist, densely 
vegetated wetland habitats (Gillespie et al. 2018; Wilson 
and Swan 2021). State-based conservation listings in the core 
of the species’ range (Victoria: Endangered, South Australia: 
Vulnerable, Tasmania: Rare) hint at a potential elevated 
extinction risk for the species (Chapple et al. 2019). However, 
the glossy grass skink is currently listed as Data Deficient on 
the IUCN Red List (Gillespie et al. 2018). This is because, prior 
to the recent study by Farquhar et al. (2023), across the 
broader range of the species there was uncertainty regarding 
its distribution (Area of Occupancy), and before it was 
confirmed by Farquhar et al. (2024), it was unknown 
whether the species was under pressure from infrastructure 
development and agriculture. However, the species’ life 

Fig. 1. Locations of glossy grass skink (Pseudemoia rawlinsoni) 
specimens. Coloured circles are locations with both morphological and 
genetic data, with colours corresponding to genetic lineages. White 
triangles are locations with only morphology data. 

history and generation length, number of populations/ 
subpopulations, and its sensitivity to the impacts of invasive 
species are still largely unknown (Gillespie et al. 2018). 

Here we complete a targeted, multifaceted study to rapidly 
obtain key aspects of the information needed to conduct an 
IUCN Red List assessment for the glossy grass skink. Using a 
combination of museum and field-caught specimens, we 
investigate the life history and reproductive ecology of the 
species. Specifically, we aim to estimate the generation 
length of the gloss grass skink, as it is a core component of 
most IUCN Red List criteria, and a critical determinant of 
the capacity of a species to respond to, and recover from, 
threatening processes (Mace et al. 2008; IUCN Standards 
and Petitions Committee 2022). Specifically, generation 
length is required to determine the timeframe over which a 
reduction in population size should be assessed (Criterion 
A; 3 generations or 10 years), decline in the number of 
mature individuals (Criterion C1; 1, 2, or 3 generations for 
Critically Endangered, Endangered, and Vulnerable, respec-
tively), and the timeframe for quantitative analyses of 
extinction probability (Criterion E; 3 or 5 generations for 
Critically Endangered and Endangered, respectively) (IUCN 
Standards and Petitions Committee 2022). In addition, we 
use mitochondrial DNA sequence data (ND4) to conduct a 
phylogeographic study of the gloss grass skink. This molecular 
study will provide some preliminary, broad scale information 
on the level of genetic structuring among populations across 
the range of the species, and assist with the determination of 
the number of subpopulations in the species. 

Methods 

Morphology, life history and reproductive ecology 
of the glossy grass skink 
To quantify the external morphology of the glossy grass skink, 
we obtained data from both preserved museum specimens 
and field caught specimens. Firstly, we examined all preserved 
glossy grass skink specimens from Museums Victoria (n = 88) 
and the South Australian Museum (n = 18) (Fig. 1). Digital 
callipers (Mitutoyo 500–763–20 8″/200 mm Coolant Proof 
Digimatic Calipers; West Heidelberg, Australia) were used 
to obtain the morphological measurements (in mm) of 
snout–vent length (SVL), snout-axilla length (SAL), axilla– 
groin length (AGL), interlimb length (ILL), tail length (TL), 
tail width (TW), body width (BW), body height (BH), pelvic 
width (PW), pelvic height (PH), total front limb length 
(TFL), upper front limb (UFL), lower front limb (LFL), front 
foot (FF), total hind limb length (THL), upper hind limb 
(UHL), lower hind limb (LHL), hind foot (HF), head width 
(HW), head length (HL), head depth (HD), snout length (SL) 
and eye diameter (ED) (see Supplementary Table S1 for 
definitions of each trait; Greer 1982; Barter et al. 2022). 
In addition, we conducted scale counts (as outlined in 
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Taylor 1935) of midbody scale rows, paravertebral scales, 
subdigital lamellae, nuchals, presuboculars, supraciliaries, 
supralabials and infralabials (Supplementary Fig. S1). 

To examine sexual maturity, and litter size in females, in 
the preserved specimens, we followed the methods of Barter 
et al. (2022). Briefly, we made a small ventral incision along 
the left side of the specimen to determine the sex and sexual 
maturity of each individual. If an existing incision was already 
present, that was used instead. We considered male specimens 
to be sexually mature if they had fully developed testes 
and the ductus deferens appeared to be rough (rather than 
smooth, as found in juveniles) (Barter et al. 2022). Females 
were assessed for sexual maturity based on the presence of 
a folded oviduct extending cranially from the ovary (Barter 
et al. 2022). In juvenile females this portion of the oviduct is 
smooth and not folded (Barter et al. 2022). For specimens that 
appeared to be gravid upon external examination, the incision 
was made down the midline to count the number of eggs. The 
reproductive condition (gravid or non-gravid) was recorded 
for each sexually mature female, along with the litter size. 
Only adult specimens were used to calculate trait means. 

Secondly, we measured field-caught glossy grass skinks 
collected at six sites across Victoria, Australia, as part of a 
related study (Farquhar et al. 2024). The fieldwork 
was conducted between October 2021 and April 2022, and 
COVID-19 related border closures and travel restrictions 
prevented us sampling populations from outside of Victoria. 
We measured a total of 70 specimens across these sites, shown 
here with latitude and longitude: Port Fairy (−38.346409, 
142.242085; eight specimens), Queenscliff (−38.268226, 
144.628523; 28 specimens), Swan Bay (−38.201634, 
144.676130; 20 specimens), Yering (−37.681576, 145.349988; 
four specimens), Tooradin (−38.211158, 145.427389; one 
specimen) and Warringine Park (−38.325837, 145.191561; 
nine specimens) (Fig. 1). Snout–vent length and TL were 
measured using a ruler (in mm), and digital callipers (Mitutoyo 
500–763–20 8″/200 mm Coolant Proof Digimatic Calipers) 
were used to measure (in mm) HL, HW and HD. Sex was 
determined by hemipenal eversion in males, or lack thereof 
in females. We took high-resolution photographs (Canon 5D 
Mark IV digital camera with a Canon 100 mm f/2.8 L 
macro lens) of each individual and used a combination of 
unique external features (scars, missing digits, aberrations 
in pattern, proportion of tail that was regenerated) and sex 
to track the identity of each individual over time, and to 
ensure that we did not measure the same individual twice. 

All data analyses were conducted in R (Ver. 4.0.4; R Core 
Team 2021). To create a summary of all glossy grass skink 
traits, means, standard errors and ranges were calculated 
for each morphological measurement. To determine the size 
at maturity, we recorded the smallest sexually mature 
individual of each sex. To estimate the age at maturity we 
created a histogram of SVL of museum and field specimens. 
Fung and Waples (2017) recommended that, when estimating 
generation length for reptiles, the information required to 

develop detailed life history tables is best achieved using the 
following formula: generation length = age at first reproduc-
tion + z × (maximum age − age at first reproduction), where z 
represents a constant dependent on survivorship and relative 
fecundity of individuals in the population (Fung and Waples 
2017). We have established a generalised z value of 0.5 due to 
increased fecundity with size in lizards (Olsson and Shine 
1996; Du et al. 2005; Meiri et al. 2020). Although lizards 
grow rapidly and indeterminately, their growth rate slows 
following maturity (Olsson and Shine 1996; Laver et al. 
2012). However, such increases in fecundity with age are 
often offset by gradual senescence (Patnaik 1994) and  increased  
mortality with age. Thus, we consider this approach to be 
appropriate for estimating the generation length of the glossy 
grass skink. 

All body measurements were adjusted to SVL using an 
allometric growth model (package GroupStruct; Chan and 
Grismer 2022). We used a Wilcoxon rank sum test to examine 
sexual dimorphism for each adjusted morphological measure-
ment. Field and preserved specimen measurements were 
combined in these analyses because the amount of shrinkage 
endured by preserved specimens will not significantly impact 
body measurements (Vervust et al. 2009; Maayan et al. 
2022). Additionally, we compared adjusted morphological 
measurements amongst the populations determined by the 
genetic groupings using a Kruskal–Wallis rank sum test. To 
investigate significant differences, we conducted a Dunn test 
(package dunn.test) with a Bonferroni adjustment. Finally, 
a linear regression analysis was conducted to determine the 
relationship between SVL and litter size of preserved 
specimens. 

Assessing the presence of genetic substructuring 
across the range of the glossy grass skink 
We obtained 46 tissue samples of the glossy grass skink across 
its range in south-eastern Australia (South Australian 
Museum, n = 17; wild caught samples from the 2021/2022 
field season, n = 29; Table 1, Fig. 1). Genomic DNA was 
extracted from glossy grass skink liver or tail-tip tissue using 
a Qiagen DNeasy Blood and Tissue Extraction Kit (Qiagen, 
Hilden, Germany), following the manufacturer’s protocol. For 
all samples, we amplified the mitochondrial DNA (mtDNA) 
fragment NADH subunit 4 (ND4; ~700 bp) using the primers 
ND4 and tRNA-leu, and the PCR protocols as outlined in 
Haines et al. (2014). We used the ND4 mtDNA gene provides 
similar phylogenetic resolution to other mtDNA coding 
regions (e.g. Chapple et al. 2009), and it was the mtDNA gene 
that has been most widely used for Pseudemoia, allowing us to 
place our glossy grass skink sequences into context with the 
broader genus (Haines et al. 2014). Additionally, Haines 
et al. (2014), using ND4 and five nuclear genes, provided 
evidence that the glossy grass skink is a distinct species, 
with no evidence of hybridisation or introgression with other 
Pseudemoia species. Consequently, we focused on a single 
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Table 1. Details of the glossy grass skink (Pseudemoia rawlinsoni) samples and outgroup sequences used in this study. 

Species Region Locality Tissue ID Specimen ID GenBank accession 

Pseudemoia rawlinsoni Australian Capital Territory Mt Bimberi ABTC40954 SAMR23098 OR469914 

Eastern Victoria Woodside ABTC04064 – KM263322 

Hollands Landing NMVZ73965 – OR469929 

Benambra NMVZ73970 – OR469928 

Central Victoria Warringine Park NMVZ73937 – OR469930 

Spadonis Nature Reserve NMVZ73941 – OR469931 

Warringine Park NMVZ73944 – OR469932 

Swan Bay NMVZ73945 – OR469933 

Spadonis Nature Reserve NMVZ73946 – OR469934 

Spadonis Nature Reserve NMVZ73949 – OR469935 

Warringine Park NMVZ73953 – OR469936 

Swan Bay NMVZ73955 – OR469915 

Swan Bay NMVZ73956 – OR469937 

Swan Bay NMVZ73957 – OR469941 

Warringine Park NMVZ73958 – OR469944 

Waterways NMVZ73971 – OR469918 

Warringine Park NMVZ73973 – OR469943 

Warneet NMVZ73974 – OR469916 

Warneet NMVZ73975 – OR469945 

Queenscliff NMVZ73976 – OR469946 

Queenscliff NMVZ73977 – OR469938 

Queenscliff NMVZ73978 – OR469947 

Warringine Park NMVZ73979 – OR469948 

Warringine Park NMVZ73980 – OR469939 

Tooradin Inlet NMVZ73981 – OR469917 

Queenscliff NMVZ73982 – OR469942 

Queenscliff NMVZ73983 – OR469940 

Western Victoria Port Fairy NMVZ73954 – OR469949 

Port Fairy NMVZ73963 – OR469919 

Port Fairy NMVZ73966 – OR469950 

Port Fairy NMVZ73969 – OR469927 

Tasmania 4.2 km SE of Burns Creek, North Esk River ABTC57877 SAMR44322 KM263321 

Inland South Australia Lake Ormerod ABTC156252 SAMR59775 OR469911 

Lake Ormerod ABTC156253 SAMR59776 OR469913 

Lake Ormerod ABTC68946 SAMR53512 OR469912 

5.4 km SSE of Glencoe ABTC37606 SAMR49405 OR469908 

Bool Lagoon Game Reserve ABTC54784 SAMR23098 OR469909 

4.1 km N of Bool Lagoon ABTC68787 SAMR52584 OR469910 

7 km ESE of Kangaroo Hill ABTC94787 SAMR53753 OR469923 

Coastal South Australia Silky Tea Tree Swamp ABTC106240 SAMR57100 OR469924 

20 WNW of Millicent Airport ABTC37531 SAMR49585 OR469925 

20 WNW of Millicent Airport ABTC37542 SAMR49589 OR469926 

20 WNW of Millicent Airport ABTC37543 SAMR49590 OR469922 

(Continued on next page) 
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Table 1. (Continued). 

Species Region Locality Tissue ID Specimen ID GenBank accession 

20 WNW of Millicent Airport ABTC37727 SAMR49594 OR469920 

9 km SW of Millicent ABTC70044 SAMR53777 KM263323 

9 km SSE of Kangaroo Hill ABTC94794 SAMR53758 OR469921 

Outgroups 

Carinascincus metallicus NA Wilsons Promontory, Refuge Cove, Victoria NMVZ21551 NMVD75207 KM263269 

Pseudemoia baudini NA Wanna, South Australia ABTC15402 NMVD60966 KM263201 

Pseudemoia cryodroma NA Mt Baw Baw, Victoria ABTC14601 NMVD59893 KM263204 

Pseudemoia entrecasteauxii NA Mt Kosciusko, New South Wales ABTC11167 NMVD59933 KM263231 

Pseudemoia pagenstecheri NA Lake Corangamite, Victoria NMVZ23650 – KM263319 

Pseudemoia spenceri NA Mt Baw Baw, Victoria NMVZ19287 NMVD74853 KM263324 

Specimen codes: SAMR, South Australian Museum; NMVD, Museums Victoria, Melbourne. Tissue ID collection codes: ABTC, South Australian Museum Australian 
Biological Tissue Collection; NMVZ, Museums Victoria Frozen Tissue Collection. 

mtDNA gene in the present study to document the level of 
intraspecific genetic divergence among populations/regions 
in the glossy grass skink. 

Purifications and sequencing were performed by 
Macrogen, Inc. (Seoul, South Korea). The sequences were 
aligned and edited in BioEdit v7.2.5 (Hall 1999). We 
checked for stop codons using MUSCLE within Geneious 
v.10.2.6 (Biomatters, Auckland, New Zealand) and none were 
observed. Three glossy grass skink samples were already 
sequenced using the same protocol (GenBank numbers: 
KM263323, KM263322, KM263321; Haines et al. 2014), 
and were used in our study. The ND4 sequences obtained in 
our study were deposited in GenBank (Table 1). Outgroup 
sequences for the metallic skink (Carinascincus metallicus) 
and other members of the Pseudemoia genus were obtained 
from Haines et al. (2014) and GenBank (Table 1). 

We used jModelTest 2.1.10 (Darriba et al. 2012) to identify 
the most appropriate model of sequence evolution based on 
the Akaike Information Criterion (AIC). We conducted 
Maximum Likelihood analysis using a RAxML GTR + I + G 
model with 100 bootstraps (Stamatakis 2014), and a Bayesian 
analysis using MrBayes 3.2 (Huelsenbeck and Ronquist 2001), 
in Geneious v.10.2.6 (Biomatters, Auckland, New Zealand) 
to determine the genetic structuring of glossy grass skink 
populations across south-eastern Australia. A genetic distanc-
ing estimation was calculated using MEGA v.11.0.13 (Tamura 
et al. 2004, 2021) to determine the approximate percentage 
of genetic variation and time of separation amongst the 
populations. 

Ethical standards 
All research was conducted under permission of the 
Department of Environment, Land, Water and Planning 
(10010129) and was approved by the Monash University 
School of Biological Sciences Animal Ethics Committee 
(30059). 

Results 

Morphology, life history and reproductive ecology 
of the glossy grass skink 
Our visual examination of the gonads of museum specimens 
indicated that the smallest sexually mature individual was 
approximately 40 mm (females: 39.9 mm, males: 38.3 mm 
[with an outlier individual mature at 35.7 mm]; Fig. 2a). 

Fig. 2. A histogram of the (a) snout–vent length (mm) of all mature 
(blue) and immature (red) glossy grass skink preserved specimens 
(n = 103) examined in this study, and (b) snout–vent length (mm) of 
all field caught glossy grass skinks (n = 70) in Victoria, Australia. 
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Using this estimate for the size at maturity, inspection of the 
SVL of field caught glossy grass skinks in Victoria suggests that 
individuals may reach between 23 and 30 mm SVL during 
their first season, 32 and 39 mm SVL during their second 
season, and sexual maturity (>40 mm SVL) during their third 
season (Fig. 2b). Assuming an average lifespan of ~7 years 
for similar-sized skinks in south-eastern Australia (Greer 
2022), we used the generation length formula developed 
by Fung and Waples (2017) to determine the generation 
length of the glossy grass skink as approximately 5 years 
(3 + 0.5 × (7 − 3) = 5). 

Sexual dimorphism is evident in the glossy grass skink, 
with males having larger heads (head length, head width, 
snout length, eye diameter), longer axilla–groin lengths, and 
longer legs (total front limb length, upper front limb length, 
lower front limb length, front foot, total hind limb length, 
upper hind limb length, lower hind limb length, hind foot; 
Table 2). In contrast, females have larger bodies (paravertebral 
scale count, interlimb length, body width, body height), longer 
snout–axilla lengths, and greater tail widths (Table 2). All other 
body measurements and scale counts were not sexually 
dimorphic in the glossy grass skink (Table 2). 

Table 2. Summary of body measurements (in mm) and scale counts taken for adult preserved and field Pseudemoia rawlinsoni specimens. 

Female Male Overall Sexual Dimorphism 

Trait N Mean ± s.e. Range N Mean ± s.e. Range N Mean ± s.e. Range 

Snout–vent length 78 51.0 ± 0.75 40.0–65.2 56 49.3 ± 0.68 40.7–60.1 136 50.1 ± 0.53 40–65.2 0.129 

Snout–axilla length 42 28.0 ± 0.88 17.2–39.5 36 25.1 ± 0.82 16.8–32.9 80 26.5 ± 0.61 16.8–39.5 <0.001 

Axilla–groin distance 42 18.9 ± 0.98 13.8–38.3 36 20.7 ± 0.86 15.6–34.3 80 19.7 ± 0.65 13.8–38.3 <0.001 

Interlimb length 42 31.5 ± 0.83 22.9–42.0 36 28.1 ± 0.68 17.7–35.2 80 29.8 ± 0.58 17.7–42.0 <0.001 

Tail length 26 79.7 ± 2.01 66.4–105.0 21 79.3 ± 3.08 43.0–104.0 47 79.5 ± 1.75 43.0–105 0.149 

Tail width 42 5.1 ± 0.11 3.8–6.6 36 4.7 ± 0.10 3.2–5.8 80 4.8 ± 0.08 3.2–6.6 0.018 

Body width 42 8.7 ± 0.24 5.9–12.1 36 7.4 ± 0.19 5.5–9.5 80 8.1 ± 0.17 5.4–12.1 <0.001 

Body height 42 6.1 ± 0.21 3.6–8.6 36 4.9 ± 0.14 3.3–6.4 80 5.2 ± 0.14 3.1–8.6 0.001 

Pelvic width 42 4.4 ± 0.12 3.1–6.2 36 4.5 ± 0.11 2.8–5.5 80 4.4 ± 0.08 2.8–6.2 0.069 

Pelvic height 42 4.8 ± 0.11 3.2–6.2 36 4.8 ± 0.12 3.5–6.0 80 4.8 ± 0.08 3.2–6.2 0.404 

Total front limb length 42 11.5 ± 0.20 9.3–15.9 36 12.4 ± 0.21 9.2–14.6 80 11.9 ± 0.15 9.2–15.9 <0.001 

Upper front limb 42 4.1 ± 0.08 3.3–5.4 36 4.3 ± 0.09 2.7–5.4 80 4.2 ± 0.06 2.7–5.4 0.001 

Lower front limb 42 3.9 ± 0.08 3.2–5.3 36 4.0 ± 0.08 3.1–5.1 80 4.0 ± 0.05 3.1–5.3 0.005 

Front foot 42 5.0 ± 0.12 3.3–7.4 36 5.5 ± 0.12 4.2–7.0 80 5.2 ± 0.09 3.3–7.4 <0.001 

Total hind limb length 42 17.5 ± 0.34 13.8–22.3 36 18.7 ± 0.31 15.3–23.1 80 18.0 ± 0.24 13.8–23.1 <0.001 

Upper hind limb 42 5.9 ± 0.14 4.5–7.9 36 6.2 ± 0.13 5.1–8.2 80 6.0 ± 0.09 4.5–8.2 <0.001 

Lower hind limb 42 5.3 ± 0.11 4.1–7.1 36 5.7 ± 0.11 4.2–6.8 80 5.5 ± 0.08 4.1–7.1 <0.001 

Hind foot 42 8.8 ± 0.19 6.4–12.0 36 9.6 ± 0.17 7.6–11.9 80 9.1 ± 0.13 6.4–12.0 <0.001 

Head width 78 6.1 ± 0.07 5.2–8.3 56 6.4 ± 0.07 5.4–7.7 136 6.2 ± 0.05 5.2–8.3 <0.001 

Head length 78 8.6 ± 0.10 5.0–10.9 56 9.4 ± 0.11 7.6–11.3 136 8.9 ± 0.08 5.0–11.3 <0.001 

Head depth 78 4.6 ± 0.07 3.4–6.3 56 4.6 ± 0.07 3.4–5.6 136 4.6 ± 0.05 3.4–6.3 0.129 

Snout length 42 5.4 ± 0.08 4.5–6.9 36 5.8 ± 0.08 5.0–6.9 80 5.6 ± 0.06 4.5–6.9 <0.001 

Eye diameter 42 1.1 ± 0.02 0.9–1.3 36 1.1 ± 0.02 0.9–1.3 80 1.1 ± 0.01 0.9–1.3 0.007 

Midbody scales 42 26.8 ± 0.16 26–30 36 26.7 ± 0.18 25–30 80 26.8 ± 0.12 25–30 0.236 

Paravertebral scales 42 58.1 ± 0.30 54–62 36 56.4 ± 0.33 53–59 80 57.3 ± 0.24 53–62 <0.001 

Subdigital lamellae 42 19.2 ± 0.21 17–23 36 20.1 ± 0.24 17–23 80 19.6 ± 0.16 17–23 0.166 

Nuchals 42 4.6 ± 0.22 2–8 36 4.3 ± 0.24 2–8 80 4.5 ± 0.16 2–8 0.329 

Presubocular 42 2.2 ± 0.06 1–3 36 2.2 ± 0.08 1–3 80 2.2 ± 0.05 1–3 0.996 

Supraciliaries 42 6.8 ± 0.07 6–8 36 6.8 ± 0.08 6–8 80 6.8 ± 0.05 6–8 0.433 

Supralabials 42 7.0 ± 0.02 7–8 36 7.1 ± 0.04 7–8 80 7.1 ± 0.03 7–8 0.162 

Infralabials 42 7.0 ± 0.04 6–8 36 7.1 ± 0.05 6–8 80 7.1 ± 0.03 6–8 0.203 

The sexual dimorphism column presents the results of the size-corrected Wilcoxon rank sum exact tests for sexual dimorphism. The sex of two museum specimens was 
unknown. Significant results are presented in bold. 
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ABTC15402 P. baudini 
ABTC40954 ACTPseudemoia rawlinsoni Z73954 Western Victoria 

Z73963 Western Victoria 
Z73966 Western Victoria 

ABTC94787 South Australia Coast 
ABTC94794 South Australia Coast 

ABTC37727 South Australia Coast 
ABTC37531 South Australia Coast 
ABTC70044 South Australia Coast 

ABTC106240 South Australia Coast 
ABTC37543 South Australia Coast 

Z73969 Western Victoria 
ABTC37606 South Australia Inland 
ABTC37542 South Australia Inland 
ABTC156252 South Australia Inland 
ABTC68946 South Australia Inland 
ABTC54784 South Australia Inland 
ABTC156253 South Australia Inland 
ABTC68787 South Australia Inland 

ABTC57877 Tasmania 
ABTC04064 Eastern Victoria 
Z73970 Eastern Victoria 

Z73965B Eastern Victoria 
Z73955 Central Victoria 
Z73978 Central Victoria 

Z73976B Central Victoria 
Z73957 Central Victoria 
Z73977 Central Victoria 
Z73982 Central Victoria 
Z73945 Central Victoria 
Z73983 Central Victoria 
Z73956 Central Victoria 

Z73941 Central Victoria 
Z73946 Central Victoria 
Z73949 Central Victoria 

Z73979B Central Victoria 
Z73958 Central Victoria 
Z73973 Central Victoria 
Z73937 Central Victoria 
Z73980 Central Victoria 
Z73971 Central Victoria 
Z73981 Central Victoria 
Z73975 Central Victoria 
Z73944 Central Victoria 
Z73953 Central Victoria 
Z73974 Central Victoria 

ABTC11167 P. entrecasteauxii 
NMVZ23650 P. pagenstecheri 

ABTC14601 P. cryodroma 
NMVZ19287 P. spenceri 

Z21551 C. metallicus 

0.05 
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The mean litter size of glossy grass skink museum 
specimens was 4.65 ± 0.43 (range 1–9, n = 20). There was 
a positive association between female SVL and litter size 
(estimate = 2.58 ± 0.51, t-value = 5.10, P < 0.001; Fig. S2). 

Discussion 

Our results indicate that the glossy grass skink reaches sexual 
maturity in approximately 3 years, at a body size of around 
40 mm SVL, and has a generation length of 5 years. Our 
estimate for the size at sexual maturity is consistent with 

Assessing the presence of genetic substructuring 
across the range of the glossy grass skink 

that suggested by Hutchinson and Donnellan (1988) when 
the species was formally described. Indeed, the life history 
traits for the glossy grass skink are similar to that reported for 

Our phylogenetic analysis supports the glossy grass skink 
being a single species, but with seven distinct genetic lineages 
across south-eastern Australia: Australian Capital Territory, 
Eastern Victoria, Tasmania, Central Victoria, Western 
Victoria, inland South Australia, and coastal South Australia 
(Fig. 3). The degree of genetic distance amongst lineages 
varied between 0.92% and 5.13% (Table 3). The seven 
genetic lineages of the glossy grass skink did not differ in a 
range of body measurements (SVL, ILL, PW, PH, LFL, THL, 
UHL, LHL, SL, ED) or scale counts (midbody scales, subdigital 
lamellae) (Tables S2 and S3). Although significant differences 
were found among the lineages for a range of body measure-
ments (SAL, AGL, HL, HW, HL, TW, BW, BH, TFL, UFL, FF, HF) 
and scale counts (nuchals, paravertebral, presuboculars, 
supraciliaries, supralabials, infralabials), no consistent differ-
ences were observed (Tables S2–S22). 

other similar-sized viviparous skink species in south-eastern 
Australia (Hutchinson and Donnellan 1992; Chapple 2006; 
Atkins et al. 2020; Greer 2022). Importantly, our study
represents the first detailed determination of the generation 
length of a Pseudemoia species (Greer 2022). Unfortunately, 
due to a limited number of specimens from alpine regions, 
we were unable to examine whether the life history traits 
of the glossy grass skink differed between the lowland 
(majority of the species range) and highland (alpine regions 
of Victoria, New South Wales, and the Australian Capital 
Territory) populations of the species. However, this possibility 
warrants further investigation as previous studies of viviparous 
skinks species in south-eastern Australia have documented 
substantial differences in life-history between high and low 
elevation populations (Rohr 1997; Wapstra et al. 2001; 
Atkins et al. 2020; Van Dyke et al. 2021). 

Fig. 3. Maximum likelihood phylogeny for the glossy grass skink (Pseudemoia rawlinsoni) based on mitochondrial DNA (794 bp ND4). The 
red rectangles indicate the branches that are well supported (i.e. posterior probability values over 95, and/or bootstrap values over 70; the 
precise values are provided in Fig. S3). Seven genetic lineages were determined: SA Inland (blue), SA Coast (pink), Western Victoria (purple), 
Central Victoria (green), Eastern Victoria (orange), Tasmania (yellow) and Australian Captial Territory (red). Photos by Jules Farquhar. 
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Table 3. Genetic distances (below diagonal) and standard error (above diagonal) amongst glossy grass skink (Pseudemoia rawlinsoni) genetic 
lineages. 

ACT EVIC CVIC WVIC Tas. SAInland SACoast 

ACT – 0.006 0.006 0.006 0.007 0.006 0.007 

EVIC 0.031 – 0.003 0.008 0.005 0.007 0.008 

CVIC 0.031 0.011 – 0.007 0.005 0.007 0.008 

WVIC 0.037 0.042 0.041 – 0.008 0.004 0.005 

Tas. 0.035 0.020 0.022 0.045 – 0.008 0.008 

SAInland 0.037 0.039 0.038 0.009 0.043 – 0.006 

SACoast 0.046 0.051 0.051 0.021 0.051 0.026 – 

Locations are Australian Capital Territory (ACT), Eastern Victoria (EVIC), Central Victoria (CVIC), Western Victoria (WVIC), Tasmania (Tas.), inland South Australia 
(SAInland), coastal South Australia (SACoast). 

We found that sexual dimorphism was evident in the glossy 
grass skink, with females having larger bodies and interlimb 
lengths, and males exhibiting larger heads and longer legs. 
Within squamates, it has been suggested that there is a 
strong selective pressure for females to have larger body 
size, and specifically longer interlimb lengths, in order to 
accommodate more developing eggs and/or young (Cox 
et al. 2003; Scharf and Meiri 2013; Meiri et al. 2020). Indeed, 
this pattern appears to hold in the glossy grass skink as litter 
size was positively correlated to female body size. Although 
the mean litter size for the glossy grass skink found in our 
study was slightly lower (4.6 vs 5.6) than that reported 
previously for the species by Hutchinson and Donnellan 
(1988), we found the species to have a broader range of 
litter sizes than previously reported (1–9 vs  4–9). The larger 
head size of male glossy grass skinks is concordant with 
previous reports in other squamates (Cox et al. 2003; Scharf 
and Meiri 2013), including viviparous skinks in south-eastern 
Australia (Clemann et al. 2004; Chapple 2006). Previous 
hypotheses for the selective advantage of males having larger 
heads have focused on the ability to grip females during 
copulation, or the importance of head size in determining 
the outcome of male–male competition and fights (Vitt and 
Cooper 1985; Cox et al. 2003; Scharf and Meiri 2013). 
Although it has previously been reported that male glossy 
grass skinks have longer limbs than females (Hutchinson 
and Donnellan 1992), the significance of this morphological 
dimorphism is unknown and warrants further investigation. 

Our study provides information that will assist in assessing 
the glossy grass skink against IUCN Red List criteria. As 
species respond to changes in their environment at different 
rates, an estimate of generation length is an important compo-
nent of most Red List criteria (Mace et al. 2008; Bird et al. 
2020). Generation length, which incorporates information 
on the age at sexual maturity and lifespan, is important when 
considering population trends, and determining the capacity 
of the species to withstand threats or recover from population 
declines (Isaac et al. 2005; Rowe 2008; Bird et al. 2020). In 
addition, knowledge of litter size can provide information 

on the potential population growth of the species, whilst 
taking into account the potential for lower fecundity in 
younger (i.e. smaller) adults (Bird et al. 2020; Meiri et al. 
2020). In regard to the glossy grass skink, it has a longer 
generation time than many smaller size skinks in south-
eastern Australia (Greer 2022), and therefore might take 
longer to recover from population declines, making it more 
susceptible to a range of threats (e.g. Senior et al. 2021). 
However, its generation length, and thus intrinsic susceptibility 
to threats, may be consistent with most other similar-sized 
viviparous skinks in south-eastern Australia (Wapstra et al. 
2001; Chapple 2006; Atkins et al. 2020). 

Our study, combined with the results from Haines et al. 
(2014), indicates that the glossy grass skink is a single 
widespread, but genetically variable, species. This is because 
the level of genetic divergence observed in the species was less 
than, or equivalent to, the level of intraspecific divergence 
reported for a range of other Australian skink species 
(Chapple et al. 2004, 2005, 2011a, 2011b; Senior et al. 2022). 
Although some degree of morphological variation was 
evident within the glossy grass skink, there were no consistent 
morphological differences among the seven genetic lineages 
in the species. Interestingly, the location of the seven genetic 
lineages within the glossy grass skink were largely concordant 
with the recognised biogeographic boundaries in south-
eastern Australia (Chapple et al. 2005, 2011a, 2011b; Bryant 
and Krosch 2016; Dissanayake et al. 2022). Assuming 2% 
sequence divergence per million years, as used in other 
Australian skinks (Chapple et al. 2005; Haines et al. 2014), 
this would indicate a divergence time of between 0.5 million 
years ago and 2.6 million years, ago during the Pliocene– 
Pleistocene boundary (Chapple et al. 2005; Dissanayake 
et al. 2022; Senior et al. 2022). This period was characterised 
by climatic fluctuations, and associated fluctuations in sea 
level (Byrne et al. 2011; Chapple et al. 2011a; Haines et al. 
2014). The glossy grass skink, and other Pseudemoia species, 
tend to inhabit areas with high precipitation (Hutchinson 
and Donnellan 1992; Haines et al. 2014), and consequently 
drying due to climatic oscillations may present geographic 
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boundaries to populations (Byrne et al. 2011; Chapple et al. 
2011a; Bryant and Krosch 2016). In particular, an east–west 
split in Victoria is common in many skink species, and is likely 
due to historical volcanic activity (Chapple et al. 2005; Senior 
et al. 2022). Additionally, alpine populations are often 
separate from nearby lowland populations due largely to 
climatic and resource variation (Chapple et al. 2005, 2011a). 
Overall, our genetic data might indicate that the glossy grass 
skink may not disperse across fragmented landscapes, 
and therefore habitat loss and fragmentation may result in 
decreased connectivity and genetic diversity within the 
species (e.g. Crain et al. 2008; Dixo et al. 2009; Haines et al. 
2014; Senior et al. 2022). However, further work involving 
more detailed sampling within populations and across the 
species range, along with additional nuclear loci, would be 
required to confirm this result. 

Conclusions 

We have provided a case study for how a targeted, 
multifaceted research project can be effective at rapidly 
gathering data that can be used to contribute vital informa-
tion to the assessment of extinction risk in Data Deficient 
species. This approach can be broadly applicable to any 
Data Deficient species, where there are sufficient museum 
specimens, and tissue samples, available. For the glossy grass 
skink, we have determined the generation length of the 
species, providing information that will allow the species to 
be assessed against Criteria A, C and E on the IUCN Red List 
(IUCN Standards and Petitions Committee 2022). Our 
molecular data, combined with recent field-based studies on 
the species (Farquhar et al. 2024), indicates that the species 
may be susceptible to habitat loss and fragmentation 
(Criterion B), and provides information (i.e. several distinct 
genetic lineages) that may be useful for determining the 
number of subpopulations that are present in the species 
(Criteria B and C). In a recent related study, we clarified 
the distribution of the glossy grass skink, used field surveys 
to determine that the species has disappeared at ~50% of 
historical sites, and showed that a third of the species’ 
predicted range occurs in cleared agricultural land that is 
now likely unsuitable for the species (Farquhar et al. 2023) 
(Criteria A, B and C). These findings, combined with the 
results of the current study, will allow the species to be assessed 
against IUCN Red List criteria, and will most likely result in the 
species being listed as Vulnerable under Criterion B. 

Supplementary material 

Supplementary material is available online. 
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