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ABSTRACT

Context. Water pumps fitted with filtering screens are effective for delivering water to floodplain
environments and excluding large-bodied exotic fish; yet, the benefits to wetland fish and anurans
are unknown.Aims. To quantify fish and tadpole responses to refilling wetlands with water pumps
fittedwith large-mesh screens following drawdown v. overland reconnections in themid-Murrumbidgee
region of New South Wales. Methods. Frog and fish communities were compared between
wetlands under managed inundation and overland reconnections by using PERMANOVA, and
non-metric multidimensional scaling was used to evaluate community divergence between watering
strategies. Classification and regression trees were used to identify thresholds in explanatory
variables and predicted threshold responses in fish and tadpole abundance. Key results. Fish
and tadpole communities differed in relation to watering strategies. Managed inundation resulted
in a higher abundance of tadpole species and one native fish, whereas overland reconnections
resulted in a high abundance of exotic fish species and fewer tadpoles. Water depth was a driver
of tadpole abundance in two species, including the threatened southern bell frog (Litoria raniformis).
Conclusions and implications. Using filtered pumps with large-mesh screens to deliver water to
wetlands of high conservation value may be an effective strategy for reducing large-bodied exotic fish
and enhancing frog and fish populations in regulated floodplain systems.

Keywords: alien species, environmental water, fish screens, frog conservation, invasive fish
management, larval anurans, management intervention, pumping, wetland restoration.

Introduction

River regulation is a significant threat to freshwater ecosystems worldwide (Nilsson and 
Dynesius 1994; Hawke et al. 2021). Changes to the frequency and magnitude of flow 
pulses have contributed to decreased frequency of natural connections between rivers 
and floodplains (Frazier et al. 2005; Page et al. 2005), permanent drying or inundation of 
ephemeral wetlands (Walker and Thoms 1993; Kingsford 2000; Rayner et al. 2015) and 
significant changes to the composition of wetland biodiversity (Kingsford 2000; Beesley 
et al. 2014; Littlefair et al. 2021). Small-bodied fish and frog communities can be 
particularly affected by long-term changes in wetland hydrology (Gilligan 2005; Wassens 
and Maher 2011), whereas the creation of permanent weir pools may favour exotic fish 
populations (Jellyman and Harding 2012). In Australia, fish biomass is often dominated 
by invasive common carp (Cyprinus carpio) and gambusia (Gambusia holbrooki), two 
species responsible for causing broad-scale wetland degradation and influencing the 
structure of aquatic communities (Koehn 2004; Gilligan 2005; Kloskowski 2011). Both 
species pose a significant threat to amphibians and their larvae (Morgan and Buttemer 
1996; Webb and Joss 1997; Gillespie and Hero 1999; Pyke and White 2000; Hunter et al. 
2011; Kloskowski 2011; Atobe et al. 2014) and have been implicated in the decline of 
endangered frog and fish species (Hunter et al. 2011; Mac Nally et al. 2014; Marshall 
et al. 2019). 
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Rivers that have a high percentage of their annual flows 
extracted from the system often need water to be reinstated 
to maintain ecological processes (Linke and Deretic 2020). 
This can be achieved through environmental water allocations 
to restore overbank flows or re-water disconnected wetlands 
(Arthington et al. 2006). In the Murray–Darling Basin, 
environmental water allocations (often termed water for the 
environment) are used by State and Commonwealth organisa-
tions to restore natural hydrological regimes in rivers and 
floodplain wetlands (Arthington et al. 2006; Gawne et al. 
2020). Although highly desirable in replicating natural 
connectivity between the river and floodplain wetlands, 
provision of larger flow pulses poses a significant challenge in 
multi-use river systems (Banks and Docker 2014) and may 
inadvertently benefit invasive fish species by delivering them 
to suitable spawning sites (Conallin et al. 2012), impeding the 
recovery of native wetland biodiversity (Rayner et al. 2015). 

In an era of water scarcity (Arthington et al. 2018; Berbel 
and Esteban 2019), managed inundation of freshwater habitats 
using pumps may be an important strategy to improve native 
species diversity (Vilizzi et al. 2013; Hoffmann 2018). Large 
irrigation pumps can transfer significant volumes of water 
directly from the main river channel or through irrigation dis-
tributary networks to floodplain wetlands (King and O’Connor 
2007; Boys et al. 2021a), and, when fitted with filtering 
screens, can reduce entrainment of native fish (Baumgartner 
and Boys 2012; Boys 2021; Boys et al. 2021a, 2021b). 
Pumping water from river channels can maintain water 
levels in refuge wetlands during non-flood years, and thus 
sustain diversity of wetland fauna such as small-bodied native 
fish (Vilizzi et al. 2013), freshwater turtles (Ocock et al. 2018), 
amphibians (Hoffmann 2018; Littlefair et al. 2021) and 
floodplain snakes (Michael et al. 2023). Delivering water 
by pumping infrastructure to wetlands can be further 
enhanced by using large-mesh filtering screens to exclude 
large-bodied exotic fish (Hillyard et al. 2010; Vilizzi et al. 
2013), while delivering small-bodied native species to 
targeted wetlands of high conservation value. Significant 
efforts are underway to implement modern fish-protection 
screens on water infrastructure (Baumgartner and Boys 2012; 
Boys et al. 2021a, 2021b). Prioritisation of sites for moderni-
sation requires an assessment of the ecological goals for 
restoration. Central to this assessment are the desired outcomes 
of waterways receiving allocations. Modern fish-protection 
screens feature a fine mesh (2–3-mm mesh size), with the 
goal of protecting native biota by avoiding entrainment into 
water delivered through water pumps. This technology is 
appropriate for sites where water is extracted for irrigated 
agriculture. However, at sites where water is delivered to 
habitats with ecological significance (such as floodplain 
wetlands), managers may seek to exclude native fish and 
amphibians from pumped water. At these sites, use of large-
mesh screens (>30-mm mesh size) may be appropriate. However, 
the benefits of using large-mesh screens in floodplain anuran 
conservation is largely unknown. To address this knowledge 

gap, we compared responses of fish and larval frog (tadpole) 
over a 10-year period with two water-delivery methods, 
managed inundation using large-mesh screens v. overland 
reconnections, in four ecologically significant wetlands in 
south-eastern Australia. We hypothesised that managed 
inundation using large-mesh screens would reduce adult carp 
abundance (Vilizzi et al. 2013), thereby increasing tadpole 
numbers owing to predator release (Hunter et al. 2011; 
Atobe et al. 2014). We also postulated that small-bodied 
native fish abundance would be similar between methods 
as large-mesh screens do not protect native fish from 
entrainment (Boys et al. 2021a, 2021b). Threshold responses 
to water level and temperature were also examined because 
changes in these metrics are important for structuring fish 
and frog communities (Bino et al. 2018). 

Methods

Study sites

This study was conducted in the mid-Murrumbidgee region of 
southern New South Wales (NSW) (Fig. 1). Wetlands in this 
region are part of a semi-arid floodplain ecosystem and support 
large stands of river red gum (Eucalyptus camaldulensis) forest 
as well as significant populations of native fish and the 
threatened southern bell frog (Litoria raniformis) (Wassens 
et al. 2021), listed as Endangered in NSW (Biodiversity 
Conservation Act 2016), nationally Vulnerable (Environment 
Protection and Biodiversity Conservation Act 1999) and 
globally Endangered (IUCN Red List). Four wetlands, 
classified as ox-bow lagoons (Yarradda, Sunshower, Gooragool 
and McKennas), form part of a broader long-term ecological 
monitoring program in the Murrumbidgee catchment 
(Wassens et al. 2021) and were chosen because they have 
experienced significant shifts in hydrology following river 
regulation and recent changes in water management. Yarradda 
and Gooragool lagoons are in the Murrumbidgee Valley 
National Park. Grazing is absent from Gooragool and ceased 
at Yarradda in 2018, whereas McKennas and Sunshower 
lagoons are located on private property and are intermittently 
grazed by cattle. Prior to the Millennium Drought (2001–2009), 
this wetland cluster experienced regular floods and was inun-
dated, on average, in 9 or 10 years by natural river to wetland 
overland reconnection events (Hall et al. 2019). Between 2000 
and 2009, all four wetlands remained continuously dry and 
filled in 2010–11 during a natural flood (Hall et al. 2019). 

Water delivery and timeline

In response to changes in hydrology and declining wetland 
condition, the NSW Department of Planning, Industry and 
Environment (DPIE) and Commonwealth Environmental 
Water Office (CEWO) returned water to Yarradda and 
Sunshower lagoons by delivering environmental water 
from the Murrumbidgee River by pumping infrastructure 
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Fig. 1. Study area, showing location of four monitored wetlands in the mid-Murrumbidgee
catchment, NSW.

(hereafter termed managed inundation) (Fig. 2). In the austral 
winter of 2014, Yarradda Lagoon dried up, after which, CEWO 
and DPIE refilled the wetland in summer 2015 by using 
filtering screens (~80-mm mesh) fitted to the inlet of an 
impeller-type pump to control excessive carp numbers. The 
irrigation pump delivered 40 mL day–1 and water level was 
maintained to at least 50% capacity by additional pumping 
actions between January 2014 and mid-2016 (Fig. 2). A large 
and natural overland reconnection (flood event) occurred 
between August and November 2016, complemented with a 
managed environmental water allocation used to facilitate a 
river to wetland reconnection in August 2017. The wetland 
was allowed to briefly dry (less than 5 days) in spring 
2018, to remove carp that had entered the wetland and was 
subsequently refilled through a filtering pump in November 
2018. At Sunshower Lagoon, three small pumps delivered a 
combined total of ~20 mL day–1 in 2020 after a 2-year dry 
phase. Each pump inlet was fitted with ~30-mm holes and, 
post pump, a 400-m poly pipeline was installed to deliver 
the environmental water to Sunshower Lagoon via a small 
tributary. Gooragool and McKennas lagoons connected to the 
main channel during unregulated flood events (hereafter 
termed overland reconnections) during 2011–12 and 2015–18 
(Fig. 2). Natural flood events and managed reconnections using 
environmental water allocations were both classified as 
overland reconnections in this study. 

Sampling protocol

At each of the four wetlands, annual fish and tadpole surveys 
were conducted between 2011 and 2020 water years 

(July–June) by using a combination of two large (5-m double 
wing and 12-mm mesh) and two small (3-m double wing and 
4-mm mesh) fyke nets set overnight for an average of 14 h. 
When water levels were low, two D-fyke nets (3-m double 
wing and 12-mm mesh) were deployed. Surveys were 
conducted during September, November, January and March 
each year. Fish and tadpole catch-per-unit-effort (CPUE, 
tadpole fish–1 h−1) was calculated for each wetland by 
dividing net soak time by the number of individuals collected. 
Small-bodied fish were defined as being <100 mm and adult 
carp were defined as being sexually mature at >150 mm. 
Water depth was measured using a water-level logger (Hobo 
U20L) at each wetland. Developed models of water depths as a 
function of days since last commence-to-fill were used to 
predict water depth between 2010 and 2012 and in Sunshower 
Lagoon following logger failure during the 2019–2020 surveys 
(Fig. S1 of the Supplementary material). Water tempera-
ture was measured using a hand-held water-quality meter 
(Horiba U50). 

Data analysis

Survey-level data were pooled for each water year (June– 
July). Fish and tadpole CPUE was averaged for each water 
year and underwent fourth-root transformation. Comparisons 
of frog and fish communities between wetlands under 
managed inundation v. overland reconnections were under-
taken using PERMANOVA on the basis of a Euclidian 
distance resemblance matrix, sums of squares Type III 
(partial) and unrestricted permutation of the transformed 
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Fig. 2. Timeline of watering actions and water depth across four wetlands in the mid-Murrumbidgee catchment between January 2011 and
March 2020.

data, with site being included as a random factor. Non-metric 
multidimensional scaling (nMDS) was used to examine 
community divergence between watering strategies. Key 
species contribution to differences between managed inunda-
tion and overland reconnections were assessed using SIMPER 
(Primer, ver. 7, Primer-E Ltd, Lutton, UK, see https://www. 
primer-e.com/our-software/). A Wilcoxon test was used to 
compare mean CPUE between reconnection events and 
managed inundation actions, and a one-way Student’s t-test 
was used for species with low numbers under managed inunda-
tion events by using R (ver. 4.3.2, R Foundation for Statistical 
Computing, Vienna, Austria, see https://www.R-project.org/). 

To identify thresholds in explanatory variables that best 
predicted threshold in response variables, a regression tree 
approach (Classification and Regression Trees, CART) was 
used to explore data for Yarradda Lagoon because this wetland 
experienced repeated managed inundation and overland 
reconnection events (Fig. 2). Responses in the CPUE of each of 
the five detected tadpole species, the total combined tadpole 
CPUE, common carp CPUE and gambusia CPUE were examined. 
Tadpoles of Limnodynastes tasmaniensis and Limnodynastes 

fletcheri are indistinguishable in the field and were combined 
for analysis. Ecological response thresholds against water 
depth, water temperature and water delivery method 
(managed inundation v. overland reconnections) were then 
evaluated. The Gini index in the ‘rpart’ package (ver. 4.1.21, 
T Therneau, B Atkinson and B Ripley, see https://cran.r-
project.org/package=rpart) was used to progressively 
identify thresholds in explanatory variables. No assumptions 
were made regarding the distribution of response variables 
(Breiman et al. 1984). Analysis was implemented using the 
‘rpart’ function in the ‘rpart’ package in R. 

Results

Summary statistics

Between 2011 and 2020, we recorded 109 603 individuals 
from 14 fish species (five introduced, n = 54 747; and nine 
native species, n = 54 856) (Table 1). Carp gudgeon 
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Table 1. Mean (±s.d.) total tadpole and carp catch-per-unit-effort (CPUE), water depth, and water temperature in four wetlands in the mid-
Murrumbidgee catchment between 2011 and 2020 water years.

Site Metric 2011 2012 2013 2015 2016 2017 2018 2019 2020

Sunshower Tadpole (n) 0 ± 0 0.33 ± 0.47 0.12 ± 0.13 0 ± 0 0 ± 0 1.56 ± 2.71 4.72 ± 6.67 0 ± 0 2.94 ± 0.89

Carp (n) 0 ± 0 58.84 ± 114.19 0.92 ± 1.09 0 ± 0 0 ± 0 62.36 ± 92.71 22.69 ± 32.08 0 ± 0 0 ± 0

Water depth (m) 0.86 ± 0.21 0.53 ± 0.32 0.35 ± 0.31 0 ± 0 0.14 ± 0.16 1.25 ± 1.1 0.59 ± 0.54 0 ± 0 0.34 ± 0.44

Water 27.34 ± 1.65 25.37 ± 4.98 28.35 ± 7.05 0 ± 0 0 ± 0 25.2 ± 10.08 21.16 ± 4.73 0 ± 0 22.52 ± 1.66
temperature (°C)

Gooragool Tadpole (n) 0 ± 0 0.41 ± 0.81 0 ± 0 0 ± 0 0.29 ± 0.25 0.08 ± 0.17 0.05 ± 0.04 0 ± 0 0.5 ± 0.79

Carp (n) 0 ± 0 11.19 ± 7.45 0 ± 0 0 ± 0 17.42 ± 25.05 4.83 ± 5.3 2.37 ± 2.37 0 ± 0 123.78 ± 146.37

Water depth (m) 0.83 ± 0.26 0.76 ± 0.38 0.15 ± 0.09 0.08 ± 0.1 0.68 ± 0.36 1.1 ± 0.75 0.49 ± 0.41 0 ± 0 0.8 ± 0.57

Water 30.2 ± 1.7 27.13 ± 6.25 28.1 ± 4.05 27.2 ± 1.94 23.94 ± 6.52 23.99 ± 7.85 29.02 ± 8 0 ± 0 27.14 ± 2.77
temperature (°C)

McKennas Tadpole (n) 0 ± 0 0.79 ± 1.05 0.1 ± 0.11 0 ± 0 0 ± 0 2.95 ± 5.91 6.47 ± 9.15 0 ± 0 0 ± 0

Carp (n) 0 ± 0 197.83 ± 340.01 8.25 ± 8.05 0 ± 0 0 ± 0 62.73 ± 119.06 0.53 ± 0.66 0 ± 0 0 ± 0

Water depth (m) 1.7 ± 0.27 1.17 ± 0.7 0.82 ± 0.72 0 ± 0 0 ± 0 1.71 ± 0.85 0.59 ± 0.46 0 ± 0 0 ± 0

Water 28.71 ± 3.11 26.74 ± 7.61 27.68 ± 5.77 0 ± 0 0 ± 0 26.66 ± 8.06 27.79 ± 12.02 0 ± 0 0 ± 0
temperature (°C)

Yarradda Tadpole (n) 0 ± 0 0.08 ± 0.12 0.07 ± 0.13 3.53 ± 3.58 4.45 ± 5.16 0.05 ± 0.1 0.28 ± 0.57 15.23 ± 26.21 1.71 ± 1.94

Carp (n) 0 ± 0 7.96 ± 13.49 0.46 ± 0.51 0 ± 0 7.58 ± 9.52 52.47 ± 48.56 5.77 ± 8.93 26.83 ± 31.72 2.97 ± 3.77

Water depth (m) 2.57 ± 0.18 2.14 ± 0.4 1.86 ± 0.47 0.96 ± 1.11 2.07 ± 0.29 2.78 ± 0.92 2.14 ± 0.4 2.02 ± 0.69 2.03 ± 0.44

Water 26.76 ± 5.52 25.13 ± 5.67 25.68 ± 2.72 27.61 ± 5.06 22.51 ± 5.77 25.21 ± 7.17 26.07 ± 4.21 24.84 ± 5.2 24 ± 4.46
temperature (°C)

SUN, Sunshower lagoon; GOO, Gooragool lagoon; MCK, McKennas lagoon; YAR, Yarradda lagoon.

(Hypseleotris sp.) was the most abundant species (n = 49 063) 
and contributed 89% of the total native fish catch. Carp were 
the most abundant exotic species (n = 37 348, 62% of total 
exotic fish catch), followed by gambusia (n = 18 360, 31% of 
total exotic fish catch). During the same period, 1950 tadpoles 
of five frog species were recorded (Crinia parinsignifera, 
n = 4; Limnodynastes sp., n = 367; Litoria peronii, n = 1173; 
L. raniformis, n = 42; and L. interioris, n = 364). 
Limnodynastes sp. (L. tasmaniensis and L. fletcheri), Litoria 
interioris and L. peronii tadpoles were recorded across all 
wetlands. C. parinsignifera and Litoria raniformis tadpoles 
were recorded only at Yarradda Lagoon. 

Managed inundation versus overland
reconnections

Overall, fish and tadpole community composition differed 
significantly between managed inundation and overland 
reconnections (PERMANOVA pseudo-F 2.088, P = 0.009) 
(Fig. 3). Differences were driven by higher average abundance 
of C. parinsignifera (P < 0.001), L. peronii (P < 0.01), 
L. interioris (P < 0.01), L. raniformis (P < 0.01) tadpoles 
and bony herring (Nematalosa erebi) (P < 0.05) following 
pumping (Fig. 4). Fish communities associated with overland 
reconnections had higher abundance of carp gudgeon, 
Australian smelt (Retropinna semoni), carp, gambusia, 
unspecked hardyhead (Craterocephalus fulvus) and goldfish 
(Carassius auratus) (Fig. 4), although differences were not 

statistically significant. We found no statistical differences 
in average CPUE between managed inundation and overland 
reconnections for small-bodied native fish such as Murray– 
Darling rainbowfish (Melanotaenia fluviatilis), flat-headed 
gudgeon (Philypnodon grandiceps) or oriental weatherloach 
(Misgurnus anguillicaudatus). Large-bodied native fish such as 
golden perch (Macquaria ambigua) were absent following 
managed inundation events (Fig. 4). 

Tadpole and fish threshold responses in Yarradda
Lagoon

Regression tree analysis identified managed inundation as a 
key driver of total tadpole CPUE, as well as for CPUE of C. 
parinsignifera, Limnodynastes sp. and L. peronii (Fig. 5a, b, d), 
with a higher CPUE being associated with managed inunda-
tion compared with reconnections. L. raniformis tadpoles 
were associated with managed inundation, although water 
depth was also an important predictor. L. raniformis tadpoles 
were not detected when water depth was below 2.3 m, but 
CPUE increased when water levels exceeded 2.3 m (Fig. 5c). 
Limnodynastes interioris CPUE was driven by a combination of 
water depth and managed inundation, having high CPUE 
when water levels exceeded 2.6 m. When water levels dropped 
below 2.6 m then managed inundation was associated with 
high L. interioris CPUE (Fig. 5f ). Water delivery method was 
not a significant predictor of carp CPUE, instead, a water depth 
threshold was identified as a key predictor, with a higher carp 
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Fig. 3. Two-dimensional non-metric multi-dimensional scaling of the wetland community (CPUE) from Sunshower Lagoon and Yarradda
Lagoon based on a Euclidean distance matrix and stratified by water delivery method (connect, overland reconnection; and pump, managed
inundation events).

Fig. 4. Box plots of mean catch-per-unit-effort (CPUE) for the frog and fish community following managed inundation (pumping) and
overland reconnection events. Probabilities are significant at: *, P < 0.05; **, P < 0.01; and ***, P < 0.001.
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Fig. 5. Regression tree thresholds for (a) total tadpole; (b) Crinia parinsignifera, (c) Litoria raniformis,
(d) Limnodynates sp., (e) Litoria peronii, (f ) Limnodynates interios, (g) common carp and (h) eastern gambusia
catch-per-unit-effort (CPUE) in Yarradda Lagoon. DM, delivery mode; rec, river to wetland reconnection
event; pum, pumping with environmental water allocations, dark shading represents higher values.

CPUE when depths exceeded 2.2 m (Fig. 5g). Water tempera-
ture was the key predictor of gambusia CPUE, with an initial 
threshold when temperatures were greater than 27°C and  a  
second threshold reached when temperatures exceeded 29°C 
(Fig. 5h). 

Discussion

In managed wetland ecosystems, the timing, frequency and 
volume of water delivered can have a profound effect on 
the structure of aquatic communities (Wassens and Maher 
2011; Vilizzi et al. 2013; Beesley et al. 2014; Wedderburn et al. 
2014). This study took advantage of a shift in wetland manage-
ment (water delivery) and builds on the mesh screening 
literature by demonstrating the relationship between water 

delivery method (managed inundation through pumping 
v. overland reconnections), water depth, and water temperature 
and the structure of frog and fish communities in a semi-arid 
floodplain ecosystem. Managed inundation following dry 
phases was found to be associated with significant increases in 
tadpole abundance, especially of common and widespread 
species such as C. parinsignifera, L. interioris and L. peronii, 
but also of the threatened L. raniformis. Managed inundations 
were also found to reduce large-bodied exotic fish species 
from entering the system, a finding that is consistent with 
that of a similar study which investigated fish communities 
following managed inundation events (Vilizzi et al. 2013). 
Our findings are also congruent with studies that have demon-
strated amphibian population recovery following eradication 
of non-native fish (Knapp et al. 2007; Pope 2008; Tiberti et al. 
2019; Miró et al. 2020). Loss of common species can have 
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profound ecological and economic consequences (Winfree 
et al. 2015; Gaston et al. 2018). Therefore, interventions that 
maintain or increase the abundance of widespread species are 
important for maintaining ecosystem stability. The use of 
pumps fitted with large-mesh screens, therefore, has broad 
implications for recovering wetland frog populations in 
regulated floodplain environments affected by reduced flows 
and water availability. However, we acknowledge that due to 
our small sample size, our capacity to draw general conclusions 
may be limited. 

Environmental watering of wetlands by pumping may 
provide critical breeding opportunities and refugia for 
maintaining threatened floodplain frog species. The results 
of this study indicated that tadpoles of L. raniformis were 
higher in abundance following managed inundation than after 
overland reconnections, although regression tree analyses 
identified water depth as a strong variable explaining CPUE, 
highlighting the importance of restoring natural flood condi-
tions to create suitable breeding conditions for threatened 
floodplain frog species. Ensuring that wetlands are inundated 
to capacity and for extended durations is likely to benefit L. 
raniformis because the species requires rising water levels to 
trigger breeding (Hamer et al. 2016) and  sustained water  
levels to reach maturity. L. raniformis successfully bred in 
Yarradda Lagoon following managed inundation in 2014–15 
when high tadpole counts where recorded. However, no 
L. raniformis tadpoles were recorded in the following years 
when water levels dropped to 50% capacity and exotic 
fish numbers increased. A second breeding event occurred 
following a natural reconnection event in 2017–2018, which 
raised water levels to 80% capacity. By contrast, we found 
no evidence that L. raniformis successfully bred in 2018–19 
or 2019–20 during managed inundation, likely owing to 
sustained predation by exotic fish or our limited sample size or 
survey method. Larvae of this species are difficult to detect 
because of their cryptic foraging behaviour in shallow waters 
as well as their susceptibility to predation by gambusia (Pyke 
and White 2000), a species capable of passing through fish 
screens used in this study, possibly preventing L. raniformis 
from undergoing larval development and recruitment. Ongoing 
monitoring is required to determine whether managed 
inundation will benefit this species as well as other threatened 
floodplain frog species in the medium to long term. 

Managed inundation using filtering screens fitted to 
pumping infrastructure is an effective tool for excluding 
large-bodied fish such as carp (Vilizzi et al. 2013). However, 
larval and juvenile carp can still enter the system and will 
require ongoing control; so, any potential benefits will be 
short-lived. In temperate environments, carp grow rapidly, 
reaching sexual maturity within 2 years and are highly 
fertile (Vilizzi and Walker 1999; Tessema et al. 2020). Thus, 
the amount of time that elapses following managed inunda-
tion after a dry phase before carp impose significant 
predation pressure on resident frog species is likely to be 
2–3 years (Kloskowski 2011). River to wetland reconnections 

can also rapidly introduce high densities of carp to the 
floodplain (Conallin et al. 2012), undoing past management 
actions. The findings from Yarradda Lagoon highlighted this 
pattern, as over 200 adult carp (CPUE) and 300 gambusia 
(CPUE) were recorded in 2016–2017 following an overland 
reconnection. Allowing ephemeral wetlands to enter a dry 
phase is crucial for maintaining wetland health and will be 
important for reducing carp numbers. One promising pattern 
that emerged from this study was higher abundances of native 
bony herring following managed inundation, indicating that 
smaller individuals were able to safely pass through the large-
mesh screens. Managed inundation also did not appear to 
affect small-bodied native fish with similar numbers of 
Murray–Darling rainbowfish and flat-headed gudgeon being 
recorded between water delivery methods, suggesting that 
timing managed inundation with native fish supply from 
the main channel is important. Therefore, using managed 
inundation through pumping during native fish breeding 
periods, coupled with strategically allowing wetlands to draw 
down annually or biannually during winter months, may be 
an effective management tool for restocking small-bodied 
native fish communities and reducing the incursion of large 
exotic carp between unregulated overland reconnections. 

Associative relationships among watering methods, fish 
communities and tadpole numbers were identified in this 
study. However, the mechanism behind the patterns remains 
unclear because other factors influencing frog breeding 
success may be at play. Two potential mechanisms include 
released predation pressure on adult frogs and their eggs 
(Gillespie and Hero 1999; Komak and Crossland 2000; Hunter 
et al. 2011) and improved condition of aquatic vegetation or 
water quality, leading to greater tadpole survival (Bajer and 
Sorensen 2015). Thus, the interactive effects of predator 
release on other stages of amphibian life cycle and concurrent 
improvements in water quality or wetland vegetation could 
not be disentangled in this study. Other factors not measured 
in this study may have contributed to frog breeding success, 
including annual rainfall, inundation duration, temperature 
(Mac Nally et al. 2014) and grazing intensity (Jansen and 
Healey 2003). Future studies should include a broader set 
of wetlands stratified by different management interventions 
to decouple the interactive effects of different recovery 
pathways. 

Conclusions and management implication

Our findings confirmed that the structure of fish and tadpole 
communities in floodplain wetlands differ depending on the 
method of water delivery. Following a dry phase, managed 
inundation using pumps fitted with large-mesh filtering screens 
can reduce incursions of large-bodied fish (including carp) and 
promote breeding in floodplain frog species, and some 
small-bodied native fish. By contrast, river to wetland 
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reconnections contribute to a higher abundance of exotic fish 
species and reduced tadpole numbers, which must be 
considered in the long-term management of wetlands that 
support threatened frogs. Attempts to improve frog 
populations worldwide are often hampered by non-native 
fish. Thus, improved water delivery methods using 
screening technology provide novel opportunities for 
manipulating fish communities and improving breeding 
outcomes for anurans in regulated floodplain environments. 

Supplementary material

Supplementary material is available online. 
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