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The authors of the above-mentioned paper regret to inform readers that therewere errors published in the systematics of one of the taxa
in the manuscript. The list of groups in the Cladocera section (on p. F) was published as below:

The bulk of Cladocera that occur in inland waters in Australia are restricted to fresh water, but three groups have representatives in

salt lakes. These groups comprise: (1) six species of Daphniopsis (or Daphnia; see below); (2) two species of Daphnia (Daphnia
salinifera Hebert and Daphnia neosalinifera Hebert) from the Daphnia carinata (King) subgenus; and (3) three species of
chydorid: Moina baylyi Forró, Moina mongolica Daday and Extremalona timmsi Sinev & Shiel.

This text should have been as below (changes underlined):

The bulk of Cladocera that occur in inland waters in Australia are restricted to fresh water, but four groups have representatives in
salt lakes. These groups comprise: (1) six species of Daphniopsis (or Daphnia; see below); (2) two species of Daphnia (Daphnia

saliniferaHebert andDaphnia neosalinifera Hebert) from the Daphnia carinata (King) subgenus; (3) twoMoina species (Moina

baylyi Forró and Moina mongolica Daday); and (4) one species of chydorid (Extremalona timmsi Sinev & Shiel).

Furthermore, the title of the Chydorids section should have been titled Moinids and chydorids.
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Abstract. This study synthesises information on the biology of the unique and diverse halophilic macroinvertebrates of
Australian salt lakes, focusing on gastropods and crustaceans. This information is needed to evaluate and manage the
threats posed to these invertebrates by increased periods of drought and secondary salinisation. Most of these species are
endemic to Australian salt lakes, and some have adapted to extreme conditions (e.g. salinities .100 g L�1 and pH ,5).

This study identifies key general findings regarding the taxonomy, ecology and life histories of these invertebrates, such as
that many ‘new’ species have been uncovered in the past 20 years, with more likely to come. The study also identifies
critical knowledge gaps, such as the need to elucidate the abiotic and biological drivers of the field distributions of species,

including why some species are widespread and common whereas other congeneric species are rare or have narrow
distributions. Those species that are either restricted to low salinity environments or survive dry periods as aestivating
adults (as opposed to desiccation-resistant eggs) are probably the most vulnerable to increasing salinisation and drought.

Future work should prioritise the development of a sound taxonomy for all groups, because this is needed to underpin all
other biological research.
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Introduction

Salt lakes are defined as enclosed bodies of water with salinity
.3 g L�1, although the salinity is usually much greater than this
(Williams 1964). Salt lakes are often classed as either athalassic

(inland) or coastal (possessing a current or recent connection
with the marine environment, including via groundwater; Bayly
and Williams 1966).

Australia has a vast number and variety of salt lakes that

support unique faunal communities (De Deckker 1983a;
Williams 2002). At least in Australia, coastal and athalassic salt
lakes are characterised by different faunas. The former mainly

contain species that have current or recent marine or estuarine
affinities (Timms 2009a, 2010a; Pinder and Quinlan 2015),
whereas the latter mainly contain taxa that have evolved in and

are restricted to these systems (Bayly 1972). However, some
athalassic species occasionally also occur in coastal lakes
(Timms 2009a; Pinder and Quinlan 2015). This review focuses
on the fauna of Australian athalassic salt lakes but includes data

for athalassic species in coastal lakes.
Salt lakes are physically extreme environments, particularly

those lakes that are either highly saline or only hold water

intermittently (Williams 1985). The physical characteristics of

Australian salt lakes are well established and were reviewed

recently by Mernagh et al. (2016). Athalassic salt lakes mostly
form in locations with semi-arid to arid climates where evapo-
ration exceeds precipitation and drainage is impeded or fully

endorheic (Williams 1998a). These lakes vary from expansive
playas with long geological records to small, recently formed
ponds and wetlands (De Deckker 1983b) that have become
saline as a result of the intrusion of saline groundwater. Most

Australian salt lakes are alkaline and ionically dominated by
NaCl (Bayly and Williams 1966), but some are naturally acidic
and can have a pH as low as 3 (Timms 2009b). Some salt lakes

hold water permanently but most are either seasonal (usually
filling with winter–spring rainfall and drying out over summer–
autumn) or episodic (filling only after unseasonal rainfall;

Williams 1998a, 1998b).
The terms ‘halotolerant’, ‘halophile’ and ‘halobiont’ are

commonly used to classify the aquatic fauna of salt lakes based
on their relationship with salinity, although these terms are

variously used (Bayly 1972; Williams 1981; Timms 1983;
Hammer 1986; Pinder et al. 2002). Herein, ‘halotolerant’
describes biota that predominately occur in fresh water

(salinity ,3 g L�1) but occasionally occur in waters with
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salinity up to ,20 g L�1, whereas ‘halophiles’ are biota that
occur mostly in athalassic waters (salinity.10 g L�1; Williams

1981). We have not attempted to distinguish between ‘high-
salinity’ (sometimes called halobiontic) and ‘low-salinity’
(sometimes called halophilic) taxa due to varying definitions

(e.g. Timms 1983 v.Williams 1981 v. Bayly 1972) and because
many taxa do not neatly fit into one or the other category. It is
acknowledged that our definition neglects some species that

occur in salt lakes at salinities .3 g L�1 but typically less than
10 g L�1 that have been described as halophilic elsewhere (e.g.
Eocyzicus spp. and Branchinella spp. in Timms 2007, 2014).

Australian salt lakes support unique communities. Some

invertebrate groups, particularly crustaceans, are well repre-
sented, withmany species, genera and even one family restricted
to salt lakes (Halse and McRae 2004; Timms 2014). The

gastropod Coxiella (which includes the subgenus Coxielladda)
is unique to these environments and the only gastropod genus
anywhere in the world to consist entirely of halophilic species

(Williams and Mellor 1991). Insects are commonly encoun-
tered, but, with few exceptions, these are halotolerant rather than
halophilic (Williams and Kokkinn 1988; Timms 1993; Pinder
et al. 2005). Fish are rare and are mainly found in low-salinity

permanent lakes, but may occur in large episodic lakes during
heavy filling events when these lakes become connected to
refugia such as mound springs supporting fish (e.g. Crateroce-

phalus eyresii (Steindachner) in Lake Eyre and Lake Torrens;
Williams and Kokkinn 1988; Williams et al. 1998). Numerous
waterbirds opportunistically use salt lakes for feeding and even

breeding (Weston 2007; Pedler et al. 2018) and some, such as
banded stilts Cladorhynchus leucocephalus (Vieillot), are
largely restricted to these lakes (Pedler et al. 2014). These birds

are probably important vectors of dispersal for salt lake inverte-
brates (Green et al. 2008; Sánchez et al. 2012). Australian salt
lakes also have distinctive fringing plant communities domi-
nated by genera such as Tecticornia (samphires) and Frankenia

(sea heath; Lyons et al. 2004). Salt-tolerant macroalgae such as
Characeae and the vascular plants Ruppia and Lepilaena form
thick mats in mildly saline waterbodies (Porter 2007; Casanova

2013), and microalgae such as Dunaliella thrive in hypersaline
conditions, where they give lakes a characteristic pink hue
(Teller 1987).

Salt lakes and their unique biota are threatened globally
(Williams 2002). In Australia, reduced rainfall, associated with
anthropogenic climate change, is having a widespread and
dramatic effect as it causes lakes to fill less often, with shorter

hydroperiods (i.e. periods during which water is present) and
higher salinities (Hughes 2003; Nielsen and Brock 2009). These
changes can have a profound effect on community composition,

especially in previously low-salinity or seasonal lakes (Williams
2002; Pinder et al. 2005). Secondary salinisation, agricultural
and mining activities, groundwater extraction, diversion of

surface flows and pollution also present significant threats to
Australian salt lakes and have already deleteriously affected
these environments in some areas (Williams 1995; Timms

2005). For example, increased salinisation, changes to hydro-
period and, in some cases, acidification associated with second-
ary salinisation have diminished the faunal communities of
some salt lake environments on the Eyre Peninsula, South

Australia (Williams 1984; Timms 2009a) and in the Wheatbelt

region of Western Australia (Cale et al. 2004). In addition to
expirations, there is a risk that these hydrological changes may

lead to the extinction of entire species, at least in Western
Australia, without intervention (Halse et al. 2003). Despite the
unique biodiversity and apparent threats, very little has been

done to assess the conservation status of salt lake invertebrates
(Timms et al. 2009).

Conservation planning should be informed by evidence

(Sutherland and Wordley 2017). To effectively assess and man-
age threats to Australian salt lake environments, it is important to
synthesise the available information on these environments and
use this information to document general trends and highlight

critical knowledge gaps. There is, however, no current systematic
evaluation of the state of knowledge of the biota of Australian salt
lakes. De Deckker (1983b) reviewed the history, chemistry and

biota of Australian salt lakes, but our knowledge of these systems
has since improved. There have been significant advances in
knowledge of the systematics and biology of a range of taxa

(Hebert andWilson 2000; Halse and McRae 2004; Timms 2014)
and expanded coverage of some regions (Pinder et al. 2002;
Timms et al. 2006; Timms 2008). The study reviews the
current state of knowledge of halophilic macroinvertebrates of

Australian salt lakes. It focuses on crustaceans and gastropods
because they are an important and conspicuous component of
these lakes.

The specific aims of this study were to: (1) synthesise
knowledge of halophilic crustaceans and gastropods from Aus-
tralian salt lakes, focussing on information published since De

Deckker (1983b); (2) draw attention to important issues in
Australian salt-lake conservation; and (3) identify general
trends, gaps in knowledge and directions for future research in

this area.

Materials and methods

This study reviews what is known about halophilic macro-
invertebrates from Australian salt lakes, focusing on data pub-
lished since DeDeckker’s (1983b) review. For quality control, it

mainly relies on peer-reviewed studies, but unpublished theses
and reports were used when they contained crucial information
that was not otherwise available.

Halophilic macroinvertebrates were identified from pub-
lished ecological studies of Australian salt lakes (Table 1) and
from unpublished data held by the Western Australian Depart-
ment of Biodiversity, Conservation and Attractions (DBCA).

The dataset analysed during this study is available from the
corresponding author on reasonable request. In all, 79 described
halophilic species in 23 genera were identified. Almost all

species were either crustaceans or gastropods. Insects were
excluded because most species in Australian salt lakes are
halotolerant rather than halophilic (Timms 1993; Pinder et al.

2005). Rotifers have also been excluded on the basis that they
are microscopic rather than macroscopic (Blinn et al. 2004).

Various methods were used to find articles on the biology of

the identified halophiles, including searches for keywords ‘salt’,
‘saline’, ‘lake’, ‘wetland’, ‘Australia’, ‘invertebrate’, ‘fauna’,
‘halophile’, ‘halophilic’, ‘halobiont’, ‘crustacean’ and ‘gastro-
pod’ on Scopus and Google Scholar databases. Both databases

were last accessed on 1 December 2020.
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This review includes salinity data from multiple studies.
These studies typically estimated salinity (the sum of all ion
concentrations per unit solution) from measurements of con-
ductivity (which has particular utility in Australian salt lakes

because most have a homogenous ionic composition; Bayly and
Williams 1966) or as gravimetric total dissolved solids (TDS;
whichmay include small but variable amounts of organicmatter

that can result in exaggerated salinity values; Williams and
Sherwood 1994). Salinity data reported from gravimetric deter-
mination (TDS) in the source article have been converted to

grams per litre of dissolved solutes in this review to facilitate
comparisons across different studies. This was done using a
correction factor of 0.91, which is based on the highly correlated
relationship between salinity estimated using conductivity

and salinity estimated from gravimetric methods (Bayly and
Williams 1966).

Halophilic biota: Crustacea

Anostraca

Three anostracan genera,Parartemia, Branchinella and Artemia,

occur inAustralian salt lakes (Pinceel et al. 2013a; Timms 2014).

Parartemia

The biology of Parartemia has been reviewed recently by

Timms (2014), so only general points are discussed here.
Taxonomy. Parartemia, the only genus in the family Para-

rtemiidae, is unique to Australia and is composed exclusively of

halophilic species (Table 2). With 18 described and one unde-
scribed species (Timms 2014), it is one of the most speciose
genera in salt lakes.

The taxonomy of Parartemia is relatively advanced com-
pared with that of most other Australian salt lake invertebrates,
although a substantial number of species (nine) have only been
described in the past 10 years (Table 2) and another species is yet

to be described (Timms 2014). The most recent taxonomic
assessments of Parartemia are provided by Timms and Hudson
(2009), who described four new species from South Australia,

and Timms (2010b), who described six new species from

Western Australia. The taxonomic work is based on morphol-
ogy, but Remigio et al. (2001) used variation in the mitochon-
drial 16S gene to confirm that the eight species described at that
time were genetically distinct and as evidence of undiscovered

species in Lake MacLeod (GenBank Accession number
AY014794) and another in ‘Scadden East’ (GenBankAccession
number AY014795) in Western Australia. Whether the unde-

scribed species of Remigio et al. (2001) are populations of
species subsequently described by Timms (2010b) is not clear.

Ecology. Species diversity in Parartemia decreases from

western to eastern Australia, with Western Australia having 13
described species (10 endemics) compared with 6 (3 endemics)
in South Australia and 2 (no endemics) in the eastern states
(Table 2). The ubiquity of species varies, ranging from geo-

graphically widespread and known from many sites (e.g. Para-
rtemia cylindriferaLinder,Parartemia longicaudataLinder and
Parartemia zietziana Sayce) to only known from one or a few

sites in a single region (e.g. Parartemia triquetra Timms &
Hudson and Parartemia auriciforma Timms & Hudson; Timms
et al. 2009). Knowledge of the distributions of some species is

inadequate, especially those like P. triquetra and P. aurici-

forma, which occur in remote areas that have been poorly
surveyed (Timms and Hudson 2009; Timms 2010b).

Parartemia species occur mainly in ephemeral and seasonal
natural salt lakes, surviving dry periods as drought-resistant
cysts (Timms 2012a). They are strong hypoosmotic regulators
(Geddes 1981) and the most salt-tolerant of the endemic

invertebrates in Australian salt lakes (Timms 2014), but little
is known about the physiological basis for this. All 15 species for
which relevant data are available have been collected from lakes

with salinities .90 g L�1, and 8 of these were from lakes with
salinities in excess of 200 g L�1 (Table 2). Laboratory experi-
ments by Manwell (1978) suggested that one species,

P. zietziana, was not able to withstand the highest salinities
tolerated byArtemia, possibly due to a lesser capacity to produce
sufficient haemoglobin to compensate for low oxygen concen-

trations at very high salinities. Based on field data, the salinity
tolerances of Parartemia species are very broad and overlap
(Table 2). Nevertheless, species rarely co-occur in the same

Table 1. List of field studies used to identify halophilic invertebrate species for each Australian state

Western Australia South Australia Victoria Queensland New South Wales Tasmania

Geddes et al. (1981) Bayly and Williams (1966)A Geddes (1976) Timms (1987) Timms (1993) De Deckker and Williams (1982)

Halse (1981) Bayly (1970) Timms (1983) Timms (1998) Timms (2018)

Edward (1983) Bayly (1976) Williams et al. (1990) Timms (2001)

Doupe and Horwitz (1995) De Deckker and Geddes (1980) Williams (1995) Timms (2008)

Halse et al. (1998) Williams (1984)

Halse et al. (2000a) Williams and Kokkinn (1988)

Cale et al. (2004) Williams et al. (1998)

Pinder et al. (2005) Timms (2009a)

Timms et al. (2006) Timms et al. (2014)

Timms (2009b)

Pinder et al. (2010)

Pinder et al. (2012)

Pinder and Quinlan (2015)

Quinlan et al. (2016)

ABayly and Williams (1966) also included some lakes in Victoria
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waterbody and a combination of physical factors, such as water
duration, filling pattern, pH and salinity, are suggested to be

important in determining species distributions (Timms 2009c;
Timms et al. 2009). In addition, Parartemia eggs sink and
become bound up in sediments, reducing dispersal ability
(Timms et al. 2009). The majority of species live in alkaline

waters, but Parartemia mouritzi Timms, Parartemia contracta

Linder and Parartemia acidiphila Timms & Hudson are known
to inhabit acidic lakes (Conte and Geddes 1988; Timms 2009b,

2010b; Timms and Hudson 2009).
Life history. Sexes are separate for all Parartemia (Timms

2014). Detailed lifecycle and reproductive information is avail-

able only for P. zietziana (Marchant and Williams 1977a),
which reproduces ovoviviparously, producing multiple cohorts
so long as conditions are favourable (Timms 2012b) and uses
oviparous reproduction to produce highly resistant cysts when

conditions become unfavourable (Geddes 1976; Marchant and
Williams 1977b). The cysts of Parartemia laticaudata and
Parartemia veronicae have the same stress proteins (p26,

artemin and heat shock protein 70) that enable Artemia (cysts)
to survive severe desiccation (Clegg and Campagna 2006). Cyst
hatching appears to follow a ‘bet-hedging’ strategy, whereby

some eggs hatch within hours of a filling event but not all eggs
hatch at once (in case the water does not persist long enough to
allow reproduction; Timms 2012b).

Trophic ecology. Dietary information is available only for
P. zietziana, which selectively feeds on benthic or suspended
particles with a high organic content (Marchant and Williams
1977b). It has been assumed that other species feed similarly

(Timms 2014). Timms (2012a) suggested that Parartemia

mainly feed on organic matter that is resuspended in the water
column, which provides limited opportunity for niche diversifi-

cation based on food resources. Timms (2012a) hypothesised

that this may give a species established in a lake a competitive
advantage over a species that recently arrives, and hence explain

why lakes typically only contain one Parartemia species.
Exactly how this may give a resident species a competitive
advantage is not clear.

Parartemia are an important food source forwaterbirds, such as

the banded stilt, that may fly thousands of kilometres to take
advantage of boomingParartemiapopulations (Pedler et al. 2018).

Conservation status. Parartemia is unique among Austra-

lian salt lake genera in that its conservation status has been
assessed, at least in Western Australia (Timms et al. 2009). The
dominant threats to Parartemia are habitat degradation, includ-

ing acidification and changes to hydrology (especially pro-
longed inundation) from secondary salinisation (Timms et al.
2009). Parartemia contracta is currently the only species listed
by the International Union for Conservation of Nature (as

vulnerable), although it is one of the more common species
and may not be as at risk as previously thought (Timms et al.
2009). The species that are regarded as at most risk (Parartemia

extracta and Parartemia boomeranga) are only known from the
Wheatbelt region, where altered hydrology and secondary
salinisation is widespread (Halse et al. 2003). Timms et al.

(2009) recommended that P. extracta be considered as vulnera-
ble because it has disappeared frommany sites and is secure only
in lakes in the Jurien Bay area (Fig. 1; Timms 2014; Pinder and

Quinlan 2015). Another species, namely P. boomeranga, may
be extinct (Timms 2012b) because it has not been recorded
recently and all the lakes this species was known to occur in are
affected by secondary salinisation (Fig. 1; Timms et al. 2009).

Concerns have also been raised for P. mouritzi and Parartemia

bicorna, both of which are only known from a few lakes that are
currently being affected by either secondary salinisation ormine

dewatering discharge (Timms 2014).

Table 2. Species of Parartemia with their reported salinity range (based on field observations) and geographic distributions

Data from Timms (2014). WA, Western Australia; SA, South Australia; Vic., Victoria; Qld, Queensland; Tas., Tasmania; NSW, New South Wales;

NT, Northern Territory; NA, no available data

Species Description Salinity range (g L�1) Distribution

Parartemia

acidiphila Timms and Hudson (2009) 35–210 South-western WA, south-eastern SA

auriciforma Timms and Hudson (2009) NA Central SA

bicorna Timms (2010b) 22–105 Central WA

boomeranga Timms (2010b) 50–120 South-western WA

contracta Linder (1941) 84–240 South-western WA

cylindrifera Linder (1941) 3–123 South-western WA, south-eastern SA

extracta Linder (1941) 27–100 South-western WA

informis Linder (1941) 30–186 South-western WA

laticaudata Timms (2010b) 8–141 North-west WA, central WA, south-western NT

longicaudata Linder (1941) 41–240 South-western WA

minuta Geddes (1973) 2–225 North-western NSW, south-eastern Qld, central SA, Vic.

mouritzi Timms (2010b) 33–95 South-western WA

purpurea Timms (2010b) 20–235 South-western WA

serventyi Linder (1941) 15–262 South-western WA, central WA

triquetra Timms and Hudson (2009) NA Central SA

veronicae Timms (2010b) 74–225 Central WA

yarleensis Timms and Hudson (2009) NA Central SA

zietziana Sayce (1903) 27–353 South-eastern SA, Vic., Tas.
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Artemia

The genusArtemia comprises seven (Rogers 2013) or possibly
nine (Naganawa and Mura 2017) species. Although Artemia is

widespread and common in hypersaline lakes in most continents,
onlyArtemia franciscanaKellogg andArtemia parthenogenetica
Bowen& Sterling are present in Australia (McMaster et al. 2007;
Asem et al. 2018). A. franciscanawas introduced to Australia by

humans to aid in salt production and is overwhelmingly restricted
to constructed evaporative ponds (salt works; Timms andHudson
2009; Asem et al. 2018).A. parthenogeneticamay have also been

introduced into salt works by humans (McMaster et al. 2007), but
its presence in a range of lakes in south-western Australia could
be the result of intercontinental bird-mediated dispersal followed

by local dispersal (McMaster et al. 2007).
All Artemia species, including the two species found in

Australia, have high dispersal capacity because their cysts float

and are effectively transported by animals andwind (Timms and
Hudson 2009). Despite this, A. franciscana does not seem to be
spreading (Timms and Hudson 2009; Asem et al. 2018), but the
distribution of A. parthenogenetica is increasing in south-

western Australia, where it is mostly colonising degraded salt
lakes (McMaster et al. 2007). It is unclear how the further spread
of A. parthenogenetica may affect Parartemia species, but

currently A. parthenogenetica appears limited to lakes not
already occupied by Parartemia (McMaster et al. 2007).

Branchinella

Branchinella, with 40 described species, is the most speciose
of the Australian anostracan genera (Timms 2015a, 2015b).
Many species have only recently been described (Timms

2015b), with cryptic lineages identified using genetic data
(Pinceel et al. 2013b). Only two species, Branchinella bucha-

nanensis Geddes and Branchinella simplex Linder, are halo-
philes; the other species are either strictly freshwater or tolerant
of only low levels of salinity (Pinceel et al. 2013a; Timms 2014).
Further work is needed to determine whether Branchinella

halsei Timms is conspecific with B. simplex, because these
taxa are morphologically distinct but molecularly congruent
(Pinceel et al. 2013b).

B. buchananensis occurs, usually at salinities of ,15 g L�1

(limit 42 g L�1; Timms 2009c), in Queensland and north-
western New SouthWales, where it is listed as vulnerable under

the Fisheries Management Act 1994 (Timms 2014). B. simplex
is known, usually in salinities of ,30 g L�1 (limit 62 g L�1;
Timms 2015b), from lakes in central Western Australia, north-
ern South Australia and the southern Northern Territory.

The results of a molecular phylogeographic study suggest
that the two halophilic species have evolved from different
lineages (Pinceel et al. 2013b). B. buchananensis and four

halotolerant species comprise a clade that is estimated to have
evolved from a freshwater ancestor somewhere between c. 62
and 23 million years ago, which coincides with increasing

availability of temporary saline aquatic habitats in Australia
(van de Graaff 1977; Pinceel et al. 2013a).

Notostraca

Triops

Both living notostracan genera, Triops and Lepidurus, occur
in Australia (Pinder et al. 2005), although only Triops is known
from salt lakes (Timms 2009c). Until recently, Triops was

Lake Carey

0 100 km

Jurien Bay

Extant populations

P. bicorna P. boomeranga 200–300

400–600

1000�

P. extractaP. extracta

P. mouritzi

Extinct populations Average rainfall (mL)

Perth

Fig. 1. Reported distributions of four species ofParartemia fromWestern Australia that have

been identified as of conservation concern. Likely extinct populations of P. boomeranga and

P. extracta are displayed as open symbols. Data from Timms et al. (2009).
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thought to be represented in Australia by a single, widespread
and morphologically variable species (Triops australiensis

Spencer & Hall; Timms 2012a). However, a recent molecular
appraisal has revealed the presence of a range of putative new
species and predicted that further diversity would be found once

lakes in central and western Australia are adequately surveyed
(Murugan et al. 2009; Meusel and Schwentner 2017). Little
ecological information is available for halophilic Triops except

that undescribed species have been reported from Lake Carey
(salinity 11.6–84.3 g L�1, mean 30.3 g L�1 from 10 records;
Timms et al. 2006), the Esperance region in Western Australia
(salinity 27 and 31 g L�1, 2 records; Timms 2009b), the Paroo

wetlands in New South Wales (salinity 0.3–19.3 g L�1; Timms
1993) and Lake Torrens in South Australia (salinity,16 g L�1;
Williams et al. 1998).

Cladocera

The bulk of Cladocera that occur in inland waters in Australia
are restricted to fresh water, but three groups have representa-
tives in salt lakes. These groups comprise: (1) six species of

Daphniopsis (or Daphnia; see below); (2) two species of
Daphnia (Daphnia saliniferaHebert andDaphnia neosalinifera
Hebert) from the Daphnia carinata (King) subgenus; and (3)

three species of chydorid:Moina baylyi Forró,Moinamongolica

Daday and Extremalona timmsi Sinev & Shiel. All species are
endemic to Australia except for M. mongolica, which is also
known from northern Africa, Europe, the middle-east, Russia

and China (He et al. 2001), notwithstanding that molecular data
suggest that there are many unrecognised species of Moina

(Bekker et al. 2016).

Colbourne et al. (2006) collected D. salinifera from Lake
Wyora in Queensland and D. neosalinifera from Colac in
Victoria and suggested that these species are usually found at

lower salinities than the Australian species of Daphniopsis.
However, apart from this, there are virtually no published data
on the former two species, and they are not considered any
further herein.

Daphniopsis

Taxonomy. Historically, the daphniids in Australian salt

lakes were classified in the genus Daphniopsis (Sars) and just
one species, Daphniopsis pusilla (Serventy), was recognised.
Six species, all supported by genetic data (Hebert et al. 2002),
have now been described (Sergeev and Williams 1985; Sergeev

1990a, 1990b; Hebert and Wilson 2000). Furthermore, one of
six ephippia morphotypes identified by Kokkinn and Williams
(1987), namely ‘morphotype six’ from Lake Eyre South, has not

been accounted for by any described species (Hebert andWilson
2000), and there are reports of undescribed species from salt
lakes in theWheatbelt region inWestern Australia (Pinder et al.

2005) and the Eyre Peninsula in South Australia (Timms
2009a). The diversity ofDaphniopsis in Australia is high, given
thatDaphniopsis is represented by a single species in either fresh

or saline water in other regions where it occurs (Bayly 1995;
Hebert and Wilson 2000; Gibson and Bayly 2007). Because all
the described Australian species form a monophyletic group
relative to other daphnids (Colbourne et al. 2006), it appears that

this group has undergone a significant radiation in Australia.

The taxonomic status of Daphniopsis, specifically its rela-
tionship to the genusDaphnia, has long been debated (Schwartz

and Hebert 1984). Benzie (2005) concluded thatDaphniopsis as
a whole is not morphologically or genetically distinct enough to
warrant genus status and suggested that this taxon should be

subsumed into theDaphnia subgenus Ctenodaphnia. Data from
threemitochondrial genes support the view thatDaphniopsis is a
component of the genus Daphnia (Colbourne et al. 2006).

Nevertheless, all the Daphniopsis species that were included
in the above genetic study formed a monophyletic group, except
forDaphniopsis ephemeralis (Schwartz & Hebert), which is the
only representative of this taxon from the Northern Hemisphere.

Most recent studies retain the name Daphniopsis (Säwström
et al. 2009; Ismail et al. 2010a, 2011a; McCloud et al. 2018;
Wang et al. 2019) and this practice has been adopted herein.

Ecology. Given that several species have only been
recently described, it is difficult to gauge the reliability of
historical accounts of species distributions, although, based on

data from recent field records, it appears that south-western
Australia has the greatest diversity (Hebert and Wilson 2000).
All six described species have been found from at least two sites
in this region and two, Daphniopsis wardi (Hebert & Wilson)

and Daphniopsis pusilla, are endemic. Historical reports of the
latter species from other parts of southern Australia predate the
current taxonomy and are due to misidentification (Hebert and

Wilson 2000). Another two species,Daphniopsis quadrangulus
(Sergeev) and Daphniopsis australis (Sergeev & Williams),
predominately occur in lakes in south-eastern Australia, but

each has been recorded twice in south-western Australia
(Fig. 2a). Daphniopsis truncata (Hebert & Wilson) and Daph-

niopsis queenslandensis (Sergeev) are common in Western

Australia and South Australia, and D. queenslandensis also
occurs in New South Wales and Queensland (Fig. 2b).

Osmoregulation has been studied in two species of Daph-
niopsis (D. pusilla andD. australis). Both were determined to be

osmoregulators, where the haemolymph is hyperosmotic to the
environment at salinities under 8 g L�1, isosmotic in waters with
salinity 8–20 g L�1 and hypoosmotic in waters with salinity

.20 g L�1 (Aladin and Potts 1995).
All Australian species of Daphniopsis are halophilic.

Field salinity data suggest that most species are common in

17–30 g L�1, but nevertheless the salinity ranges ofmost species
are very broad (Table 3). The salinity distribution of one species,
D. quadrangulus, is mostly unknown because there are only two
reported occurrences of this species (Table 3). Some reports of

species from very high salinities should be viewed with caution
because they may relate to preserved dead or dying specimens.
For example, experimental data indicate that D. australis

experiences significant mortality at salinities below 5 and above
33 g L�1 (Ismail et al. 2010a), suggesting that reports of live
D. australis at a salinity of 154.1 g L�1 by Sergeev andWilliams

(1985) are unlikely.
Experimental data indicate that growth, reproduction and

longevity in D. australis are influenced by both temperature

and salinity, but the former is especially important between
16 and 258C and the latter is especially important at salinities of
17–27 g L�1 (Ismail et al. 2011b). D. australis experienced
significant mortality at temperatures above 288C (Ismail et al.

2010a), which is consistent with field observations that it occurs
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Species Average rainfall (mL)

Species Average rainfall (mL)
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Fig. 2. Recent reported distributions of Daphniopsis in Australia. (a) D. australis, D. pusilla, D. quadrangulus and

D. wardi; (b)D. queenslandensis andD. truncata. Data are from Edward (1983), Sergeev andWilliams (1985), Sergeev

(1990a, 1990b), Timms (1993, 1998, 2001, 2009a, 2009b, 2018), Williams et al. (1998), Halse et al. (2000a, 2000b),

Colbourne et al. (2006) and unpublished records from theWestern Australian Department of Biodiversity Conservation

and Attractions.
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seasonally in the winter–spring (Campbell 1994). Similarly,
D. queenslandensis and D. truncata have been reported to be

more abundant in winter–spring than in summer–autumn
(Timms 2008, 2009b, 2018), despite minimal differences in
salinity between seasons.

Life history. Like most daphniids, Australian Daphniopsis

are cyclical parthenogens, although there are interspecific hybrids
that reproduce by obligate parthenogenesis (Hebert and Wilson
2000). The switch from parthenogenesis to sexual reproduction

and the production of desiccation-resistant ephippial eggs is
trigged by unfavourable conditions, possibly one (or a
combination) of low food availability, high population density,

high salinity and high temperature (Sergeev and Williams 1983;
Williams 1986; Ismail et al. 2010b). Detailed lifecycle data are
available only for D. australis under laboratory conditions, as
described by Ismail et al. (2010b). These data suggest that the

parthenogenetic females usually live for 20–30 days, take 6–7
days to reach maturity and produce,10–12 clutches during their
lifetime. The ephippial females have a shorter lifespan and

usually produce a maximum of two diapausing eggs. These
females are produced under conditions of high population density
and can switch from sexual to parthenogenetic reproduction,

particularly at low and high food densities in the presence of
maleswhose persistent attempts atmatingmay stress the females.

Trophic ecology. Little is known about the trophic ecology

of Daphniopsis in Australian salt lakes. Based on information
for other species of Daphniopsis (Säwström et al. 2009) and
Daphnia (Taipale et al. 2012), these species likely consume
microalgae and bacteria and are important herbivores in the lake

food webs. Ismail et al. (2011a) fed different combinations of
three microalgae species commonly used in aquaculture to
D. australis and found that the composition of algae in the diet

influenced the growth and reproductive output of individuals.
Based on detailed observations of swimming behaviour under
laboratory conditions, McCloud et al. (2018) developed the

following hypotheses forD. australis: (1) males mainly occur in
the water column, where they filter feed; (2) parthenogenetic
females spend most of their time close to the bottom and mainly

rely on benthic resources; and (3) the habits of the ephippial
females are intermediate between those of the males and
parthenogenetic females. The ostracod Australocypris insularis
is known to predate on Daphniopsis (Campbell 1995).

Chydorids

The endemic halophile M. baylyi is widespread in central
Australian salt lakes (Timms 2007) and the predominantly

Northern Hemisphere M. mongolica has been encountered once
in a coastal saline lake near Carnarvon in Western Australia
(Fig. 3; Halse et al. 2000a). Very little information is available for
M. baylyi other than it is commonly reported at salinities between

2.9 and 60 g L�1 and up to 86.7 g L�1, and is more common
during the summer rather than winter filling of lakes (Timms
1987;Williams andKokkinn 1988; Timms 1993, 2001;Williams

et al. 1998). The monotypic E. timmsi is the most recently
described halophilic cladoceran from Australia (Sinev and Shiel
2012) and is known only from two acidic salt lakes near Esper-

ance, Western Australia (as Alona spp. in Timms 2009b).

Ostracoda

A diverse and heterogeneous range of halophilic ostracods
occurs in Australian salt lakes. These ostracods can be divided
into two main groups: (1) giant ostracods from the Australian

endemic subfamily Mytilocypridinae (herein called giant
ostracods); and (2) non-Mytilocypridinae ostracods (herein
called small ostracods).

Giant ostracods

The giant ostracods are.3 mm in length and are a conspicu-
ous component of the biota of Australian salt lakes.

Taxonomy. The morphotaxonomy of giant ostracods is
relatively well established from the early work of De Deckker

(1978, 1981a) and more recent work by Halse and McRae
(2004). Halse and McRae (2004) added 2 new genera and 6
new species, bringing the total to 21 described species in 6

genera, although there are uncertainties regarding the status of a
few described species (e.g. whether Mytilocypris tasmanica

(McKenzie) and Mytilocypris praenuncia (Chapman) should

be synonymised; Finston 2000). There are also reports of an
undescribed species ofMytilocypris (Pinder et al. 2010; Quinlan
et al. 2016) and of Lacrimicypris (L. Bourke, K. Brown, and G.

Paczkowska, unpubl. data, 2018), both fromWestern Australia.
Further species are likely to be found, particularly in remote
areas (Halse and McRae 2004). Other than for some allozyme
data that have helped resolve species questions in Mytilocypris

Table 3. Salinity records for six species of Australian Daphniopsis based on field measurements

Sources are as follows: 1, Cale et al. (2004); 2, Edward (1983); 3, Halse et al. (2000a); 4, Pinder et al. (2005); 5, Pinder and Quinlan

(2015); 6, Sergeev andWilliams (1985); 7, Timms (1993); 8, Timms (1998); 9, Timms (2001); 10, Timms (2009a); 11, Timms (2009b);

12, Western Australian Department of Biodiversity Conservation and Attractions unpublished records; 13, Williams et al. (1998)

Species Salinity (g L�1) Sources

Median (minimum–maximum) Number of records

Daphniopsis

australis 17.2 (4–154.1) 16 4, 6, 10, 12

pusilla 29.7 (0.6–77.3) 42 1–4, 12

quadrangulus 22.7 (7.6–37.8) 2 4, 12

queenslandensis 20 (1–145.6) 45 1, 4, 7–9, 12, 13

truncata 24.1 (0.04–109.2) 60 1, 4, 5, 10–12

wardi 18.9 (5–245.7) 20 1, 4, 5, 12
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(Finston 2000; Halse andMcRae 2004), the current taxonomy of

giant ostracods is based onmorphological characters, mainly the
structure of the hemipenis.

Although some giant ostracod species are known only from
fresh or low-salinity waterbodies, most are halophiles (Table 4).

These halophiles occur in four of six genera: Australocypris
(all seven species), Repandocypris (all two species), Mytilo-

cypris (five of seven species, assuming M. praenuncia and

M. tasmanica are distinct) and Trigonocypris (one of two
species; Table 4). The broad taxonomic distribution of halo-
philic, low-salinity and freshwater forms suggests that halophily

has probably evolved more than once in the Mytilocypridinae.
Ecology. Other than for some taxonomic and distribution

information, very little is known about the ecology of giant
ostracods, even for Australocypris, which is a very diverse,

widespread and abundant component of the salt lake ecosystems.
The highest diversity of halophilic giant ostracods is in

Western Australia (Table 4), particularly for Australocypris,

which shows a marked decrease in species richness and ende-
mism from west to east (Table 4). Most halophilicMytilocypris

species occur broadly across Australia, although M. praenun-

cia–tasmanica (see above) has only been reported from south-
eastern Australia (Table 4). Repandocypris has one species only
known from Western Australia (Repandocypris austinensis

Halse & McRae) and another only known from South Australia
(Repandocypris gleneagles Halse & McRae; Table 4). The

halophilic species of Trigonocypris (Trigonocypris globulosa

(De Deckker)) is found in Western Australia, South Australia,
New South Wales and Queensland (Table 4). Most halophilic
species of giant ostracod are broadly distributed, although a few
seem to have a very narrow range (Halse and McRae 2004).

Australocypris mongerensis Halse & McRae is only known
from a small mildly saline claypan next to Lake Monger in
Western Australia (Halse and McRae 2004). However, know-

ledge of species distributions, particularly for those species
first described by Halse and McRae (2004) like A. mongerensis,
is likely to be incomplete.

With the exception ofA.mongerensis, the halophilic species of
giant ostracod have been collected from a broad and overlapping
range of salinities (Table 4). Eight species have been recorded
from salinities .100g L�1 (Table 4). On average, Mytilocypris

species tend to occur in a lower and narrower range of salinities
than Australocypris species (Table 4). However, the salinity
distribution of Mytilocypris mytiloides (Brady) is very broad

and extends into highly saline water (Table 4). Both species of
Repandocypris have only ever been found at salinities.40g L�1

(Table 4), although they are only known from a few sites (Halse

andMcRae 2004). The salinity range of T. globulosa is broad and
exceeds 100 g L�1. Based on data for M. praenuncia, halophilic
giant ostracods are osmoregulators (Aladin and Potts 1996).

All giant ostracods occur in neutral or slightly alkaline
waters, but the distributions of A. insularis (Chapman),

Species Average rainfall (mL)
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Fig. 3. Reported distributions of halophilic species of Moina in Australia. Data are from Timms (1987, 1993,

1998, 2001, 2018), Williams and Kokkinn (1988), Halse et al. (1998), Williams et al. (1998), Timms et al. (2006)

and unpublished records from the Western Australian Department of Biodiversity Conservation and Attractions.
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Australocypris bennetti Halse & McRae and M. mytiloides

extend into acidic waters and all have been collected from
waters with a pH ,4 (Cale et al. 2004; Halse and McRae
2004; Timms 2009b). It is not known how these ostracods can

survive in such acidic conditions, which are expected to dissolve
the calcite carapace (De Deckker 2002).

Life history. All giant ostracods are dioecious and sexually

reproducing (De Deckker 1977, 1983a). Giant ostracods pro-
duce desiccation-resistant eggs (Halse andMcRae 2004), which
re-establish populations after unfavourable or dry conditions

(De Stasio 1989) and likely facilitate dispersal through attach-
ment to or ingestion by waterbirds (De Deckker 1977; Green
et al. 2008). Specific information on the life history, reproduc-
tion and dispersal of giant ostracods is mainly restricted to

species of Mytilocypris (De Deckker 1977; Martens 1985;
Finston 2000, 2002, 2004, 2007).

Trophic ecology. Giant ostracods tend to actively swim in

thewater column (DeDeckker 1983a). This, and their large size,
is likely related to the general absence of fish predators in the salt
lakes or temporary freshwater waterbodies they inhabit (De

Deckker 1983a). The diet of giant ostracods is poorly under-
stood, although at leastA. insularis consumes detritus and is also
planktivorous and capable of significantly reducing the abun-
dance ofCalamoecia,Daphniopsis andDiacypris in microcosm

experiments (Campbell 1995).

Small ostracods

Taxonomy. Most of the small ostracods in Australian salt
lakes belong to the genera Diacypris and Reticypris. These
genera contain seven and five described species respectively

(Table 5), all of which are halophilic (De Deckker 1981b). They
comprise the subfamily Diacypridinae, which is endemic to

Australia, and have no known recent freshwater or marine

ancestors (De Deckker 1981b). The taxonomy of Diacypridinae
has not been addressed since De Deckker (1981a, 1981c), and
the extent to which it captures the biodiversity of this group is

not clear. There are reports of multiple undescribed species of
Diacypris and Reticypris, predominately from Western Austra-
lia (Williams 1984; Williams and Kokkinn 1988; Timms 1993;

Pinder et al. 2005; Quinlan et al. 2016). Species diagnoses
are based on the structure of the hemipenis (see fig. 13 in
De Deckker 1981c for Diacypris). Some characters, such as

variation in the carapace shape and size, are ecophenotypic at
least in several Diacypris and Reticypris species (De Deckker
1981c, 1981d).

Other small halophilic ostracods from Australian salt lakes

are the endemic Platycypris baueri (Herbst), Patcypris out-

back Halse & Martens and Trilocypris horwitzi Halse &
Martens, which are all in the cosmopolitan subfamily Cypri-

notinae (De Deckker and Geddes 1980; De Deckker 1981b;
Karanovic 2012; Halse and Martens 2019). In addition, Bill-
cypris davisae Halse &Martens has been collected from Lake

Lefroy and Lake Cowan in the Goldfields region of Western
Australia (Halse and Martens 2019). These are both large
hypersaline lakes and this species is likely halophilic, although
no information on the salinity at the time of its collection is

available (Halse and Martens 2019). The endemic species
Cyprideis australiensis Hartmann and Leptocythere lacustris

De Deckker have also been reported from Australian salt lakes

but, because these species have marine ancestries, they lack
desiccation-resistant eggs and so are restricted to lakes with
permanent water (De Deckker 1983a; Pinder et al. 2002;

Schön et al. 2017). A few species of Cyprinotus, most notably
Cyprinotus cingalensis Brady, which is widely distributed in

Table 4. Salinity and distribution data for halophilic Australian giant ostracod species

Source: M. Rahman, Murdoch University, unpublished data. NSW, New SouthWales; Qld, Queensland; SA, South Australia; Tas., Tasmania; Vic., Victoria;

WA, Western Australia

Species Salinity (g L�1) Distribution

Australocypris

beaumonti 40.9–73.7 South-western WA

bennetti 25–282.1 South-western WA, central WA

dispar 3.1–128 South-western WA, south-eastern SA

insularis 2–200.2 South-western WA, central WA, south-eastern SA, central SA, Vic.

mongerensis 11 Central-west WA

rectangularis 45.2–198.9 South-western WAA, south-eastern SA, Vic.

robusta 4.4–288 South-western WAA, central WAA, south-eastern SA, central SA, Vic., Tas.

Mytilocypris

ambiguosa 1.3–64.6 South-western WA, south-eastern SA, Vic.

henricae 1.5–20 South-western WAA, south-eastern SA, Vic., south-eastern NSW

mytiloides 1.3–172.9 South-western WA, central WA, south-eastern SA, Vic., Tas.

splendida 0.3–77.3 South-western WA, south-eastern SA, central SA, Vic., north-western NSW, south-eastern NSW, south-eastern Qld, central Qld

praenuncia 4–51.1 South-eastern SA, Vic., Tas.

tasmanica 4–9 South-eastern SA, Vic., Tas.

Repandocypris

austinensis 40–117 Central WA

gleneagles 42–51 Central SA

Trigonocypris

globulosa 0.7–122 South-western WA, central WA, north-western WA, central SA, north-west NSW, south-eastern Qld, central Qld

ARecorded once from that area.
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south-east Asia, are found in Australian salt lakes (Karanovic
2008), but usually in low-salinity waters, and are more
halotolerant than halophilic (Timms 1993, 2009b; Pinder

et al. 2002).
Ecology. Knowledge of the biology of the small halophilic

ostracods from Australian salt lakes is rudimentary. Two of the
Cyprinotinae species (P. outback and T. horwitzi) have only

recently been described (Halse and Martens 2019) and thus far
reported from only one or a small number of sites in Western
Australia. These species are not considered in the following

discussion. Understanding the ecology ofDiacypris and Reticypris
is complicatedby the fact that these taxa are not identified to species
level in many studies (Timms 1998, 2018; Timms et al. 2006).

All described Diacypris and Reticypris species, as well as
P. baueri, have broad and overlapping geographic distributions
(Table 5). All these species are known from both Western

Australia and South Australia, except for Reticypris herbsti

McKenzie (known from South Australia but not Western
Australia) and Reticypris pinguis De Deckker (known from
Western Australia but not South Australia; Table 5). Some of

these species also occur in other states, the exact details of which
vary from species to species (Table 5). Many species, such as
Diacypris phoxe De Deckker, R. herbsti, Reticypris kurdimurka

De Deckker, R. pinguis and Reticypris walbu De Deckker, are
patchily distributed (i.e. reported from a small number of sites
that are typically separated by hundreds or even thousands of

kilometres; Fig. 4).

Diacypris and Reticypris species generally have broad and
overlapping salinity tolerances, although some species are
more commonly found at higher salinities than others

(Fig. 5). For example, Diacypris spinosa De Deckker is more
common at lower salinities (median 14.7 g L�1) than Dia-

cypris whitei (Herbst) (median 69.6 g L�1), Diacypris fodiens
(Herbst) (median 73.6 g L�1) and R. herbsti (median

115.1 g L�1; Fig. 5; De Deckker and Geddes 1980; Pinder
et al. 2005). Other species, like Diacypris compacta (Herbst)
and P. baueri, occur across a broad range of salinities,

sometimes in excess of 200 g L�1 (Fig. 5; Williams et al.

1990). D. spinosa is an osmoregulator (Aladin and Potts
1996), and the other small halophilic ostracods are probably

likewise.
It is often said that dispersal of inland ostracods, including

halophilic small and giant species, is mediated by birds

(De Deckker 1977; Halse 2002). This is supported by the fact
that ostracod eggs have been hatched from the faeces of water-
birds that frequent the temporary wetlands in arid Australia,
although no information on the species hatched is available

(Green et al. 2008).

Copepoda

Copepods are widespread and common in Australian salt lakes,
with three orders, namely Calanoida (three species), Cyclopoida
(five species) and Harpaticoida (i.e.Mesochra baylyiHamond),

represented.

Table 5. State-based distributions of halophilic small ostracods in Australia

‘X’ indicates the species has been found in that state. NSW, New South Wales; Qld, Queensland; SA, South Australia; Tas., Tasmania; Vic., Victoria; WA,

Western Australia. Sources are as follows: 1, Cale et al. (2004); 2, De Deckker (1979); 3, De Deckker and Geddes (1980); 4, De Deckker (1981d); 5, De

Deckker (1981c); 6, De Deckker (1981a); 7, De Deckker andWilliams (1982); 8, Doupe and Horwitz (1995); 9, Edward (1983); 10, Geddes et al. (1981); 11,

Halse et al. (2000a); 12, Halse et al. (2000b); 14, Halse andMartens (2019); 15, Pinder et al. (2005); 16, Pinder et al. (2012); 17, Pinder andQuinlan (2015); 18,

Timms (1987); 19, Timms (1993); 20,Timms (2009a); 21, Timms (2009b); 22, Western Australian Department of Biodiversity Conservation and Attractions;

23, Williams (1984); 24, Williams et al. (1990); 25, Williams (1995); 26, Williams et al. (1998); 27, Williams and Kokkinn (1988)

Species WA SA Vic. NSW Qld Tas. Source

Diacypris

compacta X X X X 1, 3, 10, 15, 17, 18, 20–26

dictyote X X X 1, 5, 15, 19–23, 26

dietzi X X X X X 3, 7, 11, 19, 22, 24, 25

fodiens X X 3, 10, 15, 20, 22, 23

phoxe X X 5, 15, 22

spinosa X X X X 1, 5, 7, 8, 9, 12, 15–17, 20–24

whitei X X 3, 10, 15, 20–23, 26

Reticypris

clava X X X 1, 6, 10, 15, 17, 22–24, 26

herbsti X X X 3, 19, 24

kurdimurka X X 6, 22, 27

pinguis X X 4, 11, 15, 22

walbu X X X X 1, 2, 6, 15, 18, 19, 26

Platycypris

baueri X X X 1, 3, 10, 15, 17, 20–24, 26

Patcypris

outback X 14

Trilocypris

horwitzi X 14
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Species Average rainfall (mL)
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Fig. 4. Reported distributions of four species of Reticypris andDiacypris phoxe to illustrate the patchy occurrence of small ostracods.

Data are fromDe Deckker (1979, 1981a, 1981c, 1981d), De Deckker and Geddes (1980), Timms (1987, 1993), Williams and Kokkinn

(1988), Williams et al. (1990, 1998), Halse et al. (2000a) and unpublished records from the Western Australian Department of

Biodiversity Conservation and Attractions.
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Fig. 5. Salinity distributions of Diacypris and Reticypris species from field data. The red lines

indicate median values. Data are from De Deckker and Geddes (1980), De Deckker (1981a,

1981c, 1981d), Geddes et al. (1981), De Deckker andWilliams (1982), Edward (1983),Williams
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(1995), Halse et al. (2000a, 2000b), Cale et al. (2004), Pinder et al. (2005), Timms (2009a,
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Australian Department of Biodiversity Conservation and Attractions.
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Calanoida

Taxonomy. All three halophilic calanoids that occur in
Australian salt lakes belong to the genus Calamoecia. The

taxonomy of these species (Calamoecia salina (Nicholls),
Calamoecia clitellata Bayly and Calamoecia trilobata Halse

& McRae) has been unchanged since Bayly (1962), except for
the description of C. trilobata (Halse and McRae 2001). Other

Calamoecia occur in Australian freshwater environments
(Bayly and Boxshall 2009). Mitochondrial 16S and nuclear
28S gene data do not support suggestions, based on
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Fig. 6. Reported distribution of Calamoecia in Australia: (a) C. salina and C. trilobata and (b) C. clitellata. Data are

from Bayly andWilliams (1966), Bayly (1970), Geddes (1976), De Deckker and Geddes (1980), Geddes et al. (1981),

De Deckker and Williams (1982), Edward (1983), Williams (1984, 1995), Williams et al. (1990), Timms (2009a,

2009b), Timms et al. (2014) and unpublished data from the Western Australian Department of Biodiversity

Conservation and Attractions.
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morphological data (Bayly 1962), that the salt lake and fresh-
water species should be placed in different genera (Adamowicz

et al. 2010). In addition, these gene data suggest thatC. clitellata
colonised salt lakes via fresh water (Adamowicz et al. 2010)
rather than directly from the marine environment, as has been

suggested previously (Maly 1996).
Ecology. Both C. clitellata and C. salina occur throughout

mainland southern Australia; the former is also found in

Tasmania (Fig. 6). By contrast, C. trilobata is endemic to
Western Australia (Fig. 6a).

Despite being osmoconformers (Bayly 1972), these calanoids
are often reported from high salinities; for example, C. clitellata

and C. salina have been reported from salinities up to 132 and
195 g L�1 respectively (De Deckker and Geddes 1980; Timms
2009b). Both C. salina and C. clitellata are often found in the

same lake, with C. salina succeeding C. clitellata at higher
salinities, which is attributable to its higher hatching salinity
(61.4–82.9 g L�1) than that ofC. clitellata (20–71 g L�1; Geddes

1976). Less information is available for C. trilobata, which has
only been reported from acidic salt lakes (pH 2.96–6.3) and
primarily occurs at salinities of,31–63 gL�1 (Pinder et al. 2005;
Timms 2009b). Some records of C. trilobata at salinities of 160

and 240 g L�1 are probably of dead, brine-preserved individuals
(Halse and McRae 2001) and therefore overestimate the upper
salinity tolerance of this species (Halse and McRae 2001).

Life history. Calamoecia, like most salt lake crustaceans,
produces two types of eggs: (1) subitaneous eggs that maintain
populations during favourable conditions; and (2) resistant rest-

ing eggs that allow populations to persist through unfavourable
environmental conditions (Whitehead 2005). These resting eggs
are likely important for dispersal. Waterbirds are considered the

most likely vector for dispersal (Whitehead2005), althoughwater
or human movement may also be important (Maly et al. 1997).
Population genetic data for C. clitellata suggest that gene flow is
restricted between regions and drainage basins, and sometimes

even on fine spatial scales, and therefore populations are typically
isolated and self-sustaining (Whitehead 2005). However, occa-
sional dispersal may have significant effects on evolutionary

timescales, resulting in secondary contact between highly diver-
gent lineages (Whitehead 2005).

Trophicecology. Apart fromreports thatCalamoecia feedon

microalgae (Whitehead 2005) and are preyed upon byA. insularis
and potentially other giant ostracods (Campbell 1995), little is
known of the trophic ecology of the salt lake calanoids.

Cyclopoidea

In Australian salt lakes, cyclopoids are represented by three
endemic species from two genera, as well as the cosmopolitan

halophiles Apocyclops dengizicus (Lepeshkin) and Pescecy-

clops arnaudi (Sars) (Anufriieva 2015). However, the taxonomy
of these copepods is confused, due, in part, to a series of name

changes (Table 6) and to reports of a significant number of
undescribed halophilic species from throughout Australia (De
Deckker and Geddes 1980; Brock and Shiel 1983;Williams and

Kokkinn 1988; Williams et al. 1990; Timms 1993; Timms and
Boulton 2001; Pinder et al. 2005). It is impossible to meaning-
fully review the biology of these species until the taxonomy is
resolved.

Harpacticoidea

The harpacticoid genera Mesochra and Schizopera occur in
Australian salt lakes, but only one described species,M. baylyi,
is known to be halophilic (Hamond 1971; De Deckker and
Geddes 1980; Brock and Shiel 1983). Reports of other har-

pacticoid species from Australian salt lakes are either of
undescribed species or of marine and estuarine species that
have colonised permanent or semi-permanent coastal salt lakes

(Bayly 1970; Hamond 1971; Timms 1993, 2001, 2009b; Pinder
et al. 2005). M. baylyi is widely distributed in southern Aus-
tralia (south-western Western Australia, south-eastern South

Australia, Victoria and Tasmania) and has been reported in
waters with salinities up to 129 g L�1, but is typically reported
in waters with salinities below 25 g L�1 (De Deckker and
Geddes 1980; De Deckker and Williams 1982; Pinder et al.

2005). It is one of only a few halophilic species suggested to
have colonised salt lakes directly from the marine environment
(Williams 1981).

Isopoda

The oniscoid Haloniscus searlei Chilton is the only described

halophilic isopod that occurs in Australia, although recent
molecular phylogenetic analyses have suggested that the
diversity of this genus is underappreciated (Guzik et al. 2019).

The putative new species (revealed by molecular data) are
mostly from groundwater, freshwater or semiterrestrial envir-
onments, but at least one is from salt lakes (Cooper et al. 2008;

Stringer et al. 2019).

Table 6. Names used for Pescecyclops and Meridiecyclops

For further details see Fiers (2001), Tang and Knott (2009) and Karanovic et al. (2011).

Current nomenclature Names used

Pescecyclops arnaudi (Sars) Microcyclops arnaudi in Geddes (1976), Morton and Bayly (1977), Geddes et al. (1981) and Williams et al. (1990)

Metacyclops arnaudi (Sars) in Halse et al. (2000a) and Timms (2009a)

Meridiecyclops baylyi Fiers Microcyclops arnaudi in Bayly and Williams (1966)

Metacyclops arnaudi sensu Kiefer in Halse et al. (2000a) and Pinder et al. (2002).

Meridiecyclops baylyi in Pinder et al. (2005) and Pinder and Quinlan (2015).

Meridiecyclops platypus Fiers Microcyclops platypus in Geddes et al. (1981) and Williams and Kokkinn (1988)

Metacyclops platypus in Timms (1993) and Timms (2001)

Meridiecyclops platypus in Timms et al. (2006)
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H. searlei sensu lato is geographically widespread, occurring
in seasonal and permanent salt lakes inWestern Australia, South

Australia, Victoria and Tasmania (Williams 1983; Guzik et al.

2019). It is a powerful osmoregulator commonly found in
salinities from 3.6 to 161 g L�1 (Williams 1983). It primarily

grazes on diatoms, but has been noted to occasionally consume
chironomid larvae (Blinn et al. 1989). This species is unusual
among halophilic crustaceans because it has colonised the salt

lakes via a terrestrial rather than freshwater ancestor (Ellis and
Williams 1970). Related to this is the fact that it survives dry
lake periods as an adult rather thanwith resistant eggs (Williams
1983) and appears unable to colonise lakes that only fill

episodically (Williams and Kokkinn 1988; Timms 2008).

Halophilic biota: Gastropoda

Coxiella

All halophilic gastropods in Australian salt lakes belong to the
endemic genus Coxiella, the only gastropod genus in the world
to consist exclusively of halophilic species.Coxiella is currently

placed within the family Pomatiopsidae, which mainly contains
freshwater species (Wilke 2019). However, molecular phylo-
genetic analysis suggests that Coxiella and Tomichia, a mor-

phologically similar genus fromAfrica that includes freshwater,
brackish and halophilic species, may merit recognition as a
separate family (Tomichiidae; Wilke et al. 2013). Despite the

ubiquity and abundance of Coxiella in Australian salt lakes,
the genus is poorly studied (Williams and Mellor 1991; Pinder
et al. 2002).

Taxonomy

The taxonomy of Coxiella has effectively remained
unchanged since it was reviewed by Macpherson (1957), who
listed 10 species. Kendrick (1978) added one further species

(Coxiella roeae), known only from fossil material fromWestern
Australia. Coxiella badgerensis (Johnston) has since been
synonymised with Coxiella striata (Reeve) (Smith 1979), and

Coxiella molesta Iredale andCoxiella minimaMacpherson have
not been collected since they were initially described (for a
discussion about C. molesta, see Bayly and Williams 1966).

Currently, nine extant species in the two subgenera Coxiella

(eight species) and Coxielladda (one species) are recognised
(Davis 1979; Wilke 2019), with seven species having been

collected in recent decades. The discussion below focuses on
these seven species.

Current species descriptions are based on external shell and

operculum characters. Subsequent studies have found single
specimens that exhibit the diagnostic morphological charac-
teristics of more than one species (De Deckker and Geddes

1980; Williams and Mellor 1991) or have suggested the
existence of undescribed species (Pinder et al. 2005; Timms
2009b). In addition, operculum characters have been found to
vary with salinity (De Deckker and Geddes 1980) and size

(Williams and Mellor 1991). Currently, researchers are unable
to confidently identify Coxiella material to species level
(Williams and Mellor 1991; Pinder et al. 2002; Timms

2009b). Owing to this inadequate taxonomy, all species-level
information in this group, included that presented herein, must
be considered tentative.

Ecology

Coxiella species are mostly found in southern Australia,
including Tasmania, but also occur in some parts of central

and southern Queensland (Williams and Mellor 1991; Timms
1998). Western Australia is the most diverse area for Coxiella,
with six described species, including four that are endemic to
this region: Coxiella striatula (Menke), Coxiella exposita

(Iredale), Coxiella glabra Macpherson and Coxiella pyrrhos-

toma (Cox) (Table 7). Coxiella glauerti Macpherson occurs in
both Western Australia and South Australia, whereas C. striata

occurs in South Australia, Victoria and Tasmania, but not
Western Australia (Table 7). Coxielladda gilesi (Angas)
has been reported from remote inland lakes in Western

Australia, South Australia and Queensland (Macpherson 1957;
Timms 1998).

The geographical ranges of some Coxiella species overlap,
but different species rarely appear to occur in the same water-

body, although there are reports of C. striata and C. glauerti co-
occurring in lakes on the Eyre Peninsula (Timms 2009a).
Weston (2007) identified four Coxiella species from bird faecal

samples collected from a single lake in Western Australia, but
the species identifications are questionable.

Table 7. Reported distributions for recently identified Coxiella and Coxielladda species

Qld, Queensland; SA, South Australia; Tas., Tasmania; WA, Western Australia

Species Description Distribution

Coxiella

exposita Iredale (1943) Endemic to south-western WA

glabra Macpherson (1957) Endemic to south-western WA

striatula Menke (1843) Endemic to south-western WAA

pyrrhostoma Cox (1868) Endemic to south-western WA

glauerti Macpherson (1957) South-western WA and Eyre Peninsula

striata Reeve (1842) South-eastern Australia including the Eyre Peninsula and Tas.

Coxielladda

gilesi Angas (1877) Central WA and SA, central and south-eastern QldB

AReported from fossil deposits in Streaky Bay, South Australia (see Cotton 1942).
BReported from the Wheatbelt, Western Australia, but the validity of the identification is unclear (see Pinder et al. 2002).
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Coxiella are osmoconformers (Williams and Mellor 1991).
Most field records of active individuals are from a salinity range

between 10 and 70 g L�1; the lower and upper recorded ranges
are 0.3 and 130 g L�1 (Geddes et al. 1981; Timms 1983;
Williams et al. 1990; Williams and Mellor 1991; Pinder et al.

2005). These field data cannot always be accurately ascribed to
particular species due to taxonomic uncertainties. Experimental
data indicate that the adults of one species (possibly C. striata)

from Lake Tallinga in South Australia have a broad salinity
tolerance, with LD50 limits of 2 and 95.5 g L�1 for gradual
acclimation, and 6 and 83 g L�1 for a direct transfer (Williams
and Mellor 1991). The extent to which Coxiella species vary in

salinity tolerance is not clear, but some (e.g.C. glauerti) seem to
occur at higher salinities than others (e.g. C. striata; Timms
2009a; Timms et al. 2014).

Life history

The life histories of Coxiella species are poorly known.

Species are dioecious and reproduction is sexual and probably
iteroparous (Williams and Mellor 1991). Individuals are long-
lived (compared with most halophilic invertebrates), possibly
for as long as 2 years (Williams and Mellor 1991). Related to

this, Coxiella, likeH. searlei, aestivate as adults during dry lake
periods in areas of high humidity (e.g. under plant or algal mats)
or in plates of densely packed individuals to reduce desiccation

(Williams 1985; Timms et al. 2014). Laboratory experiments
suggest that the Coxiella from Lake Tallinga can aestivate for at
least 2 months with little mortality (Williams and Mellor 1991),

whereas aestivating specimens of C. striata have been reani-
mated from lakes known to have been dry for at least 3 months
(De Deckker and Geddes 1980). The total length of time that

individuals can survive aestivated, and whether this varies
among species, is not known. However, it must be limited
because Coxiella are found in permanent and seasonal lakes,
but not in episodic ones (Williams 1998a).

Trophic ecology

The diets of Coxiella species have not been investigated
directly, but it has been suggested that they feed on benthic algae

or detritus (DeDeckker 1982;Bayly 1993).Coxiella are known to
be consumed by native fish (e.g. Galaxias maculatus (Jenyns),
Atherinosoma microstoma (Günther), Pseudogobius olorum

(Sauvage) and Philypnodon grandiceps (Krefft); Chessman and
Williams 1987; Becker and Laurenson 2007) and introduced fish
(e.g.Cyprinus carpioLinnaeus;Khan2003) in somewaterbodies.

They are also an important food source for some waterbirds,
such as the hooded plover Thinornis rubricollis in south-western
Australia,whereCoxiellahasbeen found tomakeup to90%of the
diet (Weston 2007).

Discussion

This study synthesises available information on the halophilic

macroinvertebrates of Australian salt lakes, focusing on crus-
taceans and gastropods. The results show that our under-
standing of the taxonomy and diversity of some groups has

improved markedly since the main previous review of these
organisms (De Deckker 1983b), as has our knowledge of
aspects of the ecology and life histories of a small number of

species, although many knowledge gaps remain. This progress
and these gaps, and their conservation implications, are dis-

cussed below.

Unique biodiversity

This review highlights the evolutionary distinctiveness of the

halophilic macroinvertebrates in Australian salt lakes. The
fauna is dominated by crustaceans and molluscs, of which 1
family (Parartemiidae), 2 subfamilies (Diacypridinae and

Mytilocypridinae), 11 genera (Parartemia, Extremalona,
Australocypris, Repandocypris, Diacypris, Reticypris, Platy-
cypris, Patcypris, Trilocypris, Meridiecyclops and Coxiella)

and 74 of the 79 described species are endemic to these lakes.
These high levels of endemism are likely due to a long asso-
ciation between the fauna and Australian salt lake environ-

ments or their precursors (De Deckker 1981b; Williams 1981).
The number of macroscopic halophilic invertebrate species in
Australian salt lakes is also higher than in lakes elsewhere in
the world (Alonso 1990; Bayly 1993; Williams et al. 1995; De

Los Rios-Escalante and Amarouayache 2016). In addition,
many components of the Australian fauna are capable of tol-
erating extreme levels of salinity, and some have other unusual

characteristics. For example, although ostracod species are
usually absent from environments with pH ,5 (because a
lower pH inhibits formation of the calcite carapace; Ruiz et al.

2013), several species of ostracod occur in highly acidic salt
lakes (Timms 2009b). By virtue of its distinctiveness, the
invertebrate biodiversity of Australian salt lakes is of high
conservation value.

Taxonomy

What we do not know, we cannot protect [Martens and
Savatenalinton 2011].

In the past 20 years, considerable progress has been made
regarding the discovery and description of species in a few

groups of Australian salt lake invertebrates, notably Parartemia
and giant (Mytilocypridinae) ostracods (Halse andMcRae 2004;
Timms and Hudson 2009; Timms 2010b). However, the tax-

onomy of other groups is much less advanced and in some cases
(e.g. Coxiella gastropods and cyclopoid copepods) the current
taxonomy does not allow consistent and accurate species iden-

tifications (Williams andMellor 1991; Pinder et al. 2002).Many
new species, and sometimes even new genera, have been dis-
covered in those groups that have been subject to recent taxo-

nomic revision, and more biodiversity likely remains to be
discovered, especially in poorly studied groups and regions.

Molecular data have substantially changed our understand-
ing of the diversity of many groups, such as Triops (Meusel and

Schwentner 2017), Daphniopsis (Hebert and Wilson 2000),
Parartemia (Remigio et al. 2001), Mytilocypris (Finston 2000,
2007), Branchinella (Pinceel et al. 2013a) and Haloniscus

(Guzik et al. 2019). Nevertheless, the discovery and identifica-
tion of Australian salt lake invertebrates is still overwhelmingly
reliant on morphotaxonomy. Using molecular and morphologi-

cal data to document the full extent of the diversity of halophilic
invertebrates of Australian salt lakes is essential to progress our
understanding and conservation of these ecosystems.
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Ecology

The species diversity of halophilic invertebrates is highest in
Western Australian semi-arid and arid regions. Therefore, this

part of Australia is an important region for the conservation of
these invertebrates, especially because the salt lakes here are
experiencing exceptionally high levels of disturbance due to

climate change, secondary salinisation and mining (Halse et al.
2003; Timms 2005; Nielsen and Brock 2009).

Conservation planning and assessment requires a sound

knowledge of species’ distributions and how these are changing

through time (Cardoso et al. 2011). This point is illustrated by

attempts to assess the conservation status ofParartemia species,

where concerns about P. contracta have decreased through time

as more intensive sampling has revealed a range of additional

populations while concerns about P. extracta have increased

because temporal sampling suggests that the number of popula-

tions and the geographic range of this species are limited and

shrinking (Timms et al. 2009; Pinder and Quinlan 2015).

Our knowledge of the geographic distribution of most

halophilic invertebrates is incomplete. This problem is particu-

larly acute for those species that are difficult to identify because

either the existing taxonomy is incomplete or because they

cannot be reliably identified using morphological characters

(e.g. Coxiella). It is also problematic for species that are rare or

occur in remote locations. In addition, some older distributional

data may be misleading because they are based on outdated

taxonomy (e.g. D. pusilla). Obtaining a comprehensive inven-

tory of the distribution of halophilic invertebrates in Australian

salt lakes is a challenging prospect, partly because there are

many lakes that either occur in remote locations or hold water

infrequently. Surveying some sites may benefit from a flexible

sampling approach, such as raising individuals from egg banks

(Timms 2012b). Analysis of environmental DNA in dry sedi-

ments could also become an important survey tool but requires a

database of reference sequences and a well-developed taxon-

omy to be effective (Cristescu and Hebert 2018).

The available evidence indicates that most of the halophilic

invertebrates in Australia are osmoregulators (e.g. Parartemia,

giant and small ostracods, Daphniopsis), but some are osmo-

conformers (e.g. calanoid copepods and Coxiella). Regardless,

most species appear to have broad and overlapping salinity

tolerances and many are able to tolerate extremely high sali-

nities, as described above. However, the bulk of information on

salinity tolerances in these invertebrates is derived from scat-

tered field data. Such data do not necessarily indicate the

optimal conditions for reproduction or completing the lifecycle,

which may be much more restrictive than the conditions adults

can survive (Hammer 1986). Those species that can only

reproduce or complete their lifecycle at low salinity, or within

a narrow salinity range, are seemingly more vulnerable to

increases or changes in the salinity of the lakes.
Lake Corangamite, a large permanent lake in western Victo-

ria, provides a clear example of how increasing salinity can have

a big effect on resident organisms. Due to the diversion of the
main inflow creek dating back to the 1960s, water levels in this
lake have fallen and salinity has increased, resulting in a change

in the biota from one characteristic of moderate salinity
(35–.50 g L�1) to one of higher salinity (50–100 g L�1;

Williams 1995). Associated with this, populations of halophilic
species have been lost from the lake (e.g. C. striata). Some salt

lakes in central Western Australia and elsewhere are being
subjected to the discharge of highly saline waste water from
mining activities (Timms 2005; Timms et al. 2006). How these

lakes are being affected by increased salt loads is unclear
(Timms 2005) but, based on the Lake Corangamite example,
community changes and local extinctions are possible.

Two interesting features of the distribution of the halophilic
invertebrates are that: (1) some species are much more common
and broadly distributed than others, even congeners; and (2) con-
generic species rarely occur in the same lake, even though

many have overlapping geographic and salinity distributions
(see above). It is currently unknown whether the common and
widespread species have relatively broader ecological toler-

ances, greater dispersal capacity or both (Williams 1984). The
factors controlling the distribution of halophilic invertebrates
are likely to be complex. The effects of salinity are correlated

with other chemical and physical changes; for example, the
availability of dissolved oxygen decreases as salinity (and
temperature) increases (Williams 1998a). Thus, although the
ecological tolerances of species are usuallymeasured in terms of

salinity, this is an oversimplification. Abiotic factors alone are
unlikely to explain why congeneric species are rarely found in
the same lake, although more intensive sampling and better

taxonomymay lead to more examples of co-occurrence. Under-
standing the relative importance of various abiotic and biotic
factors in controlling the distribution of the halophilic inverte-

brates is critical to predicting how species and communities will
respond to perturbations and for developing effective interven-
tions (Nielsen and Brock 2009).

Life history

Detailed life history information is typically available for one

species for each of the main types (e.g. ostracod, cladoceran,
gastropod) of halophilic macroinvertebrate in Australia. This
information indicates that these invertebrates’ life histories are

fundamentally similar to those of their relatives from other
environments (Ellis and Williams 1970; Finston 2002; Ismail
et al. 2011b). Most species have a rapid life cycle, with short-

lived individuals. Multiple generations may be produced while
environmental conditions remain favourable and desiccation-
resistant eggs are used to survive dry or unfavourable conditions
(Timms 2014). By contrast, H. searlei and Coxiella species

survive dry or unfavourable periods as adults (Williams 1983;
Williams and Mellor 1991). The total length of time that the
aestivating adults can remain viable is not known, but those of

C. striata can survive for at least 3 months (De Deckker and
Geddes 1980) and those of H. searlei for at least 1 month
depending on humidity (Williams 1983). This time is probably

minimal compared with the duration that desiccation-resistant
eggs of other taxa may remain viable (Williams and Kokkinn
1988). Consequently, Coxiella species and, particularly,

H. searlei are excluded from waterbodies that dry for extended
periods (Williams and Kokkinn 1988), and therefore seem
especially vulnerable to a drying climate. Understanding the
long-term viability and hatching cues for desiccation-resistant

eggs, or the equivalent for the aestivating adults, and how these

Halophilic invertebrates of Australia Marine and Freshwater Research 1569



vary among species is crucial for assessing the capacity of
species to survive as the climate dries.

It is generally believed that halophilic invertebrates in
Australia mainly disperse via desiccation-resistant eggs (when
present) and that aquatic birds and, to a lesser extent, wind and

water flow are important dispersal vectors (Finston 2002; Green
et al. 2008). Nevertheless, other than for population genetic
studies of the copepod C. clitellata (Whitehead 2005) and

several species of Mytilocypris ostracod (Finston 2002), the
amount or pattern of dispersal in these invertebrates is unknown.
Although it is unlikely that the amount of dispersal is enough to
directly affect the population dynamics of a species, if the rate of

local extinction is high, a species will need to have a ‘reason-
able’ chance of dispersing into a suitable habitat in order to
persist in the landscape.

Biological interactions

Information on biological interactions, such as predation
and competition, in Australian salt lake communities is rudi-

mentary (Timms 2021). This makes it difficult to assess the
resilience of these systems to the loss of a species. Some
waterbirds are known to prey on the invertebrates (Weston

2007; Pedler et al. 2018), although comprehensive data on the
relationships between these predators and prey are lacking.
It is possible that declines in the abundance and availability of
the invertebrates (e.g. if salt lakes are dry for longer periods

of time and are more saline) will affect the population
dynamics of these birds (Senner et al. 2018). Fish predation
may also be important at certain times in some waterbodies

(Chessman and Williams 1987; Becker and Laurenson 2007),
although fish are absent from most of the Australian salt lakes,
which are typically either ephemeral or highly saline (De

Deckker 1983b).
Competitive exclusion (Timms 2012a) may explain why

congeneric species in a range of taxa (e.g. Parartemia, Austra-
locypris and Coxiella) rarely co-occur in a single lake, although

there is currently no evidence to support that competitive
exclusion is more important than niche differentiation or dis-
persal limitation. The effect of the recent spread of A. parthe-

nogenetica, and the potential (although not yet observed) spread
of A. franciscana, on the native halophilic invertebrates is
difficult to predict without detailed information on the ecologi-

cal requirements of the native species (McMaster et al. 2007).
However, it is worth noting that A. franciscana has out-
competed and replaced native Artemia species on other con-

tinents (Ruebhart et al. 2008).

Conclusion

A very diverse and unique range of halophilic invertebrates

inhabit Australian salt lakes. These invertebrates are threatened
by a range of processes, the most significant of which are
increasing periods of extensive drought and secondary salini-

sation over large parts of the Australian landscape. Populations,
and potentially species, have already become extinct (Williams
1995; Timms et al. 2009; Timms 2012b) and, without further

study, more may be lost without notice (Halse et al. 2003). It is
currently difficult to properly evaluate the consequences of the
threats due to critical gaps in our knowledge of the biology of the

invertebrates. Future studies of Australian halophilic inverte-
brates should prioritise the following:

� documenting the full extent of biodiversity in these inverte-
brates; this is the most critical gap to be filled because a sound

taxonomy is needed to underpin all other biological research
� developing a better understanding of species’ distributions
and community composition, particularly in remote regions

� ascertaining species’ tolerances to salinity and other physico-
chemical parameters across all stages of their lifecycle

� elucidating the long-term viability and hatching cues for

desiccation-resistant eggs, and the equivalent for aestivating
adults, and how these vary among species

� elucidating the abiotic and biotic factors that control species’
distributions, including why congeneric species rarely occur

in the same lake despite overlapping geographic and salinity
distributions

� determining the patterns and mechanisms of dispersal and

how these may influence the capacity of species to persist in
the landscape

� elucidating the biological relationships between species,

including how the spread of Artemia in Australian salt lakes
will affect native species

� on a more holistic level, documenting the levels of anthropo-

genic stressors, including pollution and mining activities, on
salt lake environments and identifying and preserving any key
habitats that may serve as refugia for Australian halophilic
invertebrates, particularly in the face of a drying climate.
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