Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Zinc requirement for two phytoplankton strains of the Tasman Sea

Marie Sinoir A B G , Andrew R. Bowie B C , Mathieu Mongin A , Edward C. V. Butler A D and Christel S. Hassler E F
+ Author Affiliations
- Author Affiliations

A CSIRO Marine and Atmospheric Research Laboratories, Castray Esplanade, GPO Box 1538, Hobart, Tas. 7000, Australia.

B Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas. 7001, Australia.

C Antarctic Climate and Ecosystem Cooperative Research Centre (ACE CRC), University of Tasmania, Hobart, Tas. 7001, Australia.

D Australian Institute of Marine Science, Arafura Timor Research Facility, PO Box 41775, Casuarina MC, NT 0811, Australia.

E Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Broadway, NSW 2007, Australia.

F Present address: Institute F. A. Forel, University of Geneva, 10 route de Suisse, CH-1290 Versoix, Switzerland.

G Corresponding author: marie.sinoir@gmail.com

Marine and Freshwater Research 68(2) 361-372 https://doi.org/10.1071/MF15323
Submitted: 17 August 2015  Accepted: 14 February 2016   Published: 4 May 2016

Abstract

Zinc has been proposed as a limiting, or co-limiting, micronutrient for phytoplankton. In the Tasman Sea, extremely low zinc concentrations have been reported, raising the possibility there of limitation of phytoplankton growth by zinc. The pennate diatom Nitzschia closterium (CS-1) and the coccolithophorid Emiliania huxleyi (CS-812) were cultured in two low zinc concentrations (Zn2+ = 1.5 pmol L–1 and Zn2+ = 1.5 nmol L–1) mimicking conditions found in coastal and pelagic Tasman Sea. To monitor phytoplankton health and productivity, the maximum quantum yield (Fv/Fm), growth rate and cell size were analysed. These parameters showed that both strains were able to adapt and still grow. Short-term uptake experiments revealed an effect on Zn biological transport, with consequences for its bioavailability. When grown at low Zn2+ concentrations, E. huxleyi showed an induction of a two-transporter system, highly dependent on photosynthetic energy for Zn uptake. N. closterium was able to survive without inducing a higher-affinity Zn transporter. Its Zn uptake was also highly dependent on cellular energy and the ability to potentially access labile complexed forms of Zn. This strategy, thus, represented an advantage over E. huxleyi. Results are discussed in the context of the conditions found in the Tasman Sea.

Additional keywords: Emiliania huxleyi, inhibitors, Nitzschia closterium, uptake, zinc uptake, Zn limitation.


References

Aristilde, L., Xu, Y., and Morel, F. M. M. (2012). Weak organic ligands enhance zinc uptake in marine phytoplankton. Environmental Science & Technology 46, 5438–5445.
Weak organic ligands enhance zinc uptake in marine phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xltl2ht7c%3D&md5=13000080662a03a24d7c9a5cdb0df3f7CAS |

Baars, O., and Croot, P. L. (2011). The speciation of dissolved zinc in the Atlantic sector of the Southern Ocean. Deep-sea Research – II. Topical Studies in Oceanography 58, 2720–2732.
The speciation of dissolved zinc in the Atlantic sector of the Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlagu7bL&md5=8633db7cd0d2c5377c2ac82473044facCAS |

Badger, M. (2003). The roles of carbonic anhydrases in photosynthetic CO2 concentrating mechanisms. Photosynthesis Research 77, 83–94.
The roles of carbonic anhydrases in photosynthetic CO2 concentrating mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsF2mt7c%3D&md5=b84f17f1c3fcb3c26dddcd0afda2c97cCAS | 16228367PubMed |

Badger, M. R., and Price, G. D. (1994). The role of carbonic anhydrase in photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 45, 369–392.
The role of carbonic anhydrase in photosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlt12rsLw%3D&md5=63f370693bb91e67608a5481ab588f36CAS |

Balnokin, Y., Popova, L., and Gimmler, H. (1997). Further evidence for an ATP- driven sodium pump in the marine alga Tetraselmis (Platymonas) viridis. Journal of Plant Physiology 150, 264–270.
Further evidence for an ATP- driven sodium pump in the marine alga Tetraselmis (Platymonas) viridis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitVentbc%3D&md5=d81535106a152388db4fd973d2885661CAS |

Bowie, A. R., and Lohan, M. C. (2009). Determination of iron in seawater. In ‘Practical Guidelines for the Analysis of Seawater’. (Ed. O. Wurl.) pp. 235–258. (CRC Press: Boca Raton, FL, USA.)

Bruland, K. W., and Lohan, M. C. (2003). Controls of trace metals in seawater. ‘Treatise on Geochemistry’. (Eds H. D. Holland and K. K. Tukerian.) pp. 23–47. (Elsevier-Pergamon: Oxford, UK.)

Buitenhuis, E. K., Timmermans, R., and de Baar, H. J. W. (2003). Zinc–bicarbonate colimitation of Emiliania huxleyi. Limnology and Oceanography 48, 1575–1582.
Zinc–bicarbonate colimitation of Emiliania huxleyi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsFCkur8%3D&md5=6e596163ec3e5617523531f10cc2ff12CAS |

Calvo, E., Pelejero, C., Logan, G. A., and De Deckker, P. (2004). Dust-induced changes in phytoplankton composition in the Tasman Sea during the last four glacial cycles. Paleoceanography 19, PA2020.
Dust-induced changes in phytoplankton composition in the Tasman Sea during the last four glacial cycles.Crossref | GoogleScholarGoogle Scholar |

Cook, S. S., Jones, R. C., Vaillancourt, R. E., and Hallegraeff, G. M. (2013). Genetic differentiation among Australian and Southern Ocean populations of the ubiquitous coccolithophore Emiliania huxleyi (Haptophyta). Phycologia 52, 368–374.
Genetic differentiation among Australian and Southern Ocean populations of the ubiquitous coccolithophore Emiliania huxleyi (Haptophyta).Crossref | GoogleScholarGoogle Scholar |

Croot, P. L., Baars, O., and Streu, P. (2011). The distribution of dissolved zinc in the Atlantic sector of the Southern Ocean. Deep-sea Research – II. Topical Studies in Oceanography 58, 2707–2719.
The distribution of dissolved zinc in the Atlantic sector of the Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlagu7bK&md5=e3b4eee063104eb8f6afb93fe15f801cCAS |

Cullen, J. T., and Sherrell, R. M. (2005). Effects of dissolved carbon dioxide, zinc, manganese on the cadmium to phosphorus ratio in natural phytoplankton assemblages. Limnology and Oceanography 50, 1193–1204.
Effects of dissolved carbon dioxide, zinc, manganese on the cadmium to phosphorus ratio in natural phytoplankton assemblages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnvVWqsrw%3D&md5=6c29f1a32543aee870e4b47cd3a3e3e2CAS |

Cutter, G., Andersson, P., Codispoti, L., Croot, P., François, R., Lohan, M. C., Obata, H., and Rutgers, M. (2010). Sampling and sample-handling protocols for GEOTRACES cruises. (GEOTRACES Standards and Intercalibration Committee, GEOTRACES Library.) Available at http://www.geotraces.org/libraries/documents/Intercalibration/Cookbook.pdf [Verified 13 March 2016].

Ellwood, M. J. (2004). Zinc and cadmium speciation in subantarctic waters east of New Zealand. Marine Chemistry 87, 37–58.
Zinc and cadmium speciation in subantarctic waters east of New Zealand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFGmu7s%3D&md5=77929e627f32f912497e5c117dec9009CAS |

Ellwood, M. J. (2008). Wintertime trace metal (Zn, Cu, Ni, Cd, Pb and Co) and nutrient distributions in the Subantarctic zone between 40–52°S; 155–160°E. Marine Chemistry 112, 107–117.
Wintertime trace metal (Zn, Cu, Ni, Cd, Pb and Co) and nutrient distributions in the Subantarctic zone between 40–52°S; 155–160°E.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOnurnE&md5=caf2fad7109f0010ada16f5bdecb4823CAS |

Ellwood, M. J., and van den Berg, C. M. G. (2000). Zinc speciation in the northeastern Atlantic Ocean. Marine Chemistry 68, 295–306.
Zinc speciation in the northeastern Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXptF2kug%3D%3D&md5=11cf47cf992577cd3b5b58bb8ba0caf1CAS |

Furla, P., and Allemand, D. (2000). Involvement of H+-ATPases in carbon concentrating mechanism for endosymbiont photosynthesis in Anemonia viridis. Comparative Biochemistry and Physiology – A. Molecular & Integrative Physiology 126, 53.
Involvement of H+-ATPases in carbon concentrating mechanism for endosymbiont photosynthesis in Anemonia viridis.Crossref | GoogleScholarGoogle Scholar |

Furuya, K., Hasumoto, H., Nakai, T., and Nemoto, T. (1986). Phytoplankton in the subtropical convergence during the austral summer: community structure and growth activity. Deep-sea Research – A. Oceanographic Research Papers 33, 621–630.
Phytoplankton in the subtropical convergence during the austral summer: community structure and growth activity.Crossref | GoogleScholarGoogle Scholar |

Gnassia-Barelli, M., and Roméo, M. (1987). Uptake of zinc by cultured phytoplankters Hymenomonas elongate. Diseases of Aquatic Organisms 3, 45–49.
Uptake of zinc by cultured phytoplankters Hymenomonas elongate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXjtlahtw%3D%3D&md5=468c6b840e19d5e6d4d1d3cb59aea5d3CAS |

Hassler, C. S., and Schoemann, V. (2009). Bioavailability of organically bound Fe to model phytoplankton of the Southern Ocean. Biogeosciences 6, 2281–2296.
Bioavailability of organically bound Fe to model phytoplankton of the Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltVCqsg%3D%3D&md5=eb4d5ad34dbd615e1b4696fd99cf99b1CAS |

Hassler, C. S., and Wilkinson, K. J. (2003). Failure of biotic ligand and free-ion activity models to explain zinc bioaccumulation by Chlorella kesslerii. Environmental Toxicology and Chemistry 22, 620–626.
Failure of biotic ligand and free-ion activity models to explain zinc bioaccumulation by Chlorella kesslerii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtlCkurs%3D&md5=4e0436485d79a32b5a73d0c1876c8bd6CAS | 12627651PubMed |

Hassler, C. S., Slaveykova, V. I., and Wilkinson, K. J. (2004). Discriminating between intra- and extracellular metals using chemical extractions. Limnology and Oceanography, Methods 2, 237–247.
Discriminating between intra- and extracellular metals using chemical extractions.Crossref | GoogleScholarGoogle Scholar |

Hassler, C. S., Sinoir, M., Clementson, L. A., and Butler, E. C. V. (2012). Exploring the link between micronutrients and phytoplankton in the Southern Ocean during the 2007 austral summer. Frontiers in Microbiology 3, 202.
Exploring the link between micronutrients and phytoplankton in the Southern Ocean during the 2007 austral summer.Crossref | GoogleScholarGoogle Scholar | 22787456PubMed |

Hassler, C., Ridgway, K., Bowie, A., Butler, E., Clementson, L., Doblin, M., Davies, D., Law, C., Ralph, P., van der Merwe, P., Watson, R., and Ellwood, M. (2014). Primary productivity induced by iron and nitrogen in the Tasman Sea: an overview of the PINTS expedition. Marine and Freshwater Research 65, 517–537.
Primary productivity induced by iron and nitrogen in the Tasman Sea: an overview of the PINTS expedition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXovFGlt7o%3D&md5=db3ec84bd0176a390d03691ebac58b33CAS |

Heytler, P. G. (1980). Uncouplers of oxidative phosphorylation. Pharmacology & Therapeutics 10, 461–472.
Uncouplers of oxidative phosphorylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXls1WqtLw%3D&md5=6e2877c30426fb5e785a9e488a8c137cCAS |

Hirose, K., Saito, T., Lee, S. H., and Gastaud, J. (2011). Vertical distributions of the strong organic ligand in the twilight zone of southern hemisphere ocean particulate matter. Progress in Oceanography 89, 108–119.
Vertical distributions of the strong organic ligand in the twilight zone of southern hemisphere ocean particulate matter.Crossref | GoogleScholarGoogle Scholar |

Ho, T., Quigg, A., Finkel, Z. V., Milligan, A. J., Wyman, K., Falkowski, P. G., and Morel, F. M. M. (2003). The elemental composition of some marine phytoplankton. Journal of Phycology 39, 1145–1159.
The elemental composition of some marine phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVartg%3D%3D&md5=f1a6c905a6d49de14b6fbbb97b331bdcCAS |

Hobday, A. J., Poloczanska, E. S., and Matear, R. J. (Eds) (2008). Implications of climate change for Australian fisheries and aquaculture: a preliminary assessment. Report to the Department of Climate Change, Canberra.

Hoppe, H. G. (2003). Phosphatase activity in the sea. Hydrobiologia 493, 187–200.
Phosphatase activity in the sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXos1Wrt70%3D&md5=ca56f78052df093838f1b0537b6bc526CAS |

Hudson, R. J. M. (1998). Which aqueous species control the rate of trace metal uptake by aquatic biota? Observations and predictions of non-equilibrium effects. The Science of the Total Environment 219, 95–115.
Which aqueous species control the rate of trace metal uptake by aquatic biota? Observations and predictions of non-equilibrium effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlslWltrw%3D&md5=56781b4b737f57bb8aa24a2529d6087fCAS |

Iglesias-Rodriguez, M. D., Schofield, O. M., Batley, J., Medlin, L. K., and Hayes, P. K. (2006). Intraspecific genetic diversity in the marine coccolithophore Emiliania huxleyi: (Prymnesiophyceae): the use of microsatellite analysis in marine phytoplankton population studies. Journal of Phycology 42, 526–536.
Intraspecific genetic diversity in the marine coccolithophore Emiliania huxleyi: (Prymnesiophyceae): the use of microsatellite analysis in marine phytoplankton population studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntVWitbs%3D&md5=1e5f4badbb77d224ce0e3a0b112ab3edCAS |

John, S. G., Geis, R. W., Saito, M. A., and Boyle, E. A. (2007). Zinc isotope fractionation during high-affinity and low-affinity zinc transport by the marine diatom Thalassiosira oceanica. Limnology and Oceanography 52, 2710–2714.
Zinc isotope fractionation during high-affinity and low-affinity zinc transport by the marine diatom Thalassiosira oceanica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVCnsLrM&md5=000e578978f8886592e629f92426770fCAS |

Kariuki, S., and Dewald, H. D. (1996). Evaluation of diffusion coefficients of metallic ions in aqueous solutions. Electroanalysis 8, 307–313.
Evaluation of diffusion coefficients of metallic ions in aqueous solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xit1KnsLo%3D&md5=0e62c2f80334004a6fc36e0ae305f77dCAS |

Karl, D. M. (2000). Aquatic ecology: phosphorus, the staff of life. Nature 406, 31–33.
Aquatic ecology: phosphorus, the staff of life.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlt1OktLY%3D&md5=a5aec435aef5c20b15484e822e9c5906CAS | 10894527PubMed |

Kupriyanova, E. V., and Pronina, N. A. (2011). Carbonic anhydrase: enzyme that has transformed the biosphere. Russian Journal of Plant Physiology: a Comprehensive Russian Journal on Modern Phytophysiology 58, 197–209.
Carbonic anhydrase: enzyme that has transformed the biosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtVKnuro%3D&md5=459345c2255fe8e7c2c7a16e89e4a32dCAS |

Lane, T. W., and Morel, F. M. M. (2000). Regulation of carbonic anhydrase expression by zinc, cobalt, and carbon dioxide in the marine diatom Thalassiosira weissflogii. Plant Physiology 123, 345–352.
Regulation of carbonic anhydrase expression by zinc, cobalt, and carbon dioxide in the marine diatom Thalassiosira weissflogii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsFems7c%3D&md5=84f11bd564b534091a184f6e9ec30559CAS | 10806251PubMed |

Litchman, E., Klausmeier, C. A., Schofield, O. M., and Falkowski, P. G. (2007). The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecology Letters 10, 1170–1181.
The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level.Crossref | GoogleScholarGoogle Scholar | 17927770PubMed |

Martin, J. H., Gordon, R. M., and Fitzwater, S. E. (1990). Iron in the Antarctic waters. Nature 345, 156–158.
Iron in the Antarctic waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksVGrtb0%3D&md5=7b7090601d9c33660deb3f43788dd1e8CAS |

Mercado, J. M., Gordillo, F. J. L., Figueroa, F. L., and Niell, F. X. (1998). External carbonic anhydrase and affinity for inorganic carbon in intertidal macroalgae. Journal of Experimental Marine Biology and Ecology 221, 209–220.
External carbonic anhydrase and affinity for inorganic carbon in intertidal macroalgae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhvVSnur4%3D&md5=df76159243f92fdb6563d56f0e4e2c11CAS |

Mitchell, C., and Beardall, J. (1996). Inorganic carbon uptake by an Antarctic sea-ice diatom, Nitzschia frigid. Polar Biology 16, 95–99.
Inorganic carbon uptake by an Antarctic sea-ice diatom, Nitzschia frigid.Crossref | GoogleScholarGoogle Scholar |

Morel, F. M. M., Milligan, A. J., Saito, M. A., Heinrich, D. H., and Karl, K. T. (2003). ‘Marine Bioinorganic Chemistry: the Role of Trace Metals in the Oceanic Cycles of Major Nutrients. Treatise on Geochemistry.’ (Eds H. D. Holland and K. K. Turekian.) pp. 113–143. (Elsevier-Pergamon: Oxford, UK.)

Moroney, J. V., Husic, H. D., and Tolbert, N. E. (1985). Effect of carbonic anhydrase inhibitors on inorganic carbon accumulation by Chlamydomonas reinhardtii. Plant Physiology 79, 177–183.
Effect of carbonic anhydrase inhibitors on inorganic carbon accumulation by Chlamydomonas reinhardtii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtFWnsL0%3D&md5=90af20e3be5e1f66ec7b49446c9fdac0CAS | 16664365PubMed |

Murata, Y., Watanabe, T., Sato, M., Momose, Y., Nakahara, T., Oka, S.-I., and Iwahashi, H. (2003). Dimethyl sulfoxide exposure facilitates phospholipid biosynthesis and cellular membrane proliferation in yeast cells. The Journal of Biological Chemistry 278, 33185–33193.
Dimethyl sulfoxide exposure facilitates phospholipid biosynthesis and cellular membrane proliferation in yeast cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms1alsLo%3D&md5=dccd70768c2e0b0961232491649de09aCAS | 12771156PubMed |

Pahlow, M., Riebesell, U., and Wolf-Gladrow, D. A. (1997). Impact of cell shape and chain formation on nutrient acquisition by marine diatoms. Limnology and Oceanography 42, 1660–1672.
Impact of cell shape and chain formation on nutrient acquisition by marine diatoms.Crossref | GoogleScholarGoogle Scholar |

Patterson, C. C., and Settle, D. M. (1976). The reduction of orders of magnitude errors in lead analysis of biological materials and natural waters by controlling external sources of industrial Pb contamination introduced during sample collection and handling. In ‘Reliability in Trace Analysis’. (Ed. D. M. La Fleur.) pp. 321–351. Special Publication 422. (National Bureau of Standards: Washington, DC.)

Petrou, K. L., Hassler, C.S., Doblin, M. A., Shelly, K., Schoemann, V., and Ralph, P. J. (2011). Interaction of iron and light on Southern Ocean phytoplankton. Deep-sea Research – II. Topical Studies in Oceanography 58, 2200–2211.
Interaction of iron and light on Southern Ocean phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1WksbbJ&md5=a42d587d88aabcb65c0ffeb2b60cfc1cCAS |

Price, N. M., Harrison, G. I., Hering, J. G., Hudson, R. J., Nirel, P. M. V., Palenik, B., and Morel, F. M. M. (1989). Preparation and chemistry of the artificial algal culture medium Aquil. Biological Oceanography 6, 443–461.

Rost, B., Riebesell, U., Burkhardt, S., and Sültemeyer, D. (2003). Carbon acquisition of bloom-forming marine phytoplankton. Limnology and Oceanography 48, 55–67.
Carbon acquisition of bloom-forming marine phytoplankton.Crossref | GoogleScholarGoogle Scholar |

Saito, M. A., and Goepfert, T. J. (2008). Zinc–cobalt colimitation of Phaeocystis antarctica. Limnology and Oceanography 53, 266–275.
Zinc–cobalt colimitation of Phaeocystis antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvVGjsLw%3D&md5=e2cdbc2518ee92177c8c24537fa60ab8CAS |

Sarthou, G., Timmermans, K. R., Blain, S., and Treguer, P. (2005). Growth physiology and fate of diatoms in the ocean: a review. Journal of Sea Research 53, 25–42.
Growth physiology and fate of diatoms in the ocean: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFSi&md5=c14d2838f1ef3fc8134e7625e1f9c9caCAS |

Satoh, D., Hiraoka, Y., Colman, B., and Matsuda, Y. (2001). Physiological and molecular biological characterization of intracellular carbonic anhydrase from the marine diatom Phaeodactylum tricornutum. Plant Physiology 126, 1459–1470.
Physiological and molecular biological characterization of intracellular carbonic anhydrase from the marine diatom Phaeodactylum tricornutum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvFOjurg%3D&md5=96be78dd89feae499e61300681d95689CAS | 11500545PubMed |

Schulz, K. G., Zondervan, I., Gerringa, L. J. A., Timmermans, K. R., Veldhuis, M. J. W., and Riebesell, U. (2004). Effect of trace metal availability on coccolithophorid calcification. Nature 430, 673–676.
Effect of trace metal availability on coccolithophorid calcification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt1Gis7s%3D&md5=ad3385b51366140664aa67dfc330b3d1CAS | 15295599PubMed |

Sekino, K., and Shiraiwa, Y. (1994). Accumulation and utilization of dissolved inorganic carbon by a marine unicellular coccolithophorid, Emiliania huxleyi. Plant & Cell Physiology 35, 353–361.
| 1:CAS:528:DyaK2cXivFertro%3D&md5=987ca3f6499dec824f425ba3144c01aaCAS |

Shaked, Y., Xu, Y., Leblanc, K., and Morel, F. M. M. (2006). Zinc availability and alkaline phosphatase activity in Emiliania huxleyi: implications for Zn–P co-limitation in the ocean. Limnology and Oceanography 51, 299–309.
Zinc availability and alkaline phosphatase activity in Emiliania huxleyi: implications for Zn–P co-limitation in the ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFaqtLY%3D&md5=e62cb1e2e908c4fcbd1e3a9ac8c44e2bCAS |

Sinoir, M., Butler, E. C. V., Bowie, A. R., Mongin, M., Nesterenko, P., and Hassler, C. S. (2012). Zinc marine biogeochemistry in seawater: a review. Marine and Freshwater Research 63, 644–657.
Zinc marine biogeochemistry in seawater: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVSlsLvI&md5=c18a1b3e5737889febe512d2c1e6a661CAS |

Soto, A. R., Zheng, H., Shoemaker, D., Rodriguez, J., Read, B. A., and Wahlund, T. M. (2006). Identification and preliminary characterization of two cdnas encoding unique carbonic anhydrases from the marine alga Emiliania huxleyi. Applied and Environmental Microbiology 72, 5500–5511.
Identification and preliminary characterization of two cdnas encoding unique carbonic anhydrases from the marine alga Emiliania huxleyi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVKlsbk%3D&md5=891a9aa2d0948610f7dc5fc4c3985a3cCAS | 16885304PubMed |

Sunda, W. G. (2012). Feedback interactions between trace metal nutrients and phytoplankton in the ocean. Frontiers in Microbiology 3, 204.
Feedback interactions between trace metal nutrients and phytoplankton in the ocean.Crossref | GoogleScholarGoogle Scholar | 22701115PubMed |

Sunda, W. G., and Huntsman, S. A. (1992). Feedback interactions between zinc and phytoplankton in seawater. Limnology and Oceanography 37, 25–40.
Feedback interactions between zinc and phytoplankton in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltVOqsrg%3D&md5=5f36a6eef69bb4055cef25641e61694fCAS |

Sunda, W. G., and Huntsman, S. A. (1995). Cobalt and zinc interreplacement in marine phytoplankton: biological and geochemical implications. Limnology and Oceanography 40, 1404–1417.
Cobalt and zinc interreplacement in marine phytoplankton: biological and geochemical implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XpvVOltw%3D%3D&md5=a0118659d29a8caf14426244f5d9404aCAS |

Sunda, W. G., and Huntsman, S. A. (1998). Processes regulating cellular metal accumulation and physiological effects: phytoplankton as model systems. The Science of the Total Environment 219, 165–181.
Processes regulating cellular metal accumulation and physiological effects: phytoplankton as model systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlslWltrg%3D&md5=ccfaf6d54b1d1e75bff40c9492e496abCAS |

Sunda, W. G., and Huntsman, S. A. (2005). Effect of CO2 supply and demand on zinc uptake and growth limitation in a coastal diatom. Limnology and Oceanography 50, 1181–1192.
Effect of CO2 supply and demand on zinc uptake and growth limitation in a coastal diatom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnvVWqsr8%3D&md5=eb693e7059b91f8704b9388dc29c420dCAS |

Sunda, W. G., Price, N. M., and Morel, F. M. M. (2005) Trace metal ion buffers and their use in culture. In ‘Algal Culturing Techniques’. (Ed. R. A. Andersen.) pp. 35–63. (Academic Press, Burlington, MA, USA.)

Tang, D., and Morel, F. M. M. (2006). Distinguishing between cellular and Fe-oxide-associated trace elements in phytoplankton. Marine Chemistry 98, 18–30.
Distinguishing between cellular and Fe-oxide-associated trace elements in phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1ynug%3D%3D&md5=536a6b7229f72b5bff270972c09dd3feCAS |

Timmermans, K. R., Snoek, J., Gerringa, L. J. A., Zondervan, I., and de Baar, H. J. W. (2001). Not all eukaryotic algae can replace zinc with cobalt: Chaetoceros calcitrans (Bacillariophyceae) versus Emiliania huxleyi (Prymnesiophyceae). Limnology and Oceanography 46, 699–703.
Not all eukaryotic algae can replace zinc with cobalt: Chaetoceros calcitrans (Bacillariophyceae) versus Emiliania huxleyi (Prymnesiophyceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvVaht7o%3D&md5=1e76468116a51981635c1e00657fd3ceCAS |

Trimborn, S., Lundholm, N., Thoms, S., Richter, K.-U., Krock, B., Hansen, P. J., and Rost, B. (2008). Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: the effect of pH-induced changes in seawater carbonate chemistry. Physiologia Plantarum 133, 92–105.
Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: the effect of pH-induced changes in seawater carbonate chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFeqsbg%3D&md5=5bb0dbed0c3468b9f36f9ac9205a49deCAS | 18405335PubMed |

Twining, B. S., and Baines, S. B. (2013). The trace metal composition of marine phytoplankton. Annual Review of Marine Science 5, 191–215.
The trace metal composition of marine phytoplankton.Crossref | GoogleScholarGoogle Scholar | 22809181PubMed |

van den Berg, C. M. G., and Dharmvanij, S. (1984). Organic complexation of zinc in estuarine interstitial and surface water samples. Limnology and Oceanography 29, 1025–1036.
Organic complexation of zinc in estuarine interstitial and surface water samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXms12qsw%3D%3D&md5=9bb6cf282d3e4b3e619b4a6bfacce336CAS |

Varela, D. E., Willers, V., and Crawford, D. W. (2011). Effect of zinc availability on growth, morphology, and nutrient incorporation in a coastal and an oceanic diatom. Journal of Phycology 47, 302–312.
Effect of zinc availability on growth, morphology, and nutrient incorporation in a coastal and an oceanic diatom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntFCktbY%3D&md5=964d0d2a0d1524694eff23313e3bc7a8CAS | 27021862PubMed |

Vraspir, J. M., and Butler, A. (2009). Chemistry of marine ligands and sidérophores. Annual Review of Marine Science 1, 43–63.
Chemistry of marine ligands and sidérophores.Crossref | GoogleScholarGoogle Scholar | 21141029PubMed |

Wake, B. D., Hassler, C. S., Bowie, A. R., Haddad, P. R., and Butler, E. C. V. (2012). Phytoplankton selenium requirements: the case for species isolated from temperate and polar regions of the southern hemisphere. Journal of Phycology 48, 585–594.
Phytoplankton selenium requirements: the case for species isolated from temperate and polar regions of the southern hemisphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFSrtbvF&md5=a2b80f17aff51954163b8fcb771cdc30CAS | 27011074PubMed |

Williams, T. G., and Turpin, D. H. (1987). The role of external carbonic anhydrase in inorganic carbon acquisition by Chlamydomonas reinhardii at alkaline pH. Plant Physiology 83, 92–96.
The role of external carbonic anhydrase in inorganic carbon acquisition by Chlamydomonas reinhardii at alkaline pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhtFKlurg%3D&md5=bfb033d68060300125d239c4e9ddb4f8CAS | 16665222PubMed |

Wisniewski-Jakuba, R., Moffet, J. W., and Dyhrman, S. T. (2008a). Evidence for the linked biogeochemical cycling of zinc, cobalt, and phosphorus in the western North Atlantic Ocean. Global Biogeochemical Cycles 22, GB4012.
Evidence for the linked biogeochemical cycling of zinc, cobalt, and phosphorus in the western North Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar |

Wisniewski-Jakuba, R., Moffett, J. W., and Saito, M. A. (2008b). Use of a modified, high-sensitivity, anodic stripping voltammetry method for determination of zinc speciation in the North Atlantic Ocean. Analytica Chimica Acta 614, 143–152.
Use of a modified, high-sensitivity, anodic stripping voltammetry method for determination of zinc speciation in the North Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar |

Wisniewski-Jakuba, R., Saito, M. A., Moffett, J. W., and Xu, Y. (2012). Dissolved zinc in the subarctic North Pacific and Bering Sea: its distribution, speciation, and importance to primary producers. Global Biogeochemical Cycles 26, GB2015.
Dissolved zinc in the subarctic North Pacific and Bering Sea: its distribution, speciation, and importance to primary producers.Crossref | GoogleScholarGoogle Scholar |

Xu, Y., Tang, D., Shaked, Y., and Morel, F. M. M. (2007). Zinc, cadmium, and cobalt interreplacement and relative use efficiencies in the coccolithophore Emiliania huxleyi. Limnology and Oceanography 52, 2294–2305.
Zinc, cadmium, and cobalt interreplacement and relative use efficiencies in the coccolithophore Emiliania huxleyi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ahsLbO&md5=6ddad4cd2ef88f883c560d43b26f29c0CAS |