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Abstract. Kelp forests define.8000 km of temperate coastline across southern Australia, where,70% of Australians

live, work and recreate. Despite this, public and political awareness of the scale and significance of this marine ecosystem
is low, and research investment miniscule (,10%), relative to comparable ecosystems. The absence of an identity for
Australia’s temperate reefs as an entity has probably contributed to the current lack of appreciation of this system, which is

at odds with its profound ecological, social and economic importance. We define the ‘Great Southern Reef’ (GSR) as
Australia’s spatially connected temperate reef system. The GSR covers,71 000 km2 and represents a global biodiversity
hotspot across at least nine phyla. GSR-related fishing and tourism generates at least AU$10 billion year�1, and in this
context the GSR is a significant natural asset for Australia and globally. Maintaining the health and ecological functioning

of the GSR is critical to the continued sustainability of human livelihoods and wellbeing derived from it. By recognising
the GSR as an entity we seek to boost awareness, and take steps towards negotiating the difficult challenges the GSR faces
in a future of unprecedented coastal population growth and global change.
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The Great Southern Reef – the case for an identity

Temperate reefs are hard-bottom marine ecosystems found in
cool waters between the tropics and the poles. Temperate reef
ecosystems are diverse, spanning supralittoral lichen-encrusted

boulders to sponge gardens on rocky outcrops in the deep
oceans. Worldwide, where enough light penetrates to the sea-
floor, healthy temperate reefs are usually dominated by ‘kelp

forests’ – highly productive, structurally complex communities
of canopy-forming seaweeds of the orders Laminariales, Des-
marestiales and Fucales (Bolton 2010; Steneck and Johnson
2013). Depending on light, waves and grazers, kelp forests are

found from the shoreline down to depths of 30–40m (Marzinelli
et al. 2015), but can be found at depths.60 m in some regions
(e.g. Graham et al. 2007). Here, we recognise the diversity of

temperate reef ecosystems, but focus primarily on kelp forests as

they prevail in shallow and coastal waters, where most human

attention and activity is concentrated.
In Australia, shallow (,30 m) temperate reefs are defined

largely by the distribution of Ecklonia radiata kelp forests

(Fig. 1), which span more than 8000 km of coastline from the
subtropical waters of northern New South Wales (,28.58S),
down the east coast of mainland Australia, around Tasmania,

alongAustralia’s southern coastline and north as far asKalbarri
(27.78S) in Western Australia (Table S1) (Underwood et al.

1991; Connell and Irving 2008; Wernberg et al. 2011;
Marzinelli et al. 2015). Most of Australia’s kelp-dominated

temperate reefs lie within the ‘coastal zone’ under state
jurisdiction (3 nautical miles or 5.5 km from shore), and are
therefore managed independently by the five states in which

they occur (Fig. 1). Perhaps as a consequence, Australia’s
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temperate reefs have long been perceived andmanaged in local
contexts, without broader recognition of their significance as

an interconnected system. This lack of identity stifles public
and political awareness about their importance, not only of
their ecology per se, but also their importance to the livelihoods

of millions of Australians who live, work and engage in
recreation around them, and in providing valuable ecosystem
services to Australians.

Just as the Great Barrier Reef (GBR) is recognised as an
entity made up of more than 2900 individual reefs dominated by
corals (Day 2002), Australia’s temperate reefs should be con-

sidered collectively as an entity made up of thousands of kilo-
metres of rocky temperate reefs, dominated by kelp forests and
interconnected through oceanographic (Coleman et al. 2011;
Wernberg et al. 2013a), ecological (Irving and Connell 2006;

Connell and Irving 2008; Vanderklift and Wernberg 2008) and
evolutionary (Phillips 2001) processes – truly a Great Southern
Reef (GSR). Here we show that lack of awareness and invest-

ment in research focussed on temperate reefs is at odds with the
social, ecological and economic significance of the GSR.
Australians ignore the GSR and its contribution to our society

at our peril, but current levels of scientific engagement and
public awareness threaten the health and future function of this
significant integrated marine ecosystem. A multiscale view of
the GSR as an integrated system would help advance manage-

ment approaches that recognise both regional differences
(Connell 2007), connectivity and ecosystem values (Magris
et al. 2014), and assist the marine planning process based on

the principles of Comprehensiveness, Adequacy and Represen-
tativeness (Day et al. 2003; Lourie and Vincent 2004) for

Australian waters.

The ecological setting

The Great Southern Reef is a global biodiversity hotspot for
multiple taxa including seaweeds, sponges, crustaceans, chor-
dates, bryozoans, echinoderms and molluscs (Tables 1, S2)

(Bolton 1994; O’Hara and Poore 2000; Kerswell 2006; Barnes
and Griffiths 2008; Shenkar and Swalla 2011; Poore and Bruce
2012; Stöhr et al. 2012; Van Soest et al. 2012). In addition it is

estimated that tens of thousands of species are yet to be dis-
covered and described (Butler et al. 2010; Appeltans et al. 2012;
Van Soest et al. 2012), many of which could play important
functional roles within the GSR (e.g. Knudsen and Clements

2013). Importantly, many of the species found on the GSRmake
use of both the temperate reef habitat itself and adjoining inter-
reef habitats such as seagrassmeadows in shallowwaters and the

sponge ‘gardens’ that characterise deeper rocky reef habitats. As
well as being important assemblages in their own right, these
intermediary habitats facilitate connectivity among reefs

(Vanderklift andWernberg 2008) and act as nursery grounds for
many species (Jenkins and Wheatley 1998).

A remarkable feature of the biodiversity of the GSR is the
high rate of endemism within many taxa. For seaweeds, for

example, the GSR is a global hotspot of endemism at the genus
level (Kerswell 2006), indicating deep evolutionary isolation
since the Oligocene that has resulted in unique and diverse biota
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Fig. 1. The Great Southern Reef (GSR) straddles five states across the southern coastline of the

Australian continent. Rocky reefs run almost continuously around the southern coastline, where kelp

forests dominated by the small common kelp (Ecklonia radiata, middle) are a defining feature of the GSR.

The reef is home to some of themost unique temperatemarine organisms in theworld, such as the endemic

harlequin fish (Othos dentex, left) and myriad invertebrates (right) (photographs: T. Wernberg).
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(Hommersand 1986). An estimated 77% of the 565 species of
red seaweed found on the GSR are not found anywhere else on

Earth (Phillips 2001), whereas the rates of endemism for most
other phyla range between 30 and 60% of the total species pool
(Tables 1, S2).

The physical driver behind the GSR’s high diversity and
endemism is thought to be the stable climatic and geological
history it has experienced over the past 50 million years (cf. the
biodiversity hotspot in the tropical Indo-Pacific: Bellwood and

Meyer 2009) alongwith its geographical isolation (Phillips 2001;
Langlois et al. 2012). The ecology of the GSR is shaped in
large part by boundary currents that flow poleward along both

coasts of Australia, transporting warm nutrient-poorwater across
Australia’s temperate coastline (e.g.Wernberg et al. 2013a). The
Leeuwin Current flows southwards down the west coast and

wraps along the southern coastline of the continent, whereas the
East Australian Current extends down the east coast and pene-
trates along the east coast of Tasmania during summer (Condie

and Dunn 2006). These currents play an important role in the
connectivity of larvae and propagules throughout the GSR
(Condie et al. 2005; Coleman et al. 2011) andmaintain relatively
stable climatic conditions over seasonal and evolutionary time

scales (McGowran et al. 1997; Condie and Dunn 2006). Inter-
estingly, however, althoughmany species are shared between the
eastern and western GSR, such as the dominant habitat-forming

kelpEcklonia radiata (Connell and Irving 2008;Marzinelli et al.
2015), these regions have been connected through the Bass Strait
for only,10 000 years (Waters 2008) and still have low genetic

connectivity (Waters 2008; Coleman et al. 2013) and distinct
biogeographical affinities (Waters et al. 2010).

The biological engine of the GSR are the kelp forests, which
provide both the habitat and trophic foundation to support the

system. Kelp forests are among the most productive ecosystems
on the planet, with rates of productivity often exceeding that of
themost intensivelymanaged agricultural systems (Mann1973).

For example, the kelp forests of the GSR produce as much as

65 tonnes of biomass per hectare per year (de Bettignies et al.
2013), which is over 16 times more than Australia’s most fertile

wheat fields (http://www.ausgrain.com.au, accessed 3December
2014). This biological powerhouse then feeds directly into
coastal ecosystems as food and detritus (Bustamante and Branch

1996; Wernberg et al. 2006; Vanderklift and Wernberg 2010;
Krumhansl and Scheibling 2012), critical for the energy and
nutrient cycles supporting the rich marine life throughout the
GSR and out into the wider ocean beyond shelf waters (Thomp-

son et al. 2011). The high diversity and endemism of the GSR
make it globally unique and intrinsically fascinating both aes-
thetically and scientifically. In addition, its sheer scale and close

proximity to more than two-thirds of the Australian population
(ABS 2001) means that the GSR forms an integral part of
Australian culture and society. In turn, the GSR plays an impor-

tant role in Australia’s national economy, supporting a range of
tourism ventures, and recreational and commercial fisheries.

Ecosystem services and the economics of the GSR

Ecosystem goods and services (herein referred to collectively as
ecosystem services) are the direct (e.g. food production) or

indirect (e.g. climate regulation, nutrient cycling, coastal pro-
tection) benefits that humans derive from ecosystems (Costanza
et al. 1997). Quantifying the value of ecosystem services pro-

vided by the Great Southern Reef is critical as onemeasure of its
importance to society, and to enable comparisons with other
natural systems. Remarkably, analysis of 961 studies from a

global database revealed that the value of ecosystem services
provided by temperate reefs or kelp forest have scarcely been
quantified for any region, let alone in Australia (Marine Eco-
system Services Partnership (MESP), see http://www.mar-

ineecosystemservices.org/, accessed 2December 2014) (Fig. 2).
As a result, major global and regional assessments of the value
of ecosystem services do not recognise temperate reefs as dis-

tinct ecosystems but instead aggregate them with other shelf

Table 1. Physical, biological and economic attributes of the Great Southern Reef

For details and data sources see Tables S1–S5. All dollar values are AU$

Physical characteristics

Area (0–30-m depth) 71 389 km2

Coastline length 8100 km

Human population 15 890 000

Biodiversity and endemism

Seaweeds Richness¼ 978A, endemism¼ 40–77% (1)

Invertebrates Richness¼ 4100, endemism¼ 22–56% (1–4)

Fishes Richness¼ 731, endemism¼ n/a

Commercial fisheries

Rock lobster Catch¼ 9199 t, gross production value¼ $376.3 million year�1

Abalone Catch¼ 3614 t, gross production value¼ $136.3 million year�1

Recreational fisheries

Coastal waters Participants¼ 724 735, revenue¼ $553.8 million year�1

Economic importance of tourism

Metropolitan Expenditure¼ $28 196 million year�1, importance¼ 2.4% of revenue

Regional Expenditure¼ $9829 million year�1, importance¼ 7.4% of revenue

AWernberg et al. (2013a) reported 1499 species of seaweeds across southern Australia. This is the most recent

and up-to-date estimate of seaweed species richness for Australia’s temperate seaweed flora.
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habitats (Costanza et al. 1997, 2014; de Groot et al. 2012). On
the basis of these global assessments, the economic value of

habitats that include temperate reefs is estimated at US$26 226–
28 917 ha�1 year�1 based on 2007 dollar values (de Groot et al.
2012; Costanza et al. 2014). These estimates inevitably mis-

represent the value of temperate reefs for several reasons, not
least of which is that without data on ecosystem services spe-
cifically provided by temperate reefs, their contribution cannot

be included in the overall valuation. The profound implications
of this are illustrated for coral reefs, where the estimated value of
ecosystem services increased by a factor of 42 between 1997 and
2012, primarily due to new research on the value of coral reefs

(Costanza et al. 2014). Similar valuations would likely apply to
temperate reefs; however, currently there are insufficient studies
to accurately estimate their value. For example, kelp forests are

capable of rapid biomass accumulation and represent globally
significant standing stocks of carbon. Information on the frac-

tion that is sequestered into long-term carbon sinks such as
marine sediments and deep ocean, thus contributing to climate
change mitigation, is unknown (Laffoley and Grimsditch 2009).

Harvesting and appropriate use of seaweeds from cultivated and
wild sources (e.g. biofuels) could play a significant role in
greenhouse gas mitigation (Chung et al. 2011), but does not

factor into current valuations of temperate reef ecosystems.
Similarly, the indirect positive effect of kelp forests enhancing
fisheries (Bertocci et al. 2015) is unaccounted for.

Although they are conservative, existing estimates of the

value of ecosystem services from temperate reefs highlight the
important contribution that they make to human welfare, par-
ticularly for services that do not directly contribute to the

economy. The value of seaweed and seagrass habitats estimated
by Costanza et al. (1997) was almost entirely attributable to
nutrient cycling within these ecosystems. On reefs shallower

than 30 m where seaweed canopies dominate, the GSR covers
,7.14� 106 ha (Table 1), equating to as much as AU$187
billion year�1 of nutrient cycling services that are critical to
human welfare but currently do not feature in Australia’s gross

domestic product (GDP). Other more tangible ecosystem ser-
vices that directly contribute to GDP, such as food production
and recreation (e.g. tourism, fishing and surfing) are also

missing from this valuation even if they make a significant
contribution to the value of temperate reef ecosystems. Here we
evaluate the ecosystem services provided by the GSR that

directly contribute to the Australian economy and provide tens
of thousands of jobs in industries such as commercial fishing,
retail (e.g. surfing and fishing supply businesses), hospitality

and tourism.
There are many commercial fisheries operating along the

GSR. The two most valuable are the rock lobster and abalone
fisheries, which together contribute,AU$500 million year�1 to

theAustralian economy (Table 1, Fig. 3). TheWesternAustralian
rock lobster fishery is the most valuable single-species fishery in
the country and is worth ,AU$185 million year�1 (Table S3).

Similarly, wild-caught abalone in Tasmania alone are worth
almostAU$100million year�1 (TableS3). Byway of comparison,
the combined gross value of commercial fisheries catches from

the GBR region is ,AU$120 million year�1 (Deloitte Access
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Fig. 2. The number of case studies on the value of ecosystem services from

marine ecosystems worldwide. Open bars represent the number of studies

within each category that are relevant to temperate reefs, despite not being

the focus of the study. Just 17 of 961 studies in total were considered relevant

to temperate reefs. Data provided by the Marine Ecosystem Services

Partnership (MESP, see http://www.marineecosystemservices.org/).

Fig. 3. Economic importance of the Great Southern Reef (GSR). The Western Australian rock lobster (Panulirus cygnus, left picture) is

Australia’s largest single species fishery, worth AU$185 million year�1. Wild-caught abalone, including blacklip ablone (Haliotis rubra,

centre), contribute ,AU$140 million year�1 to Australia’s economy before processing. Recreational activities (right), such as diving,

fishing and surfing, on the GSR attract millions of participants every year and inject tens of millions of dollars into regional coastal

economies. Rock lobster photograph � J. Costa 2013 (reproduced with permission); abalone and recreation photographs � S. Bennett.
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Economics 2013), less than one-quarter of the value of rock
lobster and abalone on the GSR. Standardised by area, rock

lobster and abalone fishing on the GSR is more than seven times
more valuable than all commercial fishing on theGBRcombined.

The value of tourism directly associatedwith theGSRhas not

beenmeasured for any local or regional sections of reef, as far as
we are aware. Nevertheless, total tourism expenditure in coastal
municipalities immediately adjacent to the GSR provides an

approximate indication of its value. Tourism along the GSR
represents a multibillion dollar industry (AU$38 billion year�1,
based on 2007–08 figures: Tables 1, S4) (Tourism Research
Australia 2011) and is particularly vital to regional economies

along the GSR. Of course, not all tourism expenditure can be
directly attributed to the GSR and these figures inevitably
overestimate direct, reef-related values, particularly in major

cities where tourists are attracted for many reasons. Neverthe-
less, in regional coastal communities alone (i.e. excluding the
cities of Sydney, Newcastle,Wollongong,Melbourne, Adelaide

and Perth), where reef-related tourism such as fishing, scuba-
diving, surfing ‘reef breaks’, whale watching and other ecotour-
ism ventures are a major drawcard, total tourism expenditure is
estimated at,AU$9.8 billion year�1, representing,15% of the

total economic activity in some regional areas (e.g. Philip
Island¼ 18.7%, Tasmanian west coast¼ 16.2%, Kangaroo
Island and Tasmanian east coast¼ 14%: Tourism Research

Australia 2011). The GSR is therefore a major contributor to
the socio-economic fabric of Australia and particularly that of
regional coastal communities (Metcalf et al. 2014).

Recreational activities on the GSR are similarly large,
primarily due to the spatial scale and concentration of popula-
tion centres along its shores. Approximately 67% of the Austra-

lian population livewithin 50 kmof theGSR (ABS 2001), which
if scaled to Australia’s 2014 population, equates to 15.9 million
people. Of those, it is estimated that ,5.3 million regularly
participate in recreational fishing. On the basis of 2001 values,

recreational fishing along the GSR is estimated to be worth
,AU$500 million year�1, with over 6 million person-fishing-
days conducted each year (Tables 1, S5). Nationally, coastal-

water fishing effort is the highest among all waterbody-types
(41%), with 9.5 million fishing events per year, compared with
35% in estuaries, 11% in rivers, 8% in lakes and dams, and 4%

offshore (Henry and Lyle 2003). Owing to their size, the highest
numbers of recreational fishers in Australia are concentrated
adjacent to the major cities of Sydney, Melbourne and Perth,
which are also experiencing the highest rates of population

growth in the nation. Therefore, although more recent partici-
pation rates are not available, the economic value of recreational
fishing on the GSR will inevitably have grown over the past

decade. The economic value of other forms of recreation on the
GSR is difficult to quantify; however, a range of other activities
take advantage of the wild natural beauty, pristine waters and

healthy ecosystems of the GSR even if not directly associated
with its kelp forests. For example, most of the estimated 2.7
million surfers in Australia (www.surfingaustralia.com.au) live

adjacent to the GSR. Much of the recreation and tourism in
iconic places such as Phillip Island and Torquay in Victoria, or
Margaret River in Western Australia, are based around surfing
‘reef breaks’ that formon theGSR and attractmillions of visitors

each year (Tourism Research Australia 2011).

Public perception and research investment

Despite its intrinsic and economic value, public perceptions of
the Great Southern Reef are low compared with other compa-
rable natural assets in Australia such as the GBR. Similarly, or

perhaps as a consequence, rates of research investment into
understanding the ecology that underpins the GSR ecosystem
are also low.

Quantifying perceptions of the GSR by the Australian public

is challenging. We use news reports as a proxy for public
awareness but acknowledge that the relationship between news
reports and public awareness is not necessarily a simple one

(Duarte et al. 2008). We searched the online archives of 15
major news outlets from across Australia (Table S6) to investi-
gate the public awareness of temperate reefs, and we compared

this to coral reefs, the most comparable major ecosystem in
Australia. Following the methods of Duarte et al. (2008), the
electronic archives were searched during November 2014 to

compare the number of news hits for (1) ‘temperate reef’ and
’coral reef’, and (2) ‘kelp’ and ‘coral’. The electronic archives
all covered at least two years but did not all cover the same
period. Therefore a rigorous analysis of temporal trends in

reporting on the different ecosystems was not possible.
The media search revealed that for both comparisons (kelp

v. coral and temperate reef v. coral reef), news reporting was

more than an order of magnitude higher for coral reefs than for
temperate reefs (Table S6). ‘Kelp’ accounted for 2.9% � 0.6
(mean � s.e.) of the total number of news reports on ‘kelp’ and

‘coral’ in Australian media. Similarly ‘temperate reefs’
accounted for only 5.6%� 1.8 (mean� s.e.) of all media reports
on ‘temperate reef’ and ‘coral reef’. This finding was consistent

irrespective of the geographical location of the media outlet.
That is, despite their target audiences living thousands of kilo-
metres away from the nearest coral reef, and immediately
adjacent to the GSR, 81–99% of all reef-related stories reported

in Tasmanian, Victorian and South Australian newspapers
focused on coral or coral reefs.

To ascertain any patterns in public investment in research

funding we searched the funding outcomes of all major funding
schemes announced by the Australian Research Council since
2010 (project codes DP10, LP10 etc.) (http://www.arc.gov.au/

applicants/fundingoutcomes.htm, accessed 29 March 2015) for
all projects in ecology (FoR code 0602) as well as projects
returned using the search words ‘coral’ and ‘kelp’. From the
project description it was ascertained whether the project had a

coral reef or temperate reef focus. This approach focused the
search on themajor habitat-formers (corals and kelps) but did not
exclude other groups of organisms (e.g. barnacles, fish, ane-

mones) or distinguish between subtidal and intertidal habitats.
The imbalance in news reporting was also reflected in public

investment in research funding within Australia, a pattern

seen across all major funding schemes. Over the past five years
(2010–14), coral reefs receivedAU$55.3million in total research
funding from the Australian Research Council, compared with

onlyAU$4.0million allocated to temperate reef research (Fig. 4).
Australia is a world leader in coral reef research, reflecting
decades of investment and the recognition of the importance
of coral reef systems. The social, ecological and economic

importance of kelp forests in Australia justifies a similar
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commitment to temperate reefs. The current funding imbalance
creates a research vacuum on the GSR, and undermines the

continued development of sustainable industries and knowl-
edge-based management of the region.

Status and threats

Likemany of Australia’s natural assets, the Great Southern Reef

is relatively healthy and well managed by global standards.
However, with growing pressures from climate change, popu-
lation growth and coastal urban development, the GSR is at
increasing risk, withmany areas already showing severe signs of

stress and degradation (Connell et al. 2008; Department of
Sustainability, Environment, Water, Population and Commu-
nities 2011; Johnson et al. 2011; Wernberg et al. 2011b).

Warming is currently occurring 2–4 times the global average in
the western and south-eastern GSR respectively (Pearce and
Feng 2007; Ridgway 2007; Hobday and Pecl 2014).Warming in

the south-eastern GSR has been largely due to increased
frequency and size of eddies of the East Australian Current
propagating poleward towards Tasmania (Johnson et al. 2011).
The increased influence of warm nutrient-poor water from the

East Australian Current in eastern Tasmania has been associated
with dramatic losses of giant kelp (Macrocystis pyrifera) forests
(Johnson et al. 2011). As a consequence, in August 2012 the

Australian giant kelp forests became the first marine community
to be listed as endangered under the Environment Protection

and Biodiversity Conservation Act (http://www.environment.

gov.au/resource/giant-kelp-marine-forests-south-east-australia,
accessed 4 June 2015). In 2011, gradual warming on the western
GSRwas punctuated by an unprecedented marine heatwave that

saw summer temperatures reach 2–68C above long-termmaxima
across almost 2000 km of coastline (Pearce and Feng 2013;
Wernberg et al. 2013b). The marine heatwave had catastrophic
impacts on the western GSR, resulting in a dramatic loss of kelp

forests across more than 960 000 ha of reef in the north-western

GSR (T. Wernberg and S. Bennett, unpub. data) and .100 km
range contraction of other dominant canopy-forming seaweeds

(Smale and Wernberg 2013). Range contractions present a
serious risk of species extinction on the GSR because of the
combination of lack of suitable habitat for retreat farther south

and high rates of endemism (e.g. Wernberg et al. 2011a). In
addition to range contractions and habitat losses, warming is also
facilitating the addition of new species as warm temperate and

tropical species increase in abundance and expand their ranges
poleward (i.e. tropicalisation) into previously cooler environ-
ments (Wernberg et al. 2013b; Vergés et al. 2014; Bennett et al.
2015a). Observed changes include expansion of a subtidal sea

urchin (Ling et al. 2009), a range of intertidal invertebrates
(Pitt et al. 2010), zooplankton (Johnson et al. 2011), and coastal
fishes (Johnson et al. 2011; Last et al. 2011; Bennett et al.

2015a; Robinson et al. 2015). In the case of the sea urchin
(Centrostephanus rodgersii) in the south-eastern GSR, range
extension and population expansion has led to overgrazing of

kelp forests, resulting in barren formation and reduced fisheries
productivity (Johnson et al. 2011). Similarly, in the south-
western GSR tropical herbivorous fishes are now preventing the
recovery of kelp forests lost during the 2011 marine heat wave

(Bennett et al. 2015a).
Local stressors are also having an important impact on the

health of the GSR. Kelp forests on the eastern (Coleman et al.

2008) and central (Connell et al. 2008) GSR have undergone
decline and loss adjacent to intense coastal development as a
result of localised pollution including nitrogen enrichment from

discharge of sewage and stormwater (Gorman et al. 2009). Such
losses are likely to increase over the next century as the human
population increases along the GSR, and as local declines

accumulate they eventually coalesce to manifest as regional
impacts. Furthermore, there are synergistic impacts between
local nitrogen enrichment and global enrichment of carbon
dioxide (i.e. ocean acidification: Connell et al. 2013) that causes

a switch in the competitive dominance between perennial kelp
and opportunistic seaweed turfs (Connell et al. 2014), favouring
the establishment of resilient turf-dominated habitats. Not all

areas of the GSR will suffer kelp loss because of the inherent
stabilising processes of ecosystems (Bennett and Wernberg
2014; Bennett et al. 2015b; Connell and Ghedini 2015) that

compensate for increasing effects of multiple disturbances
(Ghedini et al. 2015) and broad spatial variation in the impor-
tance of particular or multiple stressors (Wernberg et al. 2011b).
Because impacts ultimately depend on interactions between

global and local stressors that might vary from place to place
both in nature and in strength (e.g.Wernberg et al. 2010; Bennett
and Wernberg 2014; Bennett et al. 2015b), understanding the

current and future threats faced by the GSR from a local to
continental scale is essential to enable appropriate management
of the system and ensure the sustainability of the intrinsic value

and ecosystem services derived from it (Connell and Irving
2009; Wernberg et al. 2011b).

Management of the GSR in a rapidly changing environment

The fastest rates of population growth in Australia are adjacent
to the Great Southern Reef, and the current 16 million people

within 50 km of the coast is projected to increase by another
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Fig. 4. Public research spending on temperate and coral reef research

awarded by the Australian Research Council (ARC) between 2010 and 2015
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2014).
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3million in the next decade and double in size by 2060 (based on
a median growth rate 1.6%: Pink 2013). Given the associated

increases in urbanisation and coastal development, maintaining
and enhancing the social–ecological resilience of the GSR will
be difficult in some regions, and losses of someGSR habitats are

inevitable. The additional pressures from ongoing climate
change will result in a range of existing and novel challenges for
management of temperate reefs and associated industries along

the southern coast of Australia. Importantly, management of
local conditions can alleviate, if not reverse, global stressors
(Wernberg et al. 2011b; Falkenberg et al. 2013) and there is
substantial local impetus for participation in addressing the

problems. For example, a study from South Australia found
that households in the immediate area of marine habitat loss
were willing to pay up to AU$67.1 million for improvements

to waste-water management to reduce impacts (MacDonald
et al. 2015).

Increased recognition of ecological linkages across southern

Australia and the GSR as an entity will strengthen the potential
for cooperative management among the federal and state gov-
ernments. As a starting point, greater understanding of the
functioning of the GSR entity will be required, with new ‘big

picture’ research focusing on linkages and contrasts across
the GSR system. Consistent governance through spatially flexi-
ble approacheswill likely provide themost ecologically sensible

and cost-effective management strategies. For example,
currently variable fisheries regulations both within and among
states (e.g. licensing, gear restrictions, seasonal closures and bag

limits) may need to be harmonised for highly mobile and
widespread species whereas locally appropriate management
targets (e.g. nitrogen loads: Gorman et al. 2009) will be required

where regional differences in, for example, sensitivity to water
pollution and fishing are recognised (Connell 2007). Novel
industries that exploit the GSR may arise, including biopros-
pecting for, and harvesting of, unique seaweed and sponge

species, which will require new or cooperative legislation.
Recall that our forbearers effectively fished-out native oyster
reefs before the formation of the Australian parliament, repre-

senting the wholesale loss of thousands of kilometres of temper-
ate habitat needed to maintain fish production and water quality
(Alleway and Connell 2015). By recognising the GSR as a

holistic and connected system, piecemeal decision-making can
be avoided, and the importance of integrated planning and
cumulative risk recognised, such that Australia’s temperate
reefs continue to support and deliver valuable socio-economic

and ecological services into the future.

Conclusions

There is currently a paradoxical (and concerning) mismatch
between the low public awareness and investment in Australia’s

temperate reef ecosystem and its high ecological and economic
value for Australian society. By recognising the ‘Great Southern
Reef’ as an entity and defining the benefits derived from it as a

whole, we have highlighted the profound importance of this
system. This process is only a first step towards a broader dis-
cussion about, and greater scrutiny of, the values of the GSR that
will engender relationships and perceptions of Australian society

towards this system. Given the rapid historical rates of

environmental change throughout temperate Australia (Lough
and Hobday 2011) and projected changes (Hobday and Lough

2011; Oliver et al. 2014), sustainable and adaptive management
of the GSR over the coming decades will require a strong
knowledge-base and generation of a public and political will to

look after the system, and a commitment that reflects the
immense ecological social and economic benefits we derive
from the Great Southern Reef.

Acknowledgements

This work arose from discussions during the 10th International Temperate

Reefs Symposium (ITRS) in Perth 2014. The ITRS was sponsored by The

University of Western Australia, CSIRO, the Government of Western

Australia Department of Fisheries, BMT Oceanica, CSIRO Publishing and

Edith Cowan University. S. Bennett and T. Wernberg convened the public

forum ‘The Forgotten Coast – the State and Future of Australia’s Temperate

Reefs’ and wrote the paper with inputs from all authors. T. Wernberg and

S. D. Connell were supported by Australian Research Council Future

Fellowships; A. J. Hobday was supported by a travel grant to the ITRS.

References

ABS (2001). Regional population growth. 3218.0. Australian Bureau of

Statistics, Canberra.

Alleway, H. K., and Connell, S. D. (2015). Loss of an ecological baseline

through the eradication of oyster reefs from coastal ecosystems and

humanmemory.ConservationBiology 29, 795–804. doi:10.1111/COBI.

12452

Appeltans,W.,Ahyong, S. T., Anderson,G.,Angel,M.V.,Artois, T., Bailly,

N., Bamber, R., Barber, A., Bartsch, I., and Berta, A. (2012). The

magnitude of global marine species diversity. Current Biology 22,

2189–2202. doi:10.1016/J.CUB.2012.09.036

Barnes, D. K., and Griffiths, H. J. (2008). Biodiversity and biogeography of

southern temperate and polar bryozoans. Global Ecology and Biogeog-

raphy 17, 84–99.

Bellwood, D. R., and Meyer, C. P. (2009). Searching for heat in a

marine biodiversity hotspot. Journal of Biogeography 36, 569–576.

doi:10.1111/J.1365-2699.2008.02029.X

Bennett, S., and Wernberg, T. (2014). Canopy facilitates seaweed recruit-

ment on subtidal temperate reefs. Journal of Ecology 102, 1462–1470.

doi:10.1111/1365-2745.12302

Bennett, S.,Wernberg, T., Harvey, E. S., Santana-Garcon, J., and Saunders, B.

(2015a). Tropical herbivores provide resilience to a climate mediated

phase-shift on temperate reefs.Ecology Letters 18, 714–723. doi:10.1111/

ELE.12450

Bennett, S., Wernberg, T., Anderson, R. J., Bolton, J. J., Bettignies, T. D.,

Kendrick, G. A., Rodgers, K. L., Shears, N. T., Leclerc, J. C., Lévêque, L.,
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