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Abstract. Many aquatic ecosystems have been severely degraded by water-resource development affecting flow
regimes and biological connectivity. Freshwater fish have been particularly affected by these changes and climate change
will place further stress on them. The Murray—Darling Basin (MDB), Australia, represents a highly affected aquatic system
with dramatically modified flow regimes. This has impaired the health of its rivers, and potentially limited the adaptive
capacity of its biota to respond to a changing climate. Here, we present our predictions of the potential impacts of climate
change on 18 native fish species across their distributional ranges against the back-drop of past and continuing water-
resource development (WRD). Because most of these species are found across a wide range of geographical and
hydrological settings, we classified the MDB into 10 regions to account for likely variation in climate-change effects, on
the basis of latitude, elevation and WRD. Cold water-tolerant species will be under greater stress than are warm water-
tolerant species. In some regions, the negative impacts on exotic fish such as trout are likely to improve current conditions
for native species. Because the impacts of climate change on any given species are likely to vary from region to region,
regional fish assemblages will also be differentially affected. The most affected region is likely to occur in the highly
disturbed Lower Murray River region, whereas the dryland rivers that are less affected in the northern MDB are likely to
remain largely unchanged. Although climate change is a current and future threat to the MDB fish fauna, the continued
over-regulation of water resources will place as much, if not more, stress on the remnant fish species.

Additional keywords: conceptual models, native fish, regionalisation, riparian vegetation, water-resource development.

Introduction

Climate change, with associated changes in land use, atmo-
spheric CO, concentration, nitrogen deposition and acid rain, as
well as introductions of exotic species, is considered one of the
most important determinants of current declines in global bio-
diversity (Sala et al. 2000). The challenge for ecologists is to
predict the likely responses of species and communities to
climate change over and above the background natural
ecological variability (Verschuren et al. 2000) and, in heavily
modified areas, above and beyond the effects of human
development.

Humans already withdraw ~50% of available freshwater
resources globally (Szdllosi-Nagy et al. 1998), with require-
ments increasing almost 10-fold during the 20th century
(Biswas 1998). The effects of this development on aquatic
ecosystems have been severe, evidenced by the numerous global
and regional assessments that depict accelerating losses of
biodiversity and declines in ecosystem function (VOrosmarty
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et al. 2000). These impacts in freshwater ecosystems stem from
changes to the natural flow regime (Poff and Zimmerman 2010),
loss of river—floodplain connectivity (Tockner et al. 2008) and
channelisation and construction of in-stream barriers, to name a
few. The added effects of climate change in already stressed
ecosystems will only further exacerbate the decline in fresh-
water biota (Pittock and Finlayson 2011).

In Australia, most of the larger rivers in the south-east of the
country suffer from extensive agricultural and rural develop-
ment and a consequent decline in river ecosystem health
(Mercer and Marden 2006). The most notable are the rivers of
the Murray—Darling Basin (MDB) located in the south-east of
Australia. The MDB occupies ~14% of the continent’s surface
area (1.07 million km?), produces ~40% of the country’s annual
agricultural production (Crabb 1997) and annually contributes
~AUS$18 billion worth of produce to the national economy
(MDBA 2010). As a focus for intensive agricultural production,
there is intense interest in the condition of aquatic ecosystems in
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the MDB, as well as the possible impacts of climate change
(Davies et al. 2010).

There has been widespread degradation of both riverine and
floodplain biota in the MDB, with large tracts of floodplain
forest transitioning to terrestrial ecosystems (Pittock and
Finlayson 2011). In their assessment of fish species, hydrology
and macroinvertebrates, Davies et al. (2010) found 20 of the
24 river basins to be in poor or very poor condition. The impacts
of flow modifications, including thermal pollution, have been
implicated in the demise of native fish in the MDB-regulated
rivers, because of their impacts on physiology, spawning and
movement (Gehrke and Harris 2001; Growns 2008). Native fish
numbers are now only 10% of pre-European levels (MDBC
2004) because of factors such as changes to the natural flow
regime, habitat degradation and barriers to biological connec-
tivity (Pratchett et al. 2011). Assessing how climate change will
affect fish species in the MDB must consider these previous and
continuing impacts.

Much in-stream fish habitat has been lost as a result of wood
removal across the MDB (Koehn et al. 2004). Disruption of
riparian—riverine linkages and the loss of riparian and floodplain
flora will continue to result in impacts to MDB fish, aside from
the direct impacts of river regulation. In the present review, we
begin by exploring the effects of water resource and climate
change on riparian and in-stream vegetation in the MDB.
We then assess how climate change might alter native fish
assemblages across the MDB by focussing on 18 individual
species, spanning the majority of fish within any local assem-
blage within the MDB (largely on the basis of distribution maps
from Lintermans (2007)). These impacts are presented in a
regional context to demonstrate how responses are likely to
differ across climate zones and levels of water-resource
development.

Climate change impacts in the Murray—Darling Basin

Projected changes to temperature, rainfall and evaporation,
particularly in inland Australia, will alter the frequency and
magnitude of heavy rain events, floods and droughts, and affect
runoff, soil moisture and salinity on a regional basis (Pittock
2003). In the northern and southern MDB, declines of between
8% and 12% of median runoff, with <5% change in the central,
eastern and southern upland regions, are predicted (PMSEIC
2007). The frequency of drought is predicted to increase by
20—40% by 2030 (compared with 1975-2000 average)
(PMSEIC 2007). Most global climate models indicate that
future winter rainfall is likely to be lower across the MDB,
particularly in the southern MDB (CSIRO 2008), which is sig-
nificant because most of the rainfall and runoff occurs in winter
in this region.

Although the median 2030 climate projections suggest an
overall reduction of 11% in average surface-water availability
across the MDB, there are strong regional variations, with
reductions of 3% in the Paroo catchment, 12% for the Murray
River at Wentworth and 21% in the Wimmera (CSIRO 2008).
These changes in runoff- and surface-water availability must be
set against a backdrop of historical levels of water use in the
basin of ~50%, which have already caused widespread changes
in the nature of riverine and floodplain ecosystems.
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Predicted impacts on riparian and floodplain vegetation
in the Murray—Darling Basin

River red gum (Eucalyptus camaldulensis)

River red gums are the iconic trees of the MDB and contribute
significant structural woody habitat and finer organic material
(Koehn et al. 2004) that provide shelter from predators, food and
nutrients. River red gums form extensive forests within the
Murray and Murrumbidgee catchments (e.g. Barmah—Millewa
Forest) and fringe most of the main rivers and tributaries
throughout the basin (Roberts 2001). The species is found across
a large temperature gradient and can utilise a range of water
sources, including surface- and groundwater sources (Thorburn
et al. 1994). Their distribution, density and condition, however,
are closely linked to flooding, particularly flood frequency
(Roberts 2001). Consequently, changes in flood frequency are
usually associated with changes in river red gum condition. In
the Barmah Forest, for example, river red gum trees have his-
torically withstood an absence of flooding for up to 18 months
during droughts in 1982 and perhaps also during droughts of a
similar durationin 1904, 1915, 1944 and 1967 (Bren et al. 1987).
The extreme drought in the lower MDB since the mid-1990s,
however, has stressed or killed a large number of river red gums.

Impacts of water-resource development on river red gums
have occurred as a result of changes in flood frequency, duration
and magnitude (Cunningham et al. 2007). Where parts of the
floodplain have been permanently inundated, large stands of
river red gum have perished. Individual trees and river red gum
forests in other locations are stressed because of a lack of
flooding of sufficient duration and frequency. Reductions in
flooding associated with river regulation and water abstraction
have probably impaired recruitment. Increased groundwater
salinity, also associated with river regulation in parts of the
MDB, has further contributed to declining river red gum health
(Overton et al. 2006).

Climate-change impacts on river red gums are most likely to
manifest themselves through changes in the frequency and
magnitude of floodplain inundation events. Trees and forests
already stressed by water-resource development may exhibit
mass mortality as a result of the increased stress associated with
further reductions in flooding caused by climate change.
Increased duration of dry spells, along with higher temperatures,
may reduce survivorship of seedlings. Such impacts to river red
gums, leading to less structural woody habitat, will have
significant implications for fish, such as Murray cod (Maccul-
lochella peelii) (Koehn 2009) and trout cod (Maccullochella
macquariensis) (Nicol et al. 2007). Reduced inputs of organic
matter from finer material such bark and leaves will also have an
impact on food supply for small-bodied fish and cascade
upwards through food webs, whereas the loss of stream-side
canopy may increase algal growth and further exacerbate rising
water temperatures as a result of reduced shading.

Lignum (Muehlenbeckia florulenta)

Lignum shrubland occurs throughout the MDB, with large
stands on the floodplains of the lower Warrego River, Barwon—
Darling River and northern Darling tributaries (Roberts 2001).
In the eastern MDB, it fringes the more ephemeral or temporary
waterbodies. Lignum is very tolerant of drought conditions and
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can survive as a leafless shrub for several years on low rainfall
with little to no flooding (Craig ef al. 1991; Capon 2003). After
long dry spells, lignum responds quickly to either flooding or
rainfall through rapid leaf growth and flowering (Capon et al.
2009). Lignum shrubland is particularly significant in the MDB
as breeding habitat for colonial waterbirds, especially where it
comprises large, mature shrubs in intermediately flooded areas
(Capon et al. 2009).

Impacts of water-resource development on lignum shrubland
in the MDB are likely to have been minimal in comparison with
the widespread historic clearing of this species. Lignum is
intolerant of prolonged flooding (Roberts 2001; Capon 2003),
so reductions in flood frequency and duration associated with
water-resource development do not appear to have resulted in
significant declines in the health of remaining lignum stands.
Instead, this may have allowed lignum to increase its range into
areas that were previously flooded more frequently or for longer
durations, such as in the terminating wetlands of the northern
MDB dryland rivers.

Higher air temperatures and reductions in rainfall and flood
frequency and duration associated with climate-change scenarios
may alter the character and condition of lignum stands through-
out the MDB and, therefore, their value as habitat. Lignum
recruitment appears to be closely linked to hydrology (Capon
et al. 2009) and further alterations to flooding patterns may
change the population structure of lignum stands as well as
facilitating the further encroachment into channels and open
water areas by seedlings. Such impacts are likely to have
implications for fish populations in the MDB by altering habitat
and food-web structure, via flow-on effects of impacts to
piscivorous waterbirds that rely on lignum shrublands for
habitat and via changes to inputs of organic material (e.g. lignhum
leaves).

Aquatic grasses, reeds, rushes and sedges

Emergent macrophytes, including grasses, sedges, reeds and
rushes, are widespread across the MDB’s floodplains, wetlands
and waterway fringes. Prominent and ecologically significant
species include grasses such as couch (Cynodon dactylon),
Moira grass (Pseudoraphis spinescens), water couch (Paspalum
distichum) and common reed (Phragmites australis) as well as
bulrushes (Typha spp.) and sedges such as Eleocharis spp. and
Cyperus spp. Most species exhibit some tolerance to both
inundation and drying, although life-history responses vary
widely, reflected by species distributions (Roberts 2001). Some
species (e.g. Moira grass and water couch) require frequent,
seasonal inundation, whereas others (e.g. common reed) can
persist through considerable periods of drought both as mature
plants and as persistent rhizomes in the soil. In contrast,
bulrushes grow in water to 2 m deep and, although they can
tolerate water regimes that vary from permanently wet to sea-
sonally or periodically dry, they do not tolerate permanent
flooding over 2 m deep and can only tolerate dry conditions for
short periods after the growing season (Roberts 2001).

The impacts of water-resources development are likely to
have varied amongst species in this group, depending on
their particular environmental tolerances and life histories.
Anecdotal evidence, for instance, suggests that common reed
was historically more widespread in terminal floodplains of the
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MDB and the decline in the extent of this species may reflect
reductions in flood frequency, as well as grazing pressure, in
such areas (Roberts 2001). Moira grass plains on floodplains of
the Murray River are also threatened as a result of water-
resources development, both as a direct result of changes in
flood frequency, duration and timing on the life history of this
species, as well as indirectly as a result of their encroachment by
both river red gum and giant rush because of altered flooding
patterns (Bren 1992; Roberts 2001).

Further reductions in the duration and frequency of flooding,
which are likely under many climate-change scenarios, will
have a major impact on many plant species in this group, and
further reductions in the extent of Moira grass plains and stands
of common reeds are of particular concern. Higher air tempera-
tures, combined with lower humidity, have the potential to affect
germination and regeneration of these species through reduced
soil moisture. Survival of persistent propagules (e.g. rhizomes)
may also decline as a result of declining soil moisture and flood
frequency. Bulrushes are also likely to be affected by altered
flooding patterns associated with water-resources development
and climate change.

Although Typha stands may well expand in certain regions of
the MDB under climate-change scenarios, favoured by warm,
nutrient-rich conditions, in other areas where water levels and
soil moisture decline and the periods between flooding are
extended, Typha stands may disappear. Such loss of grasses
and reeds, particularly in terminating and off-channel wetlands,
are likely to have a significant impact on smaller-bodied fish
species, such as pygmy perch and carp gudgeons, that rely on
them for both cover and food. Furthermore, plants such as reeds
and grasses that fringe river channels also provide significant
organic inputs to fish food webs; losses would reduce fish
abundance and diversity (Fig. 1).

Conceptual models of predicted climate-change impacts
on some iconic MDB fish species

Environmental filters have been used to predict changes in fish
species presence on the basis of their physiological and habitat
requirements (Poff 1997; Bond et al. 2011). However, patchy
information on environmental tolerances of many MDB fish
taxa limits predictions of impacts from climate change. Many
MBDB fish species appear to be ecological generalists (flexible
breeding strategies, diet and habitat), given their wide distri-
bution across varying climatic and geographical regions
(Lintermans 2007). Therefore, the main climate-change drivers
for generalist fish within the MDB will relate to flow (and
therefore changes in habitat availability) and to physiological
impacts felt through increased water temperatures influencing
spawning times and reduced oxygen levels impairing fitness and
survival (Fig. 2; Pankhurst and Munday 2011). Given the over-
riding impacts of current levels of water-resource development
on fish throughout the MDB, our predictions of climate-change
impacts acknowledge how individual species have already
been affected, and will continue to be so, by water-resource
development (MDBC 2004).

The impact of climate change on invasive species will also be
relevant to native fish. Invasive species are expected to undergo
a mix of responses to climate change, reflecting the diverse
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Fig. 1. Conceptual model of some possible impacts of river regulation and climate change on fish the diversity and abundance of species in the Murray—

Darling Basin. Figure adapted and simplified from Pusey and Arthington (2003) and Boulton and Brock (1999).

range of climatic conditions under which they originally
evolved (Rahel and Olden 2008). For example, Bond et al.
(2011) predicted a contraction in the distribution of brown
(Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in
the southern part of the MDB. The reduction of these species,
especially in upland regions, would be expected to benefit many
native species. Morrongiello et al. (2011) suggested that gam-
busia may benefit from increased water temperatures, again,
especially in the south. Any increase in the distribution and
abundance of this species is likely to be negative, especially for
small-bodied native fish. Common carp (Cyprinus carpio) has
opportunistic recruitment patterns and high rates of population
growth that allow it to persist in suboptimal conditions (Koehn
2004). Hence, this fish species is unlikely to be affected by
climate change and will probably increase in some places, as a
result of increased temperature and thus breeding and growth
response when periodic recruitment opportunities (occasional
floods) occur.

On the basis of the conceptual model in Fig. 2, we developed
five derivative models for different groups of MDB fish species.
Fish were grouped according to ecological similarities in diet,
breeding strategies (such as spawning flexibility and type of
spawning cue), habitat associations (e.g macrophytes, snags,
open water) and temperature tolerances (e.g cold water and
warm water). For brevity, only two of these models are pre-
sented here to demonstrate how we assessed climate-change
impacts on species diversity and abundance.

The first model predicts the abundance of Murray cod
(Fig. 3). This model demonstrates two pathways of effect, as
follows: (1) decreased precipitation leading to reduced water
levels and flow, affecting spawning and recruitment, and
(2) increased temperature influencing the timing of spawning
and physiological tolerance, ultimately reducing Murray cod
abundance (Table 1). Overall, Murray cod will decline across
the MDB, especially in the northern regions where reduced
flows will exacerbate impacts of loss of hydrological connectiv-
ity and reduce thermal (summer) refugia because of the loss of
deep pools (Table 1). There may be some localised increases in
populations where stream temperature rises partially negate
impacts of cold-water pollution below bottom-release dams
(Table 1). Additionally, there are likely to be longer-term
indirect impacts throughout the MDB where riparian and
floodplain trees are lost, given they provide significant habitat
and food for Murray cod (Table 1).

Our second example (Fig. 4) demonstrates some of the key
drivers influencing five medium- to large-bodied fish species
that are either widely distributed across the whole MDB
(yellowbelly (Macquaria ambigua), eel-tailed catfish (Tanda-
nus tandanus) and silver perch (Bidyanus bidyanus)) or across
the northern MDB (Hyrtl’s tandan (Neosilurus hyrtlii) and
spangled perch (Leiopotherapon unicolor)) (Table 1). Increased
temperature will directly influence predator—prey relationships
by affecting lower levels of the food web, including primary
productivity, potentially creating more niches for these fish.
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Fig. 2. Conceptual model of the predicted impact of climate change (mediated though changes in precipitation, increased temperature and increased
evaporation) on the diversity and abundance of fish species. A = change, T = increase.

Changes in precipitation and evaporative loss will reduce the
amount of water in the river, impairing connectivity and
recruitment of these species. In the northern MDB, increased
temperatures will allow species such as yellowbelly, spangled
perch and Hyrtl’s tandan with high temperature tolerances and
opportunistic breeding strategies to take advantage of the high
primary productivity (Table 1). Silver perch and eel-tailed
catfish are unlikely to gain much benefit from such changes in
the northern MDB because the drier climate will have a further
impact on hydrology, particularly connectivity (Table 1). In the
southern MDB, however, these two species will probably
benefit from increases in stream temperature, given how much
they have been affected by cold-water pollution (Table 1).

Of the remaining species presented in Table 1, we grouped
them as follows: Group A, including carp gudgeons and bony
bream; Group B, including river blackfish, two-spined black-
fish, trout cod, mountain galaxiids and Macquarie perch; and
Group C, containing Australian smelt, un-specked hardyhead,
southern pygmy perch, flat-headed gudgeon and Murray—
Darling rainbowfish. Group A fish tolerate an extremely wide
range of environmental conditions and their abundance is often
strongly linked to levels of primary productivity (Table 1). The
increase in temperature resulting from climate change should,
therefore, increase the food base of these fish directly and any
change to flows is likely to have no major influence on them
(Table 1).

The distributions of Group B fish all extend into the cooler
upland streams of the MDB (Lintermans 2007) and these fish
could be loosely termed as ‘cold-water tolerant’. Increased
stream temperatures are likely to have a direct physiological
effect on these fish, particularly where they are located at their
high temperature limits (e.g. river blackfish and mountain
galaxiids in the northern MDB, Table 1). In the southern
MDB, increased temperatures may lead to increased abun-
dances in local populations of fish such as trout cod, two-spined
blackfish and Macquarie perch affected by cold-water pollution
(Table 1). Such changes in temperature regime could affect
larval recruitment success of species such as trout cod and
Macquarie perch with short breeding seasons, by affecting the
timing of zooplankton emergence, for example (Table 1). It is
likely that all of the species within this group have been largely
affected by the presence of exotic trout, so the expected decline
of trout (Bond ef al. 2011) because of increased stream
temperatures may lead to more native species in these rivers
(Table 1).

Group C comprises smaller-bodied fish, often found in
wetlands and off-river channel waterbodies often associated
with macrophytes (Table 1). The reduction since European
settlement of species such as Murray—Darling rainbowfish,
un-specked hardyhead and southern pygmy perch can be largely
attributed to a loss of connectivity within riverine ecosystems
(Table 1). Distributions of these species will become further
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fragmented as flow diminishes as a result of climate change.
Losses of floodplain vegetation (e.g. rushes and reeds in
floodplain wetlands) will also further affect fish such as flat-
headed gudgeons and southern pygmy perch associated with
macrophytes (Table 1). Increased temperatures will also have an
impact on small-bodied fish with short breeding seasons and
relatively narrow diet ranges, such as Australian smelt, also
found in many floodplain habitats (Table 1). These fish are
likely to be affected because any shift in seasonal thermal
regime is likely to disrupt the synchrony between the seasonal
peak in smelt larvae and specific species and size classes of their
zooplankton prey.

Regional impacts on fish assemblages in the MDB

Given that the impacts of climate change are predicted to vary
with latitude as well as with the degree of flow modification, we
classified the MDB into 10 regions on the basis of their latitu-
dinal position and the degree of flow management (Fig. 5).
Ecological communities will tend to vary over an elevation
gradient, so we used the largely elevation-driven regionalisation
boundaries in the Sustainable Rivers Audit (Davies et al. 2008)
to differentiate uplands from lowlands and to distinguish the
alpine region. By using this classification and the predicted
effects of climate change on individual species (Table 1), we can
predict regional changes in fish assemblages throughout the
MDB.

Simplified conceptual model of climate-change impacts on Murray cod in the Murray—Darling Basin. 1 = increase,

Northern and eastern uplands

Both of these regions, located in the northern MDB, with rivers
ultimately flowing into the Darling River (Fig. 5), represent
highly regulated rivers because of the presence of water storages
(Table 2). There are significant effects of cold-water pollution in
these regions, owing to bottom-release off-takes in water
storages. Therefore, any warming as a result of climate change
will confer an advantage to those fish species that have been
reduced in their range and abundance from cold-water pollution.
It would be expected that both range and abundance of Murray
cod and river blackfish could increase slightly in both of these
regions because increased water temperatures partially mitigate
effects such as reduced spawning and growth from thermal
pollution (Table 1). Although increased temperatures could also
facilitate the range expansion of generalist fish species such as
yellowbelly, eel-tailed catfish, silver perch and bony bream,
these highly regulated rivers are likely to have less water overall.
As a result, drought refugia will dry out faster, leaving fewer
suitable habitats across the landscape and probably cancelling
out any gains made though increased water temperature.

Southern uplands

The rivers of the southern MDB comprise a mixture of regulated
and unregulated rivers. Most predicted changes in this region
relate to increased water temperatures, although in the regulated
rivers, effects will be further exacerbated by reduced flows
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T Temperature

[ | Precipitation/Evaporation T

Water level
and flow

Recruitment

Predator/prey
relationships

Yellowbelly, eel-tailed catfish, Hyrtl's tandan,
silver perch, spangeld perch abundance

Fig. 4.
belly, eel-tailed catfish, silver perch, Hyrtl’s tandan and spangled perch in
the Murray—Darling Basin. 1 = increase, | = decrease.

Simplified conceptual model of climate-change impacts on yellow-

(Table 2). These increases are likely to affect cold water-tolerant
species such as river and two-spined blackfish and trout cod,
reducing their breeding activities and thus overall abundance
(Table 1). However, balanced against these predicted reductions
in native species will be the likely displacement of exotic trout
(Bond et al. 2011), which currently has a significant impact on
native riverine food webs as a major predator of invertebrates
and fish (Lintermans 2007). Such an impact on trout could
facilitate increases in vulnerable species such as mountain
galaxias and the two blackfish species.

Alpine

The Alpine region contains many headwater streams of the
Murray and Murrumbidgee rivers in the eastern MDB (Fig. 5).
For the regulated rivers, the impacts of water-resource devel-
opment would outweigh any small changes to flow regime
brought about by climate change. Therefore, the impacts of
climate change will be mostly restricted to increases in stream
temperatures that alter the distributions of the cold water-
tolerant species, especially two-spined blackfish (Table 2). It is
likely that temperature increases will reduce river blackfish
distributions at lower altitudes and affect the spawning time and
food availability for Macquarie perch. As with the southern
uplands, we predict that significant impacts on exotic trout will
greatly benefit native fish species such as mountain galaxias and
the two blackfish species through reduced competition and
predation.

Dryland

The dryland region in the upper western corner of the MDB
(Fig. 5) consists largely of the unregulated semiarid rivers.
While there are no major diversion weirs or water storages
on these rivers, there are many low-level weirs that currently

S. R. Balcombe et al.

impose the largest threat to fish migration and breeding patterns
in the region (Table 2). The fish of these rivers are mostly
ecological generalists, adapted to cope with the highly variable
flows of these rivers (Gehrke ef al. 1995; Balcombe ef al. 2006,
2011). It is unlikely that climate change will substantially
change these fish assemblages, given the ability of the species to
cope with extremes of climate. However, where the impact of
climate change interacts with the effects of barriers on fish
migration (such as low flows), the fish species that migrate as
part of their breeding cycle (e.g. Hyrtl’s tandan, Balcombe and
Arthington 2009; Kerezsy et al. 2011) could be affected in some
rivers. There are likely to be some localised impacts of less flow
reaching terminal wetlands (climate change added to water-
resource development), affecting floodplain and wetland
vegetation, especially encroachment from lignum. This could
enhance the local abundance of fish species, including exotic
species such as carp and gambusia, because of the presence of
added structural habitat and increased organic input when these
systems are flooded.

Darling tributaries

Originating in the northern and eastern upland region, the
Darling tributaries region refers only to the lowland section of
these rivers (Fig. 5). All are affected by water-resource devel-
opment to varying degrees because of the presence of headwater
storages, low-level weirs and significant levels of water
abstraction for irrigation (Table 2). Climate change is likely to
lead to fewer refuge pools (remaining pools will also be shal-
lower) during dry periods, which will have a flow-on effect for
fish that are close to their upper thermal limits, such as Murray
cod. Generalist species such as eel-tailed catfish, yellowbelly
and bony bream may increase in abundance in response to
declines in Murray cod. Balanced against this is the potential
expansion of the distributions of exotic fish, particularly of
common carp and gambusia, which are established and signif-
icant competitors for food resources in these rivers (Gehrke et al.
1995; Balcombe ef al. 2011). The combined effects of reduced
flows and reduced connectivity from development will also
have an impact on species, including carp gudgeons, Murray—
Darling rainbowfish and un-specked hardyheads, that use more
marginal waterbodies such as anabranches and billabongs
(Lintermans 2007).

Darling lowland

The Darling lowland region in the mid-western MDB (Fig. 5)
has been significantly affected by water-resource development,
with major abstractions and many low-level weirs (Table 2).
Because of the high levels of water-resource development and
the associated decline of the fish assemblages in the region,
climate-change impacts are not likely to cause too many further
changes. However, further reductions in flow and increased
temperatures may decrease available drought refugia for Murray
cod. Furthermore, bony bream may increase its abundance in
such refuge habitats in response to fewer predators and because
of'its ability to capitalise on increased algal resources associated
with high water temperatures. These increases in primary pro-
ductivity in degraded habitats could also favour common carp
(Koehn 2004), placing further stress on native fish. Lignum may
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Fig.5. Location of the Murray—Darling Basin within Australia and its subsequent classification into different regions on the basis of

latitudinal position, altitude and degree of flow management.

encroach into drier sections of rivers such as wetlands, which
could exacerbate impacts of exotic fish.

Murray

The Murray region in the lower MDB (Fig. 5) is a highly
regulated riverine system with many weirs and locks. Flows are
managed via release from major water storages. Fish stocks have
been largely affected by cold-water pollution for significant
lengths of river below water storages. As a result, increased
temperatures are likely to ameliorate some of these impacts and
thus increase the abundance and range of species such as trout
cod, Murray cod, yellowbelly and silver perch (Table 2). Given
the lack of connectivity of this highly modified and regulated
river with off-channel and floodplain habitats, any further
reductions to flow will mean fewer floodplain connections and
further degradation of fish such as yellowbelly, silver perch,
Australian smelt, flat headed gudgeons, un-specked hardy-
heads and pygmy perch that use floodplains and associated

waterbodies (Table 1). Less floodplain inundation will also have
an impact on riparian vegetation, especially river red gum. This
will have longer-term effects on the habitat use and food
resources of native fish. However, fewer floodplain connections
may have an impact on common carp recruitment because
inundated floodplains provide a significant source of carp
recruits in the MDB (Crook and Gillanders 2006).

Southern rivers

The southern rivers of the MDB that feed into the mid- and lower
Murray (Fig. 5) are mostly regulated with storages on all but the
Ovens River (Table 2). The likely reduced flows and reductions
in flood frequency will have an impact on in-channel and
floodplain habitats. Although weirs are likely to maintain refuge
pools in regulated river reaches, overall flow reductions may
exacerbate the loss of longitudinal and lateral connectivity. With
less flow, there is also likely to be less macrophyte habitat,
leading to fewer small-bodied species such as pygmy perch, carp
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gudgeons and flat headed gudgeons as they become more vul-
nerable to predation (Table 2). In headwater streams, increased
temperatures will drive an upstream contraction of cold water-
tolerant species such as river and two-spined blackfish and trout
cod. Again, barrier effects may impede such movements in more
developed catchments.

Lower Murray

The lower Murray region represents the termination of the
Murray—Darling system (Fig. 5) and is highly regulated via
locks and weirs (Table 2). Consequently, the assemblages of
riverine fish are already highly degraded and subtle changes to
either temperature or flow will probably not result in much
impact (Table 2). Nonetheless, increased water temperatures
combined with less flow, and thus less lateral connectivity, are
likely to further affect the already degraded habitats for wetland
fish species such as pygmy perch, flat headed gudgeons,
un-specked hardyheads and Murray—Darling rainbowfish
because of loss of macrophytes and increased salinity (Table 1).
Given the high temperature tolerance of gambusia, it is likely to
flourish in these wetland habitats and further affect small-bodied
native fish species. Further declines in river red gum woodlands
will also have flow-on effects to the riverine fish assemblages
because of reduced structural woody habitat, carbon inputs and
food resources. Given the raft of impacts already known for this
region, the future looks bleak for several species that are
restricted in distribution and abundance, including river black-
fish, purple-spotted gudgeon (Mogurnda adspersa) and Murray
hardyhead (Craterocephalus fluviatilis).

Conclusions

Most of the regions of the MDB contain highly altered river
systems. The Lower Murray region is characterised by weirs and
locks that constrain longitudinal connectivity throughout the
river and lateral connectivity with associated floodplains. In the
northern uplands, reaches show significant effects of thermal
pollution and flow regulation from water storages, again leading
to riverine systems that have been largely altered. As such, the
fish assemblages of the MDB are highly degraded and unlikely
to improve significantly under current management regimes.
Climate change will further stress these already ‘degraded’ fish
assemblages. However, in some regions the change will be
limited given the already degraded environment, whereas in
others there could be an improvement for native fish, given that
temperature increase is likely to at least partially ameliorate
some of the effects of thermal pollution and increase stress on
resident exotic taxa.

The effects of climate change on fish assemblages should
not be considered in isolation from existing water-resource
development in any river catchment, especially in heavily
altered systems such as the MDB, where historical levels of
water-resource use exceed the likely impacts of climate
change. In this respect, future management plans that
aim to improve the condition of rivers in the MDB must
consider both the added pressure of climate change as well as
the current stress associated with agricultural and human
water use.
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