Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Arsenic species in Australian temperate marine food chains

W. Maher A B , S. Foster A and F. Krikowa A
+ Author Affiliations
- Author Affiliations

A Ecochemistry Laboratory, Institute of Applied Ecology, Faculty of Applied Science, University of Canberra, Bruce, ACT 2601, Australia.

B Corresponding author. Email: bill.maher@canberra.edu.au

Marine and Freshwater Research 60(9) 885-892 https://doi.org/10.1071/MF08256
Submitted: 9 September 2008  Accepted: 12 January 2009   Published: 22 September 2009

Abstract

Although over 50 arsenic species have been identified in marine organisms, the biochemical pathways by which these species are formed are not known. In this paper, we present an overview of bioconversions of arsenic species that occur in marine food chains based on studies conducted by our laboratory as well as the work of others. Phytoplankton and macroalgae only contain dimethylarsenoribosides or simple methylated arsenic compounds such as dimethylarsenate and dimethylarsenoethanol. Marine animals contain mostly arsenobetaine and a range of other arsenic species that may be precursors of arsenobetaine formation. The formation of arsenobetaine in marine animals from dimethylarsenoribosides may occur through a two-stage conversion pathway: arsenoriboside or trimethylarsonioriboside degradation to arsenocholine followed by quantitative oxidation to arsenobetaine. The minor arsenic species found in marine organisms are sulfur analogues of compounds found in the S-adenosylmethionine-methionine salvage and the dimethylsulfoniopropionate metabolic pathway of animals. A key intermediate in these pathways would be arsenomethionine, which could possibly be formed from dimethylarsinite, dimethylarsenoribosides or an arsenic-containing analogue of S-adenosylmethionine. Examining arsenic species in whole ecosystems has the advantage of using the pattern of arsenic species found to postulate the biochemical pathways of their formation.

Additional keywords: bioconversion, marine organisms.


References

Bentley, R. , and Chasteen, T. G. (2002). Microbial methylation of metalloids: Arsenic, antimony, and bismuth. Microbiology and Molecular Biology Reviews 66, 250–271.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | Edmonds J. S., and Francesconi K. A. (2003). Organoarsenic compounds in the marine environment. In ‘Organometallic Compounds in the Environment’. (Ed. P. J. Craig.) pp. 196–222. (John Wiley and Sons: New York.)

Edmonds, J. S. , Francesconi, K. A. , Cannon, J. R. , Raston, C. L. , Skelton, B. W. , and White, A. H. (1977). Isolation, crystal structure and synthesis of arsenobetaine, the arsenical constituent of the western rock lobster Panulirus longipes cygnus George. Tetrahedron Letters 18, 1543–1546.
Crossref | GoogleScholarGoogle Scholar | Foster S. (2008). Arsenic cycling in marine ecosystems: Investigating the link between primary production and secondary consumption. Ph.D. Thesis, University of Canberra.

Foster, S. , Maher, W. , Taylor, A. , Krikowa, F. , and Telford, K. (2005). Distribution and speciation of arsenic in temperate marine saltmarsh ecosystems. Environmental Chemistry 2, 177–189.
Crossref | GoogleScholarGoogle Scholar | CAS | Francesconi K. A., and Kuehnelt D. (2002) Arsenic compounds in the environment. In ‘Environmental Chemistry of Arsenic’. (Eds W. T. Frankenberger Jr and M. Dekker.) pp. 51–94. (Marcel Dekker Inc.: New York.)

Francesconi, K. A. , Edmonds, J. S. , and Stick, R. V. (1989). Accumulation of arsenic in yelloweye mullet (Aldrichetta forsteri) following oral administration of organoarsenic compounds and arsenate. Science of the Total Environment 79, 59–67.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | Kuehnelt D., and Goessler W. (2003) Organoarsenic compounds in the terrestrial environment. In ‘Organometallic Compounds in the Environment’. (Ed. P. J. Craig.) pp. 223–275. (John Wiley and Sons: New York.)

Kunito T., Kubota R., Fujihara J., Agusa T., and Tanabe S. (2008) Arsenic in marine mammals, seabirds and sea tutles. In ‘Reviews of Environmental Contamination and Toxicology’. (Ed. D. M. Whitacre. pp. 31–69. (Springer: New York.)

Lunde, G. (1968). Analysis of arsenic in marine oils by neutron activation. Evidence of arseno organic compounds. Journal of the American Oil Chemists’ Society 45, 331–332.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Lunde, G. (1969). Water soluble arseno-organic compounds in marine fishes. Nature 224, 186–187.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Lunde, G. (1972). Analysis of arsenic and bromine in marine and terrestrial oils. Journal of the American Oil Chemists’ Society 49, 44–47.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Lunde, G. (1977). Occurrence and transformation of arsenic in the marine environment. Environmental Health Perspectives 19, 47–52.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

McBride, B. C. , and Wolfe, R. S. (1971). Biosynthesis of dimethylarsine by a methanobacterium. Biochemistry 10, 4312–4317.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Nischwitz, V. , and Pergantis, S. A. (2005). First report on the detection and quantification of arsenobetaine in extracts of marine algae using HPLC–ES–MS/MS. Analyst (London) 130, 1348–1350.
Crossref | GoogleScholarGoogle Scholar | CAS |

Nischwitz, V. , and Pergantis, S. A. (2006). Optimisation of an HPLC selected reaction monitoring electrospray tandem mass spectrometry method for the detection of 50 arsenic species. Journal of Analytical Atomic Spectrometry 21, 1277–1286.
Crossref | GoogleScholarGoogle Scholar | CAS |

Oremland, R. S. , and Stolz, J. F. (2003). The ecology of arsenic. Science 300, 939–944.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Ritchie, A. W. , Edmonds, J. S. , Goessler, W. , and Jenkins, R. O. (2004). An origin for arsenobetaine involving bacterial formation of an arsenic-carbon bond. FEMS Microbiology Letters 235, 95–99.
CAS | PubMed |

Thomson, D. , Maher, W. , and Foster, S. (2007a). Arsenic and selected elements in inter-tidal and estuarine marine algae, south east coast, NSW, Australia. Applied Organometallic Chemistry 21, 396–411.
Crossref | GoogleScholarGoogle Scholar | CAS |

Thomson, D. , Maher, W. , and Foster, S. (2007b). Arsenic and selected elements in marine angiosperms, south east coast, NSW, Australia. Applied Organometallic Chemistry 21, 381–395.
Crossref | GoogleScholarGoogle Scholar | CAS |

Tukai, R. , Maher, W. A. , McNaught, I. J. , Ellwood, M. J. , and Coleman, M. (2002). Occurrence and chemical form of arsenic in marine macroalgae from the east coast of Australia. Marine and Freshwater Research 53, 971–980.
Crossref | GoogleScholarGoogle Scholar | CAS |

Uthus, E. O. (2003). Arsenic essentiality: A role affecting methionine metabolism. Journal of Trace Elements in Experimental Medicine 16, 345–355.
Crossref | GoogleScholarGoogle Scholar | CAS |

Vahter, M. (2002). Mechanisms of arsenic biotransformation. Toxicology 181–182, 211–217.
Crossref | GoogleScholarGoogle Scholar |

Vasken Aposhian, H. , Zakharyan, R. A. , Avram, M. D. , Sampayo-Reyes, A. , and Wollenberg, M. L. (2004). A review of the enzymology of arsenic metabolism and a new potential role of hydrogen peroxide in the detoxication of the trivalent arsenic species. Toxicology and Applied Pharmacology 198, 327–335.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Vaskovsky, V. E. , Korotchenko, O. D. , Kosheleva, L. P. , and Levin, V. S. (1972). Arsenic in the lipid extracts of marine invertebrates. Comparative Biochemistry and Physiology. B, Comparative Biochemistry 41, 777–784.
Crossref | GoogleScholarGoogle Scholar |

Zakharyan, R. A. , and Aposhian, H. V. (1999). Arsenite methylation by methylvitamin B12 and glutathione does not require an enzyme. Toxicology and Applied Pharmacology 154, 287–291.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |