Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Survival of Microcystis aeruginosa and Scenedesmus obliquus under dark anaerobic conditions

X. L. Shi A C , F. X. Kong A , Y. Yu A and Z. Yang B
+ Author Affiliations
- Author Affiliations

A Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.

B Jiangsu Key Laboratory of Bioresource Technology, School of Biological Sciences, Nanjing Normal University, Nanjing 210097, China.

C Corresponding author. Email: shixiaoli@hotmail.com

Marine and Freshwater Research 58(7) 634-639 https://doi.org/10.1071/MF06212
Submitted: 8 November 2006  Accepted: 22 May 2007   Published: 27 July 2007

Abstract

The cyanobacterium Microcystis aeruginosa and the green alga Scenedesmus obliquus were incubated individually and together in the dark and under anaerobic conditions created by adding the reducing agent cysteine. Flow cytometry was used to monitor cell concentrations, fluorescence of chlorophyll-a (chl-a), and cell metabolic activity measured with an esterase-sensitive probe to detect fluorescein diacetate (FDA) hydrolysis of the two species. M. aeruginosa showed a slight increase in cell metabolic activity, no conspicuous death of cells, and absence of decay of chlorophyll-a fluorescence in individual and competition cases under dark anaerobic conditions. Cell metabolic activity and fluorescence of S. obliquus, on the contrary, decreased sharply, and cell concentrations fluctuated markedly with time in the unialgal cultures, but showed only a slight decline in the mixed cultures. M. aeruginosa appeared to be more tolerant to dark anaerobic conditions than S. obliquus, which may arise in eutrophic lakes beneath thick surface scums in the water column, or in the bottom sediments. Tolerance of these conditions may be important to the dominance of M. aeruginosa in eutrophic lakes.

Additional keywords: fluorescein diacetate, species-specific activity.


Acknowledgements

This research was funded by the National Natural Science Foundation of China (40601034), State Key Fundamental Research and Development Program ‘973’ (2002CB412300) and the ‘Director Foundation’ of Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (S250016). We thank Professor David Hamilton from the University of Waiko for improving this paper, and three anonymous reviewers for their valuable comments.


References

Bolch, C. J. S. , and Blackburn, S. I. (1996). Isolation and purification of Australian isolates of the toxic cyanobacterium Microcystis aeruginsoa Kütz. Journal of Applied Phycology 8, 5–13.
Crossref | GoogleScholarGoogle Scholar | Huang Y. P. (2001). ‘Water Environment in Lake Taihu and its Pollution Control.’ (Science Press: Beijing.)

Jochem, F. J. (1999). Dark survival strategies in marine phytoplankton assessed by cytometric measurement of metabolic activity with fluorescein diacetate. Marine Biology 135, 721–728.
Crossref | GoogleScholarGoogle Scholar |

Joset-Espardellier, F. , Astier, C. , Evans, E. H. , and Carr, N. G. (1978). Cyanobacterial growth under photoautotrophic, photoheterotrophic, and heterotrophic regimes: sugar metabolism and carbon dioxide fixation. FEMS Microbiology Letters 4, 261–264.
Crossref | GoogleScholarGoogle Scholar |

Kayser, H. (1979). Growth interactions between marine dinoflagellates in multispecies culture experiments. Marine Biology 52, 357–369.
Crossref | GoogleScholarGoogle Scholar |

Latour, D. , Sabido, O. , Salencon, M. J. , and Girauset, H. (2004). Dynamics and metabolic activity of the benthic cyanobacterium Microcystis aeruginosa in the Grangent reservoir (France). Journal of Plankton Research 26, 719–726.
Crossref | GoogleScholarGoogle Scholar |

Lürling, M. (2003). Phenotypic plasticity in the green algae Desmodesmus and Scenedesmus with special reference to the induction of defensive morphology. Annales de Limnologie 39, 85–101.


Moezelaar, R. , and Stal, L. J. (1994). Fermentation in the unicellular cyanobacterium Micorcystis PCC7806. Archiv fuer Hydrobiologie 150, 491–509.


Oren, A. , and Shilo, M. (1979). Anaerobic heterotrophic dark metabolism in the cyanobacterium Oscillatoria limnetica: sulfur respiration and lactate fermentation. Archives of Microbiology 122, 77–84.
Crossref | GoogleScholarGoogle Scholar |

Regel, R. H. , Brookes, J. D. , Ganf, G. G. , and Griffiths, R. W. (2004). The influence of experimentally generated turbulence on the Mash01 unicellular Microcystis aeruginosa strain. Hydrobiologia 517, 107–120.
Crossref | GoogleScholarGoogle Scholar |

Regel, R. H. , Ferris, J. M. , Ganf, G. G. , and Brookes, J. D. (2002). Algal esterase activity as a biomeasure of environmental degradation in a freshwater creek. Aquatic Toxicology 59, 209–223.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Reynolds, C. S. , Jaworski, G. H. M. , Cmiech, H. A. , and Leedale, G. F. (1981). On the annual cycle of the blue-green-alga Microcystis aeruginosa Kütz Emend Elenkin. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 293, 419–477.
Crossref | GoogleScholarGoogle Scholar |

Shi, X. L. , Yang, L. Y. , Niu, X. J. , Xiao, L. , Kong, Z. M. , Qin, B. Q. , and Gao, G. (2003). Intracellular phosphorus metabolism of Microcystis aeruginosa under various redox potential in darkness. Microbiological Research 158, 345–352.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Stal, L. J. , and Moezelaar, R. (1997). Fermentation in cyanobacteria. FEMS Microbiology Reviews 21, 179–211.


Walsby, A. E. (1994). Gas vesicles. Microbiological Reviews 58, 94–144.
PubMed |