10.1071/MF22264

Marine and Freshwater Research

Supplementary Material

Evidence of multiple stocks of catfish, *Rita rita* (Hamilton), from the Ganges Basin on the basis of an integrated analysis of truss morphometrics, otolith microchemistry, and otolith shape *Ankita*^A, *Hayden T. Schilling*^{B,C}, *Salman Khan*^{A,E}, *M. Afzal Khan*^{A,*} and Kaish Miyan^D

^AFish Biology and Otolith Research Laboratory, Department of Zoology, Aligarh Muslim University,

Aligarh, UP 202002, India. Email: ankitaverma0405@gmail.com

^BCentre for Marine Science and Innovation, UNSW Australia, Sydney, NSW 2052, Australia.

^cPort Stephens Fisheries Institute, New South Wales Department of Primary Industries, Taylors Beach, NSW 2316, Australia. Email: hayden.schilling@dpi.nsw.gov.au

^DDepartment of Zoology, Government Raza P.G. College, Rampur 244901, India. Email: kaishmiyan@gmail.com

^EPresent address: Department of Zoology, School of Life Science and Technology, IIMT University, Meerut 250001, India. Email: sksalman21@gmail.com

^{*}Correspondence to: M. Afzal Khan Fish Biology and Otolith Research Laboratory, Department of Zoology, Aligarh Muslim University, Aligarh, UP 202002, India Email: khanmafzal@yahoo.com

Method and site	Sample	Collection date range	Mean size	Size range
	size		(s.d.)	(cm)
Truss Morphology				
River Ganga	80	Sep-2018 to Aug-2019	23.2 (7.3)	13–40
River Yamuna	80	Sep-2018 to Aug-2019	27.4 (4.7)	20-44
River Ramganga	80	Sep-2018 to Aug-2019	27.8 (6.05)	16-45.4
Otolith Chemistry				
River Ganga	15	Sep-2018 to Aug-2019	30.4 (6.96)	24-40
River Yamuna	15	Sep-2018 to Aug-2019	28.1 (3.7)	22-34.2
River Ramganga	15	Sep-2018 to Aug-2019	26.8 (5.7)	18.2-36.4
Otolith Shape				
River Ganga	20	Sep-2018 to Aug-2019	25.6 (9.8)	9.5–44
River Yamuna	20	Sep-2018 to Aug-2019	24.5 (4.5)	17–33
River Ramganga	20	Sep-2018 to Aug-2019	21.0 (5.2)	13.2–32

Table S1. Sampling details of the fish used in the analyses.

Characters	Principal component		
Characters	PC I	PC II	PC III
1–2	0.756	0.003	-0.205
2–3	0.74	0.228	-0.183
3–4	0.481	0.431	0.446
4–5	0.213	0.002	0.304
5–6	0.111	0.579	-0.283
6–7	0.422	0.321	0.375
7–8	0.623	0.348	0.053
8–9	0.575	0.376	0.062
9–10	0.255	0.704	0.212
10-11	0.706	0.333	-0.093
11-12	0.821	-0.279	0.154
12–13	0.73	0.319	-0.288
13–1	-0.18	0.617	-0.143
1-12	0.483	0.145	-0.328
13–2	0.802	0.214	-0.324
2-12	0.716	0.375	-0.218
3–12	0.895	-0.062	-0.123
2-11	0.881	-0.352	0.026
3–11	0.859	-0.206	0.239
11–4	0.844	-0.028	0.195
3–10	0.922	-0.259	0.06
4–10	0.808	0.12	-0.018
4–9	0.889	-0.1	-0.006
5-10	0.583	0.345	-0.06
5–9	0.479	0.587	-0.004
6–9	0.032	0.366	-0.206
9–7	0.835	0.035	0.16
6–8	0.641	0.394	-0.003
TL	0.615	-0.722	-0.116
SL	0.562	-0.77	-0.047
FL	0.562	-0.77	-0.045
PFL	0.721	0.017	0.12
DFL1	0.781	-0.299	-0.144
DFL2	0.366	0.035	0.497
PVFL	0.128	0.357	0.662
AFL	0.441	0.199	0.378
HL	0.607	0.322	-0.389
ED	-0.429	0.748	-0.182
PPL	0.6	0.023	0.039
PDL	0.204	-0.084	-0.053
CPL	-0.004	-0.021	0.004
PPVL	0.712	-0.417	-0.122
Percentage of			
. 0	30.15	14 61	5 49
variance	57.15	11.01	5.17

Table S2. Component loadings of the first three principal components for truss morphometric characters in *Rita rita* collected from Ganga, Yamuna and Ramganga rivers.

Characters	DF I	DF II
1-2	0.149	-0.678^{A}
2–3	0.401	-0.347
3–4	-0.11	-0.156
4–5	0.042	0.226
5–6	-0.314	0.118
6–7	-0.434	-0.257
7–8	-0.205	0.052
8–9	0.311	0.22
9–10	0.484	0.232
10–11	0.081	0.341
11-12	-0.959A	0.244
12–13	-0.305	0.145
13–1	-0.192	0.233
1–12	0.018	-0.119
13–2	0.051	0.297
2–12	0.843A	0.237
3–12	-0.09	0.186
2–11	0.1	0.007
3–11	0.117	-0.186
11–4	-0.344	-0.071
3–10	-0.222	-0.564A
4–10	-0.009	0.099
4–9	0.177	-0.5
5–10	0.097	-0.127
5–9	0.15	-0.629A
6–9	-0.276	-0.206
9–7	-0.271	0.956A
6–8	-0.195	-0.148
TL	-1.233A	.635A
SL	1.181A	3.898A
FL	0.264	-3.878A
PFL	-0.091	-0.109
DFL1	-0.275	-0.863A
DFL2	0.025	-0.23
PVFL	-0.066	0.04
AFL	0.083	0.527A
HL	0.254	0.068
ED	0.680A	-0.115
PPL	0.058	0.225
PDL	0.01	0.225
CPL	-0.182	-0.189
PPVL	0.601A	0.699A

Table S3. Contribution of morphometric measurements to discriminant functions of *Rita rita* collected from Ganga, Yamuna and Ramganga rivers.

^ALargest correlation between each variable and any DF.

Elements	DF1	DF2
Mg	0.954^{A}	0.119
Fe	0.245^{A}	0.184
Mn	0.167 ^A	0.029
Ba	-0.248	0.592 ^A
Sr	0.276	-0.496^{A}
Pb	0.345	0.399 ^A

Table S4. Contribution of otolith chemistry to discriminant functions of *Rita rita*.

^ALargest correlation between each variable and any DF