10.1071/MF22196

Marine and Freshwater Research

Supplementary Material

Evaluation and empirical study of Happy River on the basis of AHP: a case study of Shaoxing City (Zhejiang, China)

Dong Xu^{A,*}, Dongfeng Zhu^B, Youhua Deng^C, Qirui Sun^A, Junzhe Ma^A, and Fang Liu^A

^ACollege of Geomatics and Municipal Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, PR China.

^BZhejiang Institute of Standardization, Hangzhou, 310018, PR China.

^cQuzhou Municipal Bureau of Ecological and Environment Intelligent Manufacturing City Branch, Quzhou, 324000, PR China.

*Correspondence to: Dong Xu College of Geomatics and Municipal Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, PR China Email: xud@zjweu.edu.cn

Calculating the weights of evaluation indices

The weight coefficient of each index is determined according to the steps of the AHP. Firstly, several experts are invited to compare the indexes in pairs by using the nine-level scale method. Condly judgment matrix A-B, judgment matrix B₁-C, judgment matrix B₂-C, judgement matrix B₃-C, judgement matrix B4-C, and judgement matrix B₅-C are obtained after sorting and combing, then the maximum characteristic value of each matrix and the normalized special long vector (λ_{max}) corresponding to the maximum characteristic value are calculated by Matlab, namely each weight coefficient is obtained, Finally, the consistency of each judgment matrix is checked, and the data obtained are shown in Table S1 to Table S6.

	B_1	B ₂	B ₃	B_4	B5	Weight coefficient
B_1	1.0	1.2	1.3	1.5	1.6	0.25
\mathbf{B}_2	1/1.2	1	1.3	1.2	1.5	0.22
\mathbf{B}_3	1/1.3	1/1.3	1.0	1.1	1.5	0.20
B_4	1/1.5	1/1.2	1/1	1.0	1.2	0.18
B_5	1/1.6	1/1.5	1/1.5	1/1.2	1.0	0.15
Consistency check		λmax=5.0089; CI=0.0022; RI=1.1200; CR=0.0020				

Table S1. A-B judgment matrix and weight coefficient result

	C ₁₁	C ₁₂	C ₁₃	Weight coefficient
C ₁₁	1.0	3.0	4.0	0.62
C ₁₂	1/3.0	1.0	1/2.0	0.18
C ₁₃	1/4.0	2.0	1.0	0.20

	C ₂₁	C ₂₂	C ₂₃	C ₂₄	C ₂₅	Weight coefficient
C ₂₁	1.0	1.5	1.3	1.0	1.3	0.24
C ₂₂	1/1.5	1.0	1.1	1/1.4	1/1.1	0.17
C ₂₃	1/1.3	1/1.1	1.0	1/1.3	1.0	0.18
C ₂₄	1.0	1.4	1.3	1.0	1.2	0.23
C ₂₅	1/1.3	1.1	1.0	1/1.2	1.0	0.18
Consistency check		λmax=	5.0058; CI	=0.0015; RI=	1.1200; CR	=0.0013

	Table S4. B ₃ -C judgment matrix and weight coefficient result							
	C ₃₁	C ₃₂	C ₃₃	C ₃₄	C ₃₅	Weight coefficient		
C ₃₁	1.0	1.2	1/1.3	1.2	1.1	0.21		
C ₃₂	1/1.2	1.0	1.0	1/1.2	1/1.2	0.18		
C ₃₃	1.3	1.0	1.0	1/1.1	1.3	0.22		
C ₃₄	1/1.2	1.2	1.1	1.0	1.0	0.20		
C ₃₅	1/1.1	1.2	1/1.3	1.0	1.0	0.19		
Consistency check		λmax=	5.0354; CI=0	.0089; RI=1	.1200; CR=	0.0079		

Table S4. B₃-C judgment matrix and weight coefficient result

Table S5.	B ₄ -C	iudgment	matrix ar	nd weight	coefficient result
14010 001	P 4 C	Judgment	IIIIII III III	ia noight	countrient i count

	C ₄₁	C ₄₂	C ₄₃	C ₄₄	C ₄₅	C ₄₆	Weight coefficient
C ₄₁	1.0	1/1.1	1.0	1.3	1/1.2	1/1.1	0.17
C ₄₂	1.1	1.0	1/1.2	1.3	1/1.3	1.2	0.16
C ₄₃	1.0	1.2	1.0	1.2	1.2	1.2	0.18
C ₄₄	1/1.3	1/1.3	1/1.2	1.0	1.3	1.0	0.16
C ₄₅	1.2	1.3	1/1.2	1/1.3	1.0	1.2	0.17
C ₄₆	1.1	1.2	1/1.2	1.0	1/1.2	1.0	0.16
onsistency check			λmax=6.0	108; CI=0.	0022; RI=1	1.2400; CR=	=0.0017

C ₅₁	C ₅₂	C ₅₃	C ₅₄	C ₅₅	Weight coefficient
1.0	1.4	1.1	1/1.3	1.1	0.21
1/1.4	1.0	1.2	1.0	1/1.2	0.19
1/1.1	1/1.2	1.0	1.0	1.4	0.20
1.3	1.0	1.0	1.0	1.2	0.22
1/1.1	1.2	1/1.4	1/1.2	1.0	0.18
	1.0 1/1.4 1/1.1 1.3	1.0 1.4 1/1.4 1.0 1/1.1 1/1.2 1.3 1.0	1.0 1.4 1.1 1/1.4 1.0 1.2 1/1.1 1/1.2 1.0 1.3 1.0 1.0	1.0 1.4 1.1 1/1.3 1/1.4 1.0 1.2 1.0 1/1.1 1/1.2 1.0 1.0 1.3 1.0 1.0 1.0	1.0 1.4 1.1 1/1.3 1.1 1/1.4 1.0 1.2 1.0 1/1.2 1/1.1 1/1.2 1.0 1.0 1.4 1.3 1.0 1.0 1.0 1.2

According to the hierarchical single ranking result of the above judgment matrix, the total ranking is carried out, that is, the final score of each index (the data is rounded), as shown in Table 3.