10.1071/MF22120

Marine and Freshwater Research

Supplementary Material

Sources and trophic transfer of trace metals in wild fish from coastal areas in the South China Sea

Wenfeng Zhang^{A,*}, Guanwen Zhang^A, Huaming Yu^B, Peng Cheng^C, and Pengran Guo^A

^AGuangdong Provincial Engineering Research Center of Rapid Testing Instrument for Food Nutrition and Safety, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, PR China.

^BOcean University of China, Qingdao, 266100, PR China.

^cState Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, PR China.

*Correspondence to: Wenfeng Zhang Guangdong Provincial Engineering Research Center of Rapid Testing Instrument for Food Nutrition and Safety, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, PR China Email: wenfengzhang08@126.com

Figure S1. Scatter diagram of δ^{13} C v. Se-Hg molar ratios, and the linear fit of the

variables from Station 1, Station 2 and Station 1 & 2.

Variable	Grouping by fish species	Grouping by sampling sites		
	d.f. = 20	d.f. = 1		
log10[As]	91.84***	2.31		
log10[Cr]	66.56***	10.51**		
log10[Cu]	84.86***	8.93**		
log10[Hg]	72.60***	1.29		
log10[Mn]	85.21***	17.61***		
log10[Pb]	80.72***	12.74***		
log ₁₀ [Se]	68.54***	7.12**		
log10[Sn]	60.54***	20.64***		
$log_{10}[Zn]$	76.91***	12.41***		
Se-Hg molar ratios	55.07***	4.94*		

transformed values of heavy metal concentrations.

Table S1. Results (χ^2) of k-independent samples Kruskal–Wallis tests for

significant differences between the two sampling sites according to log-

Significance data are in bold, with two-sided *P*-values significant at: *, P < 0.05; **,

P < 0.01; ***, *P* < 0.001.

regions.								
Sampling	Station 1 (<i>n</i> =70)		Station 2 (<i>n</i> =36)					
sites	δ ¹³ C	$\delta^{15}N$	TL	$\delta^{13}C$	$\delta^{15}N$	TL		
log10[As]	-0.1476	-0.0801	-0.0800	0.4750**	0.3063	0.3067		
log10[Cr]	0.1743	0.1214	-0.1217	-0.2999	-0.6384***	-0.6383***		
log10[Cu]	-0.1828	-0.3744**	-0.3737**	-0.1958	-0.1920	-0.1905		
log10[Hg]	-0.3427**	0.0084	0.0084	-0.1783	0.4876**	0.4875**		
log10[Mn]	0.4127***	0.4057***	0.4063***	0.3952*	0.0249	0.0233		
log10[Pb]	0.3723**	0.3072**	0.3077**	0.5575***	-0.0542	-0.0559		
log10[Se]	0.2607*	0.2044	0.2043	0.0542	-0.0556	-0.0565		
log10[Sn]	0.1172	0.5016***	0.5015***	0.3008	0.7075***	0.7088***		
log10[Zn]	-0.0479	0.0010	0.0026	-0.0092	-0.0920	-0.0923		

Table S2. Values of Pearson's correlation coefficients (\mathbf{r}_p) summarised the correlations between every two variables based on the full data set by the study

Significance data are in bold, with two-sided *P*-values significant at: *, P < 0.05; **,

P < 0.01; ***, *P* < 0.001.

	D ²	Slope	TMS	TDF(<1) &
Regression model	R ² adj			TMF(>1)
Station 1 (<i>n</i> =70)				
$\log_{10}[Cu] v. \delta^{15}N$	0.1275	-0.0576	-0.0576	/
log10[Cu] v. TL	0.1275	-0.1961	/	0.6366
$\log_{10}[Pb] v. \delta^{15}N$	0.0811	0.0578	0.0578	/
log10[Pb] v. TL	0.0811	0.1965	/	1.5722
$\log_{10}[Mn] v. \delta^{15}N$	0.1523	0.1018	0.1018	/
log10[Mn] v. TL	0.1523	0.3462	1	2.2192
$\log_{10}[Sn] v. \delta^{15}N$	0.2406	0.0892	0.0892	/
log10[Sn] v. TL	0.2406	0.3033		2.0105
Station 2 (<i>n</i> = 36)				
$\log_{10}[Cr] v. \delta^{15}N$	1.0029	-0.1280	-0.1280	/
log ₁₀ [Cr] v. TL	0.3890	-0.4352	1	0.3671
$\log_{10}[\text{Hg}] v. \delta^{15} \text{N}$	0.2139	0.1072	0.1072	/
log10[Hg] v. TL	0.2139	0.3645	1	2.3147
$\log_{10}[Sn] v. \delta^{15}N$	0.4849	0.1687	0.1687	/
log ₁₀ [Sn] v. TL	0.4849	0.5736	/	3.7463

Table S3. Linear regression models and the relative parameters between the values of log-transformed metal concentrations, $\delta^{13}C$, $\delta^{15}N$ and TL