Supplementary material

Trophic ecology of albacore tuna (*Thunnus alalunga*) in the western tropical Indian Ocean and adjacent waters

Evgeny V. Romanov^{A,N}, *Natacha Nikolic*^{B,C,K}, *Zahirah Dhurmeea*^{D,E}, *Nathalie Bodin*^{E,F,L}, *Alexis Puech*^B, *Stewart Norman*^{G,M}, *Stéphanie Hollanda*^F, *Jérôme Bourjea*^{H,I}, *Wendy West*^{J,1}, *and Michel Potier*^{H,1}

^ACAP RUN – CITEB (Centre Technique de Recherche et de Valorisation des Milieux Aquatiques),
 Magasin 10 – Port Ouest, F-97420 Le Port, Île de la Réunion, France.

^BInstitut français de recherche pour l'exploitation de la mer (IFREMER), Délégation Océan Indien, Rue Jean Bertho, BP60, F-97822 Le Port, Île de la Réunion, France.

^CAgence de Recherche pour la Biodiversité à la Réunion (ARBRE), rue des Seychelles, F-97436 Saint-Leu, Île de la Réunion, France.

^DDepartment of Biosciences and Ocean Studies, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius.

^EInstitut de Recherche pour le Développement (IRD), Unité mixte de recherche MARBEC (Marine Biodiversity, Exploitation and Conservation), Fishing Port, PO Box 570, Victoria, Mahé, Seychelles.

^FSeychelles Fishing Authority (SFA), Fishing Port, PO Box 449, Victoria, Mahé, Seychelles.

^GThe Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa.

^HUnité mixte de recherche MARBEC, Université de Montpellier, IFREMER, Centre national de la recherche scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Avenue Jean Monnet, F-34200, Sète, France.

^IIFREMER, Avenue Jean Monnet, F-34200 Sète, France.

^JDepartment of Environment, Forestry and Fisheries (DEFF), Private Bag X2,

Vlaeberg, 8018, Cape Town, South Africa.

^KPresent address: IRD, Unités mixte de recherche MARBEC and ENTROPIE

(Ecologie marine tropicale des océans Pacifique et Indien), CS 41095, 2 rue Joseph Wetzell,

Parc technologique universitaire, F-97495 Sainte Clotilde Cedex, Réunion, France.

^LPresent address: Sustainable Ocean Seychelles (SOS), Beau Belle, Mahé, Seychelles.

^MPresent address: Capricorn Marine Environmental, Unit 15 Foregate Square,

F. W. de Klerk Boulevard, Foreshore, Cape Town, 8001, South Africa.

^NCorresponding author. Email: evgeny.romanov@citeb.re

¹These authors equally contributed to this paper.

Table S1. Relations and set of rules used for reconstitution of length and weight of digested prey recovered from the stomachs of albacore tuna (Thunnus alalunga) in the Western Indian Ocean and adjacent waters.

Reconstituted length is dorsal mantle length (DML) for cephalopods, total length (TL) for crustaceans, and standard length (SL) for fish. Reconstituted weight is total wet weight of undigested animal (RW). Reconstitutions was based on otolith length (OL), dentary bone length (DBL) and standard length for fishes; lower rostral length (LRL) and lower hood length (LHL) for cephalopods; telson length (TLL), length of cephalothorax (CTL) and total length for crustaceans. Length is in mm and weight in g. Some equations were adjusted to measurements in mm and transformed from original format shown in the references to simplify presentation. Equations presented in **bold** are species-specific, regular font represents equations taken from another species within genus, italic are genus-specific equations. 'Not estimated' means that no reliable equation was available to the authors for LRL range collected in our study

Order, Cl	ass, Phylum, Category,	Length	Weight	Relationships used for length	Relationships used for weight	Species substitution	References
Family, S	Species and Category	reconstitution rules	reconstitution rules	reconstitution	reconstitution		
Mollusca	1						
Cephalo	poda						
Oegopsic	lae						
Enoplote	euthidae						
-	Abraliopsis morisii	LRL→DML	LRL→RW	$DML = 0.89 + 24.28 \times LRL$	$RW = 0.878095431 \times LRL^{2.75}$	Abraliopsis gilchristi	Lu and Ickeringill 2002
	Abraliopsis gilchristi	LRL→DML	LRL→RW	$\mathbf{DML} = 0.89 + 24.28 \times \mathbf{LRL}$	$RW = 0.878095431 \times LRL^{2.75}$		Lu and Ickeringill 2002
	Abraliopsis spp.	LRL→DML	LRL→RW	$DML = 0.89 + 24.28 \times LRL$	$RW = 0.878095431 \times LRL^{2.75}$	Abraliopsis gilchristi	Lu and Ickeringill 2002
	Ancistrocheirus lesueurii	LRL→DML	LRL→RW	$DML = -41.3 + 40.75 \times LRL$	$RW = 0.823657904 \times LRL^{3.56}$		Clarke 1986
	Pterygioteuthis sp.	LRL→DML	LRL→RW	$DML = -4.54 + 35.33 \times LRL$	$RW = 2.435129651 \times LRL^{2.61}$	Pterygioteuthis gemmata	Lu and Ickeringill 2002
	Pyroteuthis margaritifera	LRL→DML	LRL→RW	$DML = -5.26 + 26.73 \times LRL$	$RW = 2.637944459 \times LRL^{2.7}$	0	Lu and Ickeringill 2002
Cranchii	dae						6
	Cranchia scabra	LRL→DML	LRL→RW	$DML = 35.94 + 35.26 \times LRL$	$RW = 6.889510242 \times LRL^{1.88}$		Lu and Ickeringill 2002
	Taonius sp.	LRL→DML	LRL→RW	$DML = -12.3 + 61.43 \times LRL$	RW = 2.19460044424291 × LRL ^{2.19}		Xavier and Cherel 2009 based on data from Rodhouse <i>et al.</i> 1990
Histioten	ıthidae						
	Stigmatoteuthis dofleini	LRL→DML	LRL→RW	DML = -62.338 + 35.032 × LRL	RW = 1.37712776433596 × LRL ³		Kubodera 2002
Lycoteut	hidae						
0	Lycoteuthis lorigera	LRL→DML	LRL→RW	DML = -13.04 + 34.56 × LRL	RW = 1.37712776433596 × LRL ³		Lu and Ickeringill 2002
Octopote	euthidae						
	Octopoteuthis rugosa	LRL→DML	LRL→RW	$DML = -1.51 + 18.55 \times LRL$	$RW = 1.25860000992948 \times LRL^{2.54}$	Octopoteuthis sp.	Lu and Ickeringill 2002
	Octopoteuthis sp.	LRL→DML	LRL→RW	$DML = -1.51 + 18.55 \times LRL$	$RW = 1.25860000992948 \times IRI^{2.54}$		Lu and Ickeringill 2002
	Taningia danae	Not estimated	LRL→RW	_	RW = 0.417279090198691 × LRL ^{3.42}		Clarke 1986
Ommast	rephidae						
	Eucleoteuthis luminosa Ommastrephes bartramii	LRL→DML LRL→DML	LRL→RW LRL→RW	DML = 19.42 + 33.18 × LRL DML = 17.736 + 34.141 × LRL	$RW = 3.126768365 \times LRL^{2.15}$ $RW = 2.7232 \times LRL^{2.7538}$		Lu and Ickeringill 2002 E. V. Romanov, unpubl. data

Order, Class, Phylum, Category,	Length	Weight	Relationships used for length	Relationships used for weight	Species substitution	References
Family, Species and Category	reconstitution	reconstitution	reconstitution	reconstitution		
	rules	rules				
Ornithoteuthis volatilis	LRL→DML	LRL→RW	$\mathbf{DML} = 2.58 + 33.74 \times \mathbf{LRL}$	$RW = 1.973877732 \times LRL^{2.27}$		Lu and Ickeringill 2002
Sthenoteuthis oualaniensis	LRL→DML	LRL→RW	$DML = 23.308 + 32.121 \times LRL$	$RW = 2.897 \times LRL^{2.7254}$		E. V. Romanov, unpubli. data
Todarodes sp.	LRL→DML	LRL→RW	$DML = -11.3 + 41.36 \times LRL$	$RW = 2.188026509 \times LRL^{2.83}$		Clarke, 1986; Xavier and Cherel,
						2009 ^A
Onychoteuthidae						
Onychoteuthis sp2 'banksii'	LRL→DML	LRL→RW	$DML = 2.31 + 32.75 \times LRL$	$RW = 0.960789439 \times LRL^{2.6}$	Onychoteuthis 'banksii'	Lu and Ickeringill 2002
Walvisteuthis rancureli	LRL→DML	LRL→RW	$DML = 2.31 + 32.75 \times LRL$	$RW = 0.960789439 \times LRL^{2.8}$	Onychoteuthis 'banksii'	Lu and Ickeringill 2002
Thysanoteuthidae					0000000	
Thysanoteuthis rhombus	LRL→DML	Not estimated	DML = 45.5075410449497 × LRL ^{1.3889}	_		Arkhipkin 1983
Octopoda						
Alloposidae						
Haliphron atlanticus	LHL→DML	Not estimated	$DML = 12.18249396 \times LHL^{1.45}$	_		Xavier and Cherel 2009
Argonautidae						
Argonauta argo	LHL→DML	LHL→RW	$DML = -9.698778987 \times LHL^{1.314}$	$RW = 0.222239422 \times LHL^{3.4555}$	Argonauta sp.	Staudinger et al. 2013
Ocythoidae						
Ocythoe tuberculata	LHL→DML	LHL→RW	$\mathbf{DML} = 2.27 + 5.82 \times \mathbf{LHL}$	$RW = 0.349937749 \times LHL^{2.51}$		Lu and Ickeringill 2002
Tremoctopodidae			DMI 15 242 - 22 777 I III	DW 0 7075 I III 3.3858		
1 remoctopus gracuts	LHL→DML	LHL→KW	DML = -15.342+23.777 × LHL	$\mathbf{KW} = 0.7975 \times \mathbf{LHL}^{3.560}$		Authors calculations based on data in appendix table 1 in Smale <i>et al.</i> (1993)
Crustacea						
Amphipoda						
Platyscelidae						
Platyscelus ovoides	CTL→TL	CTL→RW	$TL = 0.34 + 2.73 \times TLL$	$RW = 0.000234044 \times TLL^{2.53}$		Potier et al. 2011
Stomatopoda						
Squillidae				DIN 0.0040 TH 1.27363		
Natosquilla investigatoris	TLL→TL	TLL→RW	$TL = 6.1564 + 5.1521 \times TLL$	$RW = 0.0042 \times TLL^{2.7503}$		M. Potier, unpubl. data
Decapoda Onlonhoridae						
Optophoridae Optophorus typus	Not estimated	CTI →PW	_	RW - 0.000234044 × TLI 3.4022		M Potier unpubl data
Penaeidae	Not estimated			KW = 0.000234044 × 1111		Wi. i otier, unpubl. data
Funchalia taaningi	Not estimated	CTL→RW	-	$RW = -4.8143 + 0.608 \times TLL$		M. Potier, unpubl. data
Pisces						· · · · · · · · · · · · · · · · · · ·
Clupeiformes						
Engraulidae						
Engraulis capensis	OL→SL	OL→RW	$SL = 31.72801359 \times OL^{0.9812}$	$RW = 1.01592548 \times OL^{2.8541}$		Smale et al. 1995
Perciformes						
Carangidae						
Decapterus macrosoma	OL→SL	OL→RW	$SL = -42.451 + 46.589 \times OL$	$\mathbf{KW} = 0.226502340676469 \times 01^{3758}$		Wang <i>et al</i> . 2003
Decanterus	OI →SI	OI → RW	$SI = -1951 + 4538 \times 01$	OL^{-100} $RW = 0.000001036148588 \lor$		Potier et al. 2011
Decupierus sp.			$5L = -17.51 \pm 75.50 \times 0L$	$OL^{3.54}$		1 ouer er ut. 2011

Chiasmodontidae

	x .1	XX7 · 1			a · · · ·	D. (
Order, Class, Phylum, Category, Family, Species and Category	Length reconstitution rules	Weight reconstitution rules	Relationships used for length reconstitution	Relationships used for weight reconstitution	Species substitution	References
Chiasmodon niger	OL→SL	OL→RW	$SL = 6.53 + 22.7 \times OL$	RW = 0.269820056384687 × OL ^{2.55}		Potier et al. 2011
Pseudoscopelus sp.	OL→SL	OL→RW	$SL = 6.53 + 22.7 \times OL$	$RW = 0.269820056384687 \times OL^{2.55}$	Chiasmodon niger	Potier et al. 2011
Gempylidae				02		
Lepidocybium flavobrunneum	FL→SL	Not estimated	SL = -0.4849+0.9241 × FL	_		E. V. Romanov, unpubl. data
Nealotus tripes	OL→SL	OL→RW	$SL = -14.91 + 36.78 \times OL$	$\mathbf{RW} = 0.042 \times \mathbf{OL}^{3.81}$		Ohshimo <i>et al.</i> , 2018 (Equation for RW corrected by E. V. Romanov) ^B
Mugilidae						·····,
Liza sp.	OL→SL	OL→RW	$SL = 14.00900028 \times OL^{1.3355}$	$RW = 0.163654136802704 \times OL^{2.88}$	Chelon richardsonii	Smale et al. 1995
Nomeidae						
Cubiceps pauciradiatus	OL→SL	OL→RW	$SL = 0.163654136802704 \times OL^{1.3395}$	$RW = 0.163654136802704 \times OL^{2.88}$		Potier et al. 2011
Tetraodontiformes						
Molidae						
Ranzania laevis	TL→SL	TL→RW	$SL = 4.2120 + 0.9186 \times TL$	$RW = 0.0007 \times TL^{2.5071}$		Smith <i>et al.</i> 2010 (RW); E. V. Romanov unpubl. data (SL)
Aulopiformes						
Alepisauridae						
Alepisaurus ferox	DBL→SL	SL→RW	$SL = -28.6199 + 6.7346 \times DBL$	$RW = 0.000006718595889 \times SL^{2.8381}$		E. V. Romanov, unpubl. data
Omosudidae						
Omosudis lowii	DBL→SL	DBL→RW	$SL = -9.03 + 4.73 \times DBL$	$RW = 0.003661069 \times DBL^{2.37}$		Potier et al. 2011
Paralepididae				0.054		
Lestidiops similis	OL→SL	OL→RW	$SL = 30.198 + 46.589 \times OL$	$RW = 0.0000003 \times OL^{3.3/1}$	Lestidiops sphyrenoides	Battaglia <i>et al.</i> 2015
Magnisudis atlantica	OL→SL	OL→RW	$SL = -130.46 + 85.73 \times OL$	$RW = 0.0024 \times OL^{6.52}$		Ohshimo et al. 2018
Paralepis sp.	OL→SL	OL→RW	$SL = -1.88 + 50.12 \times OL$	$RW = 0.1916478626 \times OL^{3.4096}$		E. V. Romanov, unpubl. data
Beryciformes						
Berycidae						
Beryx splendens	OL→SL	SL→RW	$SL = 1.5943 + 16.238 \times OL$	RW = 0.000040209736245 × SL ^{2.98}		Al-Mamry <i>et al.</i> 2010 (SL); Ivanin and Rebik 2012 (RW)
Diretmidae						
Diretmus argenteus	OL→SL	OL→RW	$SL = 7.557194323 \times OL^{1.1861}$	$\mathbf{RW} = 0.044811073 \times \mathbf{OL}^{3.1983}$		Smale et al. 1995
Gadiformes						
Moridae						
Antimora rostrata	OL→SL	OL→RW	$SL = 6.132484686 \times OL^{1.5416}$	$\mathbf{RW} = 0.000148177 \times \mathbf{OL}^{5.6461}$		Smale et al. 1995
Merlucciidae						
Merluccius spp.	OL→TL, TL→SL	TL→RW	$TL = 6.997 \times (OL+2.170)^{1.362}$ $SL = -0.58 + 0.93 \times TL$	$RW = 0.0076 \times (0.1 \times TL)^{2.9739}$	Merluccius capensis	Wilhelm <i>et al.</i> 2013 (OL-TL), Moutopoulos and Stergiou 2002 (TL- SL), Brinkman 2007 (TL-RW)
Myctophiformes						
Myctophidae						
Diaphus perspicillatus	OL→SL	OL→RW	$SL = -7.14 + 18.73 \times OL$	$RW = 0.000004 \times OL^{3.195}$		Potier et al. 2011

Order, Class, Phylum, Category, Family, Species and Category	Length reconstitution rules	Weight reconstitution rules	Relationships used for length reconstitution	Relationships used for weight reconstitution	Species substitution	References
Electrona risso	OL→SL	OL→RW	$SL = 11.89835315 \times OL^{1.1537}$	$RW = 0.0227976 \times OL^{3.9285}$		Smale et al. 1995
Hygophum hygomii	OL→SL	SL→RW	$SL = 1.774 + 15.941 \times OL$	$RW = 0.000008 \times SL^{3.2189}$		Battaglia et al. 2010 (SL); P.
						Alexander Hulley 2018 pers. comm.,
						Hout Bay, South Africa (RW)
Lampanyctodes hectoris	OL→SL	OL→RW	$SL = 18.92152192 \times OL^{1.3463}$	$\mathbf{RW} = 0.074967544 \times \mathbf{OL}^{4.2197}$		Smale <i>et al.</i> 1995
Lobianchia gemellarii	OL→SL	SL→RW	$SL = 5.270367002 \times OL^{1.4879}$	$RW = 0.00004 \times SL^{2.7737}$		Smale et al. 1995 (SL); Battaglia et
						al. 2015 (RW)
Myctophum asperum	OL→SL	OL→RW	$SL = 7.03 + 20.76 \times OL$	$RW = 0.244143283153437 \times$		Potier et al. 2011
				OL ^{2.96}		
Symbolophorus barnardi	OL→SL	OL→RW	$SL = 26.18534754 \times OL^{0.8475}$	$\mathbf{RW} = 0.277065871 \times \mathbf{OL}^{2.4423}$		Smale et al. 1995
Stomiiformes						
Sternoptychidae						
Maurolicus muelleri	OL→SL	OL→RW	$SL = 23.46945996 \times OL^{0.9618}$	$\mathbf{RW} = 0.159997034 \times \mathbf{OL}^{3.0971}$		Smale et al. 1995

^AClarke (1986) presented equation for *Todarodes sagittatus*, while Xavier and Cherel (2009) presented same equation for *Todarodes* sp.

^BValue 0.42 for parameter 'a' in the weight reconstitution equation in Ohshimo *et al.* (2018: Table 1) is apparently a misprint.

Species code	Species	Taxa	Clusters	Provinces
JUC	Coastal and reef-associated fish juveniles	Fish	1	EAFR-MCM, ISSG
ONY	Walvisteuthis rancureli	Cephalopod		- ,
STO	Sthenoteuthis oualaniensis	Cephalopod		
DIS	Diaphus sp.	Fish		
ONB	Onychoteuthis sp2 'banksii'	Cephalopod		
LEI	Lestrolepis intermedia	Fish		
LYL	Lycoteuthis lorigera	Cephalopod	2	EAFR-SA
MAU	Maurolicus muelleri	Fish		
SYP	Symbolophorus barnardi	Fish		
ENS	Engraulis capensis	Fish		
HES	Heterocarpus sp.	Crustacean		
PHS	Phrosina semilunata	Crustacean		
MAU	Maurolicus muelleri	Fish	3	EAFR-SA
NAN	Nansenia macrolepis	Fish		
ONA	Unidentified Onychoteuthidae	Cephalopod		
BRS	Brachyscelus crusculum	Crustacean		
JAS	Jasus sp.	Crustacean		
Unk_P	Unidentified fish	Fish		
LAH	Lampanyctodes hectoris	Fish	4	EAFR-SA
MAU	Maurolicus muelleri	Fish		
ORN	Ornithoteuthis volatilis	Cephalopod		
NAN	Nansenia macrolepis	Fish		
LIZ	<i>Liza</i> sp.	Fish		
HOY	Stigmatoteuthis hoylei	Cephalopod		
JUC	Coastal and reef-associated fish juveniles	Fish	5	MONS
NAT	Natosquilla investigatoris	Crustacean		
DES	Decapterus sp.	Fish		
STO	Sthenoteuthis oualaniensis	Cephalopod		
ORN	Ornithoteuthis volatilis	Cephalopod		
LYS	Lysiosquilla tredecimdentata	Crustacean		
CUB	Cubiceps pauciradiatus	Fish	6	MONS
JUC	Coastal and reef-associated fish juveniles	Fish		
DES	Decapterus sp.	Fish		
ARO	Argonauta argo	Cephalopod		
ONA	Unidentified Onychoteuthidae	Cephalopod		
STO	Sthenoteuthis oualaniensis	Cephalopod		

Table S2. Name species, taxon groups, clusters tree and biogeographic provinces corresponding to the multivariate classification and regression tree shown at the Fig. 7, see main text of the monucorrist

References

- Al-Mamry, J., Jawad, L., Al-Busaidi, H., Al-Habsi, S., and Al-Rasbi, S. (2010). Relationships between fish size and otolith size and weight in the bathypelagic species, *Beryx splendens* Lowe, 1834 collected from the Arabian Sea coasts of Oman. *Quaderni del Museo di Storia Naturale di Livorno* 23, 79–84.
- Arkhipkin, A. I. (1983). Beak and radula of the squid *Thysanoteuthis rhombus* Troshel (Thysanoteuthidae). In
 'Taxonomy and Ecology of cephalopoda. Scientific Papers'. (Eds Ya. I. Starobogatov, and K. N. Nesis.) pp. 53–54. (Zoological Institute of Academy of sciences of USSR: Leningrad.) [In Russian].
- Battaglia, P., Malara, D., Ammendolia, G., Romeo, T., and Andaloro, F. (2015). Relationships between otolith size and fish length in some mesopelagic teleosts (Myctophidae, Paralepididae, Phosichthyidae and Stomiidae). *Journal of Fish Biology* 87, 774–782 doi:10.1111/jfb.12744.

- Brinkman, F. R. V. (2007). Analysis of annuli in otoliths, age distribution and growth rates of the Namibian hake (*Merluccius capensis*). Master Thesis. University of Algarve, Faro, Portugal.
- Clarke, M. R. (1986). 'A Handbook for the identification of cephalopod beaks.' (Clarendon Press: Oxford, UK.)
- Kubodera (2002). Regression equations between LRL and DML, and BW. Version 19.03.2002. Available at https://www.kahaku.go.jp/research/db/zoology/Beak-E/regression/Reg.htm [accessed 31 July 2018].
- Lu, C. C., and Ickeringill, R. (2002). Cephalopod beak identification and biomass estimation techniques: tools for dietary studies of southern Australian finfishes. Museum Victoria Science Reports number 6, Melbourne.
- Moutopoulos, D. K., and Stergiou, K. I. (2002). Length-weight and length-length relationships of fish species from the Aegean Sea (Greece). *Journal of Applied Ichthyology* **18**, 200–203. <u>doi:10.1046/j.1439-0426.2002.00281.x</u>
- Ohshimo, S., Hiraoka, Y., Sato, T., and Nakatsuka, S. (2018). Feeding habits of bigeye tuna (*Thunnus obesus*) in the North Pacific from 2011 to 2013. *Marine and Freshwater Research* **69**, 585–606 doi:10.1071/MF17058.
- Potier, M., Ménard, F., Benivary, H. D., and Sabatié, R. (2011). Length and weight estimates from diagnostic hard part structures of fish, crustacea and cephalopods forage species in the western Indian Ocean. *Environmental Biology of Fishes* 92, 413–423. doi:10.1007/s10641-011-9848-5
- Rodhouse, P. G., Prince, P. A., Clarke, M. R., and Murray, A. W. A. (1990). Cephalopod prey of the grey-headed albatross *Diomedea chrysostoma*. *Marine Biology* **104**, 353–362. <u>doi:10.1007/BF01314337</u>
- Smale, M. J., Clarke, M. R., Klages, N. T. W., and Roeleveld, M. A. C. (1993). Octopod beak identification resolution at regional level (Cephalopoda, Octopoda: Southern Africa). South African Journal of Marine Science 13, 269–293. doi:10.2989/025776193784287338
- Smale, M. J., Watson, G., and Hecht, T. (1995). 'Otolith Atlas of Southern African Marine Fishes'. Ichthyological Monographs. (J.L.B. Smith Institute of Ichthyology, Grahamstown, South Africa.)
- Smith, K. A., Hammond, M., and Close, P. G. (2010). Aggregation and stranding of elongate sunfish (*Ranzania laevis*) (Pisces: Molidae) (Pennant, 1776) on the southern coast of Western Australia. *Journal of the Royal Society of Western Australia* 93, 181–188.
- Staudinger, M. D., Juanes, F., Salmon, B., and Teffer, A. K. (2013). The distribution, diversity, and importance of cephalopods in top predator diets from offshore habitats of the Northwest Atlantic Ocean. *Deep-sea Research – II. Topical Studies in Oceanography* 95, 182–192. doi:10.1016/j.dsr2.2012.06.004
- Wang, M.-C., Walker, W. A., Shao, K.-T., and Chou, L.-S. (2003). Feeding habits of the pantropical spotted dolphin, *Stenella attenuata*, off the eastern coast of Taiwan. *Zoological Studies* 42, 368–378.
- Wilhelm, M. R., Roux, J.-P., Moloney, C. L., and Jarre, A. (2013). Data from fur seal scats reveal when Namibian *Merluccius capensis* are hatched and how fast they grow. *ICES Journal of Marine Science* 70, 1429–1438. <u>doi:10.1093/icesjms/fst101</u>
- Xavier, J. C., and Cherel, Y. (2009). 'Cephalopod Beak Guide for the Southern Ocean.' (British Antarctic Survey: Cambridge, UK.)