Supplementary material

Phytoplankton–zooplankton relationships based on phytoplankton functional groups in two tropical reservoirs

A. S. Diniz^A, J. S. Severiano^B, M. Melo Júnior^C, Ê. W. Dantas^D and A. N. Moura^{A,E}

^ALaboratório de Taxonomia e Ecologia de Microalgas, Universidade Federal Rural de Pernambuco,

R. Manuel de Medeiros, s/n – Dois Irmãos, Recife, 52171-900, Pernambuco, Brazil.

^BLaboratório de Ecologia Aquática, Universidade Estadual da Paraíba, R. Baraúnas,

351 - Universitário, Campina Grande, 58429-500, Paraíba, Brazil,

^CLaboratório de Ecologia do Plâncton, Universidade Federal Rural de Pernambuco,

R. Manuel de Medeiros, s/n – Dois Irmãos, Recife, 52171-900, Pernambuco, Brazil.

^DUniversidade Estadual da Paraíba – Campus V, Centro de Ciências Biológicas e Sociais Aplicadas,

R. Monsenhor Walfredo Leal 487, Tambiá, 58020-540, João Pessoa, Paraíba, Brazil.

^ECorresponding author. Email: ariadne_moura@hotmail.com

Table S1.Morphological and physiological characteristics (toxicity), representative taxa for
each morpho-functional group, and the degree of susceptibility to predation by zooplankton

MBFG	Characteristics	Representative taxon	Toxic potential	Susceptibility to predation	
Ι	Small organisms occupying large areas	Merismopedia tenuissima, Planktosphaeria gelatinosa	0	High	
II	Small flagellates with siliceous structures	Mallomonas caudata	0	Low	
III	Broad filaments with gas- vacuoles	Cylindrospermopsis raciborskii, Planktothrix agardhii	1	Low	
IV	Organisms of medium size without specialised structures	Cosmarium sp., Staurastrum sp., Geitlerinema amphibium	0	High	
V	Medium to large single- celled flagellates	<i>Rhodomonas lacustris,</i> <i>Peridinium</i> sp.	1	Medium	
VI	Organisms without flagella with siliceous exoskeleton	Aulacoseira granulata, Thalassiosira sp.	0	Medium	
VII	Large mucilaginous colonies	Microcystis aeruginosa, Botryococcus braunii	1	Low	

Adapted from Colina et al. (2016)

Table S2. Taxonomic composition of the phytoplankton community by morphology-based functional groups (MBFG) in the mesotrophic reservoir

MBFG	Species identified
Ι	Ankistrodesmus fusiformis, Merismopedia tenuissima, Monoraphidium griffithii and
	Planktosphaeria gelatinosa.
II	Mallomonas caudata.
III	Cylindrospermopsis raciborskii, Dolichospermum sp. and Planktothrix agardhii.
IV	Closterium sp., Closterium incurvum, Coelastrum indicum, Coenocystis sp., Cosmarium
	commissurale, C. margaritatum, Desmodesmus quadricauda, Dictyosphaerium elegans, Euastrum
	abruptum, Eutetramorus nygaardii, E. planctonicus, Geitlerinema amphibium, Kirchneriella obesa,
	Pediastrum tetras, Pseudanabaena sp., Quadrigula closterioides, Scenedesmus acuminatus,
	Sphaeroscystis schroeteri, Staurastrum curvimarginatum, S. cuspidatus, S. dilatatum, S.
	leptocladum, S. orbiculare, S. tetracerum, S. trifidum, Staurastrum sp., Tetraedron gracile, T.
	mediocris and T. trigonum.
V	Chroomonas sp., Cryptomonas sp., Euglena sp., Peridinium sp., Rhodomonas lacustris,
	Trachelomonas hispida and T. volvocina.
VI	Aulacoseira granulata, Cylindrotheca closterium, Cymbella sp., Eunotia sp., Navicula sp., Surirella
	sp., Surirella tenera, Thalassiosira sp. and Ulnaria ulna.
VII	Aphanocapsa sp. and Botryococcus braunii.

Table S3. Taxonomic composition of the phytoplankton community by morphology-based functional groups (MBFG) in the supereutrophic reservoir

MBFG	Species identified
Ι	Merismopedia tenuissima, Monoraphidium griffithii and Planktosphaeria gelatinosa.
II	Mallomonas caudata.
III	Anabaena sp., Cylindrospermopsis raciborskii, Dolichospermum viguieri, Planktothrix agardhii
	and Sphaerospermopsis aphanizomenoides.
IV	Actinastrum hantszchii, Closterium sp., Coelastrum indicum, Dictyosphaerium elegans, D.
	pulchellum, Geitlerinema amphibium, Kirchneriella obesa, Micractinium pusillum, M.
	quadrisetum, Pseudanabaena sp. and Scenedesmus acuminatus.
V	Chroomonas sp., Cryptomonas sp., Euglena sp., Peridinium sp., Rhodomonas lacustris,
	Trachelomonas hispida and T. volvocina.
VI	Aulacoseira granulata, A. granulata var. angustissima, Cylindrotheca closterium, Cyclotella
	meneghiniana, Eunotia sp., Gomphonema sp., Navicula sp. and Ulnaria ulna.
VII	Aphanocapsa sp., Botryococcus braunii, Microcystis aeruginosa, M. brasilensis, M. panniformis
	and Woronichinia karelica.

Table S4. Statistical analysis (one way ANOVA) of the growth rate of morphology-based functional groups (MBFG) in *in situ* experiments

	Ν	Mesotrophic			Supereutrophic			
	d.f.	F	Р	d.f.	F	Р		
Group I	2	2.082	0.206	2	4.169	0.073		
Group II	2	4.408	0.057	2	2.049	0.209		
Group III	2	1.942	0.224	2	0.094	0.912		
Group IV	2	7.513	0.023	2	0.754	0.51		
Group V	2	3.103	0.119	2	16.01	0.003		
Group VI	2	1.204	0.364	2	9.694	0.013		
Group VII	2	1.886	0.231	2	2.46	0.166		

Bold numbers represents that there was a significant difference

Table S5.	Statistical	analysis (S	tudent t	-test unpai	ired) of t	the ingest	tion rate of	of micro a	nd
mesozoopla	ankto <u>n on 1</u>	norphology	-based f	functional	groups ((MBFG)	in <i>in situ</i>	experime	nts

	Mesotrophic			Supereutrophic			
	d.f.	t	Р	d.f.	t	Р	
Group I	3.769	-1.919	0.131	2.436	-0.781	0.503	
Group II	2.377	0.688	0.552	4	0	1.000	
Group III	2.717	0.535	0.632	3.668	-2.486	0.073	
Group IV	3.864	-2.541	0.066	3.752	-0.037	0.972	
Group V	3.544	-0.854	0.446	2.768	-0.733	0.520	
Group VI	3.634	-1.284	0.274	3.252	-2.437	0.086	
Group VII	3.999	1.530	0.200	3.445	0.172	0.873	

Reference

Colina, M., Calliari, D., Carballo, C., and Kruk, C. (2016). A trait-based approach to summarize zooplankton–phytoplankton interactions in freshwaters. *Hydrobiologia* **767**, 221–233. <u>doi:10.1007/s10750-015-2503-y</u>