Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Preparation of aqueous fatty acids for hydrogen and carbon stable isotope analysis by solid phase extraction

Timothy J. Benbow A , Alan R. Hayman A , Robert Van Hale A and Russell Frew A B C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand.

B Present address: FAO/IAEA Division of Nuclear Applications in Food and Agriculture, Vienna, Austria.

C Corresponding author. Email: rfrew@chemistry.otago.ac.nz

Marine and Freshwater Research 64(4) 294-302 https://doi.org/10.1071/MF12192
Submitted: 18 July 2012  Accepted: 13 December 2012   Published: 10 April 2013

Abstract

Stable isotope analyses of fatty acids in environmental waters provides important information as to their source(s). Analysis is often confounded due to low concentrations of fatty acids and/or a complex sample matrix requiring separation of the target analyte. The purpose of this study was to validate a method to extract fatty acids from natural waters using solid phase extraction (SPE) before compound specific isotope analysis (CSIA). Three SPE cartridges and multiple eluting solvents were tested to determine the efficiency, isotopic fractionation, and reproducibility of each extraction technique. Our results indicated that surface-modified styrene divinylbenzene cartridges, when eluted with methanol, caused negligible fractionation of the hydrogen isotopes and minimal fractionation of the carbon isotopes, but that isotopic fractionation occurred when compounds were only partially eluted from SPE cartridges. Compounds were also extracted from landfill leachate using both SPE and liquid–liquid extraction (LLE). The hydrogen isotope composition (δ2H) of compounds extracted from water using either method were within experimental precision and the carbon isotope composition (δ13C) of all but one fatty acid were within experimental precision. Therefore, these experiments prove the aforementioned SPE methods to be a convenient and precise method to extract fatty acids from natural waters before CSIA.


References

Benbow, T. J., Frew, R. D., and Hayman, A. R. (2008). Validation of a rapid and simple method for the preparation of aqueous organic compounds prior to compound specific isotope analysis. Organic Geochemistry 39, 1690–1702.
Validation of a rapid and simple method for the preparation of aqueous organic compounds prior to compound specific isotope analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWjtrnK&md5=0d7d7c2c19c4afc72ba430aaff2d5d06CAS |

Benfenati, E., Facchini, G., Pierucci, P., and Fanelli, R. (1996). Identification of organic contaminants in leachates from industrial waste landfills. TrAC–Trends in Analytical Chemistry 15, 305–310.
Identification of organic contaminants in leachates from industrial waste landfills.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsVejt7g%3D&md5=bae3703d97e86498358d792e2a6e8934CAS |

Benfenati, E., Barcelo, D., Johnson, I., Galassi, S., and Levsen, K. (2003). Emerging organic contaminants in leachates from industrial waste landfills and industrial effluent. TrAC–Trends in Analytical Chemistry 22, 757–765.
Emerging organic contaminants in leachates from industrial waste landfills and industrial effluent.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVKgug%3D%3D&md5=47a143d6259d40e4ea99aa71171945d9CAS |

Boschker, H. T. S., and Middelburg, J. J. (2002). Stable isotopes and biomarkers in microbial ecology. FEMS Microbiology Ecology 40, 85–95.
Stable isotopes and biomarkers in microbial ecology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktVCksLg%3D&md5=341dd3aed873da85045d265262ee86d2CAS |

Chartrand, M. M. G., Morrill, P. L., Lacrampe-Couloume, G., and Lollar, B. S. (2005a). Stable isotope evidence for biodegradation of chlorinated ethenes at a fractured bedrock site. Environmental Science & Technology 39, 4848–4856.
Stable isotope evidence for biodegradation of chlorinated ethenes at a fractured bedrock site.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksVersL8%3D&md5=82e37e9035688f2825e0e9781a3c756dCAS |

Chartrand, M. M. G., Waller, A., Mattes, T. E., Elsner, M., Lacrampe-Couloume, G., Gossett, J. M., Edwards, E. A., and Lollar, B. S. (2005b). Carbon isotopic fractionation during aerobic vinyl chloride degradation. Environmental Science & Technology 39, 1064–1070.
Carbon isotopic fractionation during aerobic vinyl chloride degradation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXovVel&md5=59fd5aadcdac96b38dbf8a02e28933abCAS |

Chikaraishi, Y. (2004). Hydrogen and carbon isotopic fractionations of lipid biosynthesis among terrestrial (C3, C4 and CAM) and aquatic plants. Phytochemistry 65, 1369–1381.
Hydrogen and carbon isotopic fractionations of lipid biosynthesis among terrestrial (C3, C4 and CAM) and aquatic plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsVaku7k%3D&md5=474e45a8ad7f44ae2e879f3eb2ced7bbCAS | 15231410PubMed |

Chikaraishi, Y., Naraoka, H., and Poulson, S. R. (2004). Carbon and hydrogen isotopic fractionation during lipid biosynthesis in a higher plant (Cryptomeria japonica). Phytochemistry 65, 323–330.
Carbon and hydrogen isotopic fractionation during lipid biosynthesis in a higher plant (Cryptomeria japonica).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFGmsw%3D%3D&md5=0ad1276761eb88b2f9989acc719a266cCAS | 14751303PubMed |

Crossman, Z. M., Abraham, F., and Evershed, R. P. (2004). Stable isotope pulse-chasing and compound specific stable carbon isotope analysis of phospholipid fatty acids to assess methane oxidizing bacterial populations in landfill cover soils. Environmental Science & Technology 38, 1359–1367.
Stable isotope pulse-chasing and compound specific stable carbon isotope analysis of phospholipid fatty acids to assess methane oxidizing bacterial populations in landfill cover soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVKhsw%3D%3D&md5=6805998dc35872d3822ddd3e093a85e8CAS |

do Nascimento, I., von Muhlen, C., Schossler, P., and Caramao, E. B. (2003). Identification of some plasticizer compounds in landfill leachate. Chemosphere 50, 657–663.
Identification of some plasticizer compounds in landfill leachate.Crossref | GoogleScholarGoogle Scholar |

Fritsche, W., and Hofrichter, M. (2000). ‘Biotechnology.’ (Wiley-VCH.)

Genovese, A., Dimaggio, R., Lisanti, M. T., Piombino, P., and Moio, L. (2005). Aroma composition of red wines by different extraction methods and gas chromatography–SIM/Mass spectrometry analysis. Annali di Chimica 95, 383–394.
Aroma composition of red wines by different extraction methods and gas chromatography–SIM/Mass spectrometry analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXoslGgsbw%3D&md5=2eebce62a02430788359bdeaf82f5e8bCAS | 16136833PubMed |

Gibbs, M. M. (2008). Identifying source soils in contemporary estuarine sediments: a new compound-specific isotope method. Estuaries and Coasts 31, 344–359.
Identifying source soils in contemporary estuarine sediments: a new compound-specific isotope method.Crossref | GoogleScholarGoogle Scholar |

Hirschorn, S. K., Dinglasan, M. J., Elsner, M., Mancini, S. A., Lacrampe-Couloume, G., Edwards, E. A., and Lollar, B. S. (2004). Pathway dependent isotopic fractionation during aerobic biodegradation of 1,2-dichloroethane. Environmental Science & Technology 38, 4775–4781.
Pathway dependent isotopic fractionation during aerobic biodegradation of 1,2-dichloroethane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1Olt70%3D&md5=2e5e5025fe74aa4891908ce540dcaaf7CAS |

Hodgeson, J., Collins, J., and Bashe, W. (1994). Determination of acid herbicides in aqueous samples by liquid-solid disk extraction and capillary gas-chromatography. Journal of Chromatography. A 659, 395–401.
Determination of acid herbicides in aqueous samples by liquid-solid disk extraction and capillary gas-chromatography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitFSlsLs%3D&md5=b0bd34a97fde2b121922ddabeae726a6CAS |

Hrastar, R., Petrisic, M. G., Ogrinc, N., and Kosir, I. J. (2009). Fatty acid and stable carbon isotope characterization of camelina sativa oil: implications for authentication. Journal of Agricultural and Food Chemistry 57, 579–585.
Fatty acid and stable carbon isotope characterization of camelina sativa oil: implications for authentication.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFCitw%3D%3D&md5=d1eac3ea0e2710cf9ad4966c2839823aCAS | 19123821PubMed |

Kuder, T., Wilson, J. T., Kaiser, P., Kolhatkar, R., Philp, P., and Allen, J. (2005). Enrichment of stable carbon and hydrogen isotopes during anaerobic biodegradation of MTBE: Microcosm and field evidence. Environmental Science & Technology 39, 213–220.
Enrichment of stable carbon and hydrogen isotopes during anaerobic biodegradation of MTBE: Microcosm and field evidence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCntbrO&md5=e4da7a06239009ac8423f7054e99d56cCAS |

Lacorte, S., Latorre, A., Barcelo, D., Rigol, A., Malmiqvist, A., and Welander, T. (2003). Organic compounds in paper-mill process waters and effluents. TrAC–Trends in Analytical Chemistry 22, 725–737.
Organic compounds in paper-mill process waters and effluents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVKgtw%3D%3D&md5=7c9bc1fc98c919de3ebac547de1f57a1CAS |

Lee, C., Hedges, J. I., Wakeham, S. G., and Zhu, N. (1992). Effectiveness of various treatments in retarding microbial activity in sediment trap material and their effects on the collection of swimmers. Limnology and Oceanography 37, 117–130.
Effectiveness of various treatments in retarding microbial activity in sediment trap material and their effects on the collection of swimmers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltVGqur8%3D&md5=fcb1d64e1b420f97de0aaaa0c59ded5cCAS |

Leggett, D. C., Jenkins, T. F., and Miyares, P. H. (1990). Salting-out solvent-extraction for preconcentration of neutral polar organic solutes from water. Analytical Chemistry 62, 1355–1356.
Salting-out solvent-extraction for preconcentration of neutral polar organic solutes from water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktFWrs70%3D&md5=160484ed91905deb87c153e98ebeb663CAS |

Li, J. J., Yue, Y. X., Hu, X. J., and Zhong, H. Y. (2009). Rapid transmethylation and stable isotope labeling for comparative analysis of fatty acids by mass spectrometry. Analytical Chemistry 81, 5080–5087.
Rapid transmethylation and stable isotope labeling for comparative analysis of fatty acids by mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvVWluro%3D&md5=806b4903c2cc3a127f4d22d05a838f4dCAS |

Ludvigsen, L., Albrechtsen, H. J., Ringelberg, D. B., Ekelund, F., and Christensen, T. H. (1999). Distribution and composition of microbial populations in landfill leachate contaminated aquifer (Grindsted, Denmark). Microbial Ecology 37, 197–207.
Distribution and composition of microbial populations in landfill leachate contaminated aquifer (Grindsted, Denmark).Crossref | GoogleScholarGoogle Scholar | 10227877PubMed |

Mancini, S. A., Lacrampe-Couloume, G., Jonker, H., Van Breukelen, B. M., Groen, J., Volkering, F., and Lollar, B. S. (2002). Hydrogen isotopic enrichment: an indicator of biodegradation at a petroleum hydrocarbon contaminated field site. Environmental Science & Technology 36, 2464–2470.
Hydrogen isotopic enrichment: an indicator of biodegradation at a petroleum hydrocarbon contaminated field site.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtFGmsbc%3D&md5=696801bec8bedb3fbfb5d93c5b4fac2eCAS |

McLeod, R. J., and Wing, S. R. (2007). Hagfish in the New Zealand fjords are supported by chemoautotrophy of forest carbon. Ecology 88, 809–816.
Hagfish in the New Zealand fjords are supported by chemoautotrophy of forest carbon.Crossref | GoogleScholarGoogle Scholar | 17536697PubMed |

Mottaleb, M. A., Abedin, M. Z., and Islam, M. S. (2004). Determination of volatile organic compounds in river water by solid phase extraction and gas chromatography. Journal of Environmental Sciences (China) 16, 497–501.
| 1:CAS:528:DC%2BD2cXms1ynt7w%3D&md5=7a79d00aeabecbbba2e4d29c7a647fdbCAS |

Muccio, Z., and Jackson, G. P. (2009). Isotope ratio mass spectrometry. Analyst (London) 134, 213–222.
Isotope ratio mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Ohurk%3D&md5=608992ba5599fe69df117a16f9842284CAS |

North, J., and Frew, R. 2008, Isotopic Characterization of Leachate from Seven New Zealand Landfills, in Lehmann, E., ed., Landfill Research Focus, NOVA publishing, p. 199–261.

North, J. C., Frew, R. D., and Van Hale, R. J. (2006). Can stable isotopes be used to monitor landfill leachate impact on surface waters? Journal of Geochemical Exploration 88, 49–53.
Can stable isotopes be used to monitor landfill leachate impact on surface waters?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVagsL0%3D&md5=e6dfb8a955a3bfe3ef60962c059ec248CAS |

Öman, C., and Hynning, P. A. (1993). Identification of Organic-Compounds in Municipal Landfill Leachates. Environmental Pollution 80, 265–271.
Identification of Organic-Compounds in Municipal Landfill Leachates.Crossref | GoogleScholarGoogle Scholar | 15091846PubMed |

Osterroht, C. (1993). Extraction of Dissolved Fatty-Acids from Sea-Water. Fresenius’ Journal of Analytical Chemistry 345, 773–779.
Extraction of Dissolved Fatty-Acids from Sea-Water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktlequrk%3D&md5=052e8eeea321c293aeca981d37f0a3e7CAS |

Paxeus, N. (2000). Organic compounds in municipal landfill leachates. Water Science and Technology 42, 323–333.
| 1:CAS:528:DC%2BD3cXptVertLg%3D&md5=d544fdc9ffd4f6708a78f72d1cf57256CAS |

Phenomenex (2003). ‘SPE Reference Manual and Users Guide.’ (Torrance, CA, USA.)

Richoux, N. B. (2011). Trophic ecology of zooplankton at a frontal transition zone: fatty acid signatures at the subtropical convergence, Southern Ocean. Journal of Plankton Research 33, 491–505.
Trophic ecology of zooplankton at a frontal transition zone: fatty acid signatures at the subtropical convergence, Southern Ocean.Crossref | GoogleScholarGoogle Scholar |

Sánchez-Avila, N., Mata-Granados, J. M., Ruiz-Jimenez, J., and de Castro, M. D. L. (2009). Fast, sensitive and highly discriminant gas chromatography-mass spectrometry method for profiling analysis of fatty acids in serum. Journal of Chromatography. A 1216, 6864–6872.
Fast, sensitive and highly discriminant gas chromatography-mass spectrometry method for profiling analysis of fatty acids in serum.Crossref | GoogleScholarGoogle Scholar | 19729166PubMed |

Schmitt, J., Glaser, B., and Zech, W. (2003). Amount-dependent isotopic fractionation during compound-specific isotope analysis. Rapid Communications in Mass Spectrometry 17, 970–977.
Amount-dependent isotopic fractionation during compound-specific isotope analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjs1OrsLg%3D&md5=eb446e2f202208432bc6d42521e2607dCAS | 12717771PubMed |

Sun, Y. G., Chen, Z. Y., Xu, S. P., and Cai, P. X. (2005). Stable carbon and hydrogen isotopic fractionation of individual n-alkanes accompanying biodegradation: evidence from a group of progressively biodegraded oils. Organic Geochemistry 36, 225–238.
Stable carbon and hydrogen isotopic fractionation of individual n-alkanes accompanying biodegradation: evidence from a group of progressively biodegraded oils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisFOmtw%3D%3D&md5=6aae9c1d57b502940d029588e1a8674bCAS |

Turoski, V. E., Kuehnl, M. E., and Vincent, B. F. (1981). Determination of resin and fatty-acids in paper-mill effluents by GC-MS. Tappi 64, 117–121.
| 1:CAS:528:DyaL3MXltValtbg%3D&md5=1c2e352d88cdf36168746324dd6ea9e8CAS |

Valto, P., Knuutinen, J., and Alen, R. (2007). Resin and fatty-acid analysis by solid-phase extraction coupled to atmospheric pressure chemical ionization-mass spectrometry. International Journal of Environmental Analytical Chemistry 87, 87–97.
Resin and fatty-acid analysis by solid-phase extraction coupled to atmospheric pressure chemical ionization-mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhslyhsbc%3D&md5=1c71d40849d5abdb3e3eb802a7acbfbbCAS |

Zheng, Z. P., Aagaard, P., and Breedveld, G. D. (2002). Sorption and anaerobic biodegradation of soluble aromatic compounds during groundwater transport. 1. Laboratory column experiments. Environmental Geology 41, 922–932.
Sorption and anaerobic biodegradation of soluble aromatic compounds during groundwater transport. 1. Laboratory column experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xks1emu7o%3D&md5=9d2e56ccb9e140f488afe223577d0d8cCAS |

Zwank, L., Berg, M., Elsner, M., Schmidt, T. C., Schwarzenbach, R. P., and Haderlein, S. B. (2005). New evaluation scheme for two-dimensional isotope analysis to decipher biodegradation processes: Application to groundwater contamination by MTBE. Environmental Science & Technology 39, 1018–1029.
New evaluation scheme for two-dimensional isotope analysis to decipher biodegradation processes: Application to groundwater contamination by MTBE.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFSltbbO&md5=74471b88b8ef276bb05edd6ad0e79323CAS |