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TheGram-negative opportunistic bacteriumPseudomonas

aeruginosa is associated with different types of human

infections and because of emerging multidrug-resistant

strains, these infections are of major global public health

concern. Certain strains possess a unique cytotoxic effector

protein ExoU, which contributes to the fitness of this or-

ganism in different ecological niches and is associated with

acquired antibiotic resistance. This article summarises the

current knowledge of the exoU gene in P. aeruginosa,

including genetics, distribution in strains from different

locations and associationwith antibiotic resistance. Under-

standing of this effector protein may have important impli-

cations for the understanding of pathogenesis and

antimicrobial resistance in P. aeruginosa infections.

The type III secretion system (TTSS), which injects effector pro-

teins into host cells, is an important determinant of virulence in the

opportunisticpathogenPseudomonasaeruginosa. Thebacterium

encodes four effector proteins that are secreted by the TTSS: ExoY,

ExoS, ExoT and ExoU1. Of note, a complete set of genes for these

effectorproteinsmaynot bepresent in all isolates. Almost all strains

carry both the exoY and exoT genes. However, a strainmay possess

either exoUor exoSbut very rarely both2,3. ExoUhasphospholipase

activity that rapidly kills cells and hence is associated with severe

disease outcomes4.

The exoU gene was first identified in a highly cytotoxic

P. aeruginosa strain PA1033. Using in vitro infection studies,

Fleiszig et al. demonstrated that PA103washighly cytotoxic despite

the absence of the exoS gene3. It was subsequently found that

the strain encodes a 72 kDa protein that was associated with the

cytotoxicity and was named ExoU, after the nomenclature of ExoS

andExoT5. ExoUhadbeenpreviously identified independently and

called PepA (Pseudomonas exoprotein A), although ExoU is now

the accepted name. Both studies demonstrated that an exoU

knockout strain was non-cytotoxic in in vitro and in vivo infection

models5,6. Further studies indicated that exoU is a variable trait

amongst clinical isolates of P. aeruginosa6. Several lines of evi-

dence fromearliermolecular studies have suggested that exoU and

its cognate chaperon spcU are located within a region of the

chromosome associated with genomic plasticity and the percent

G+C of exoU/spcU (58.8) is less than the average percent G+C

content (66.6) of P. aeruginosa5,7. These findings implied that

exoU may be a recently acquired gene in P. aeruginosa.
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In phylogenetic comparisons, exoU+ strains form a separate clade,

which contains less strains than the clade composed of exoS+

strains8,9. There is an unequal distribution of exoU+ strains in

different clinical and environmental settings, with the exoU+

strains being less abundant than exoS+ strains. In acute infections,

exoU+ strains are isolated from 28–42% of samples whilst in

chronic infections, such as lung infection of cystic fibrosis patients,

the rate of isolation of exoU+ strains is less than 10%2,4,10. Fur-

thermore, exoU+ strains were less prevalent in environmental

samples compared to clinical samples. However, within the sam-

ples from the environment, exoU+ strains were over-represented

in domestic (e.g. sinks, drains, toilets, fountains, hoses)11 and

hospital (e.g. sinks and washtubs of intensive care units)12 envir-

onments versus natural environments (e.g. soil and plants).

Perhaps themost intriguingdifference in thedistributionof exoU+

strains was noted in the strains isolated from corneal ulcers13.

Strains possessing exoU have been isolated from corneal samples

in 33% to 61% of cases8,14–16,. These rates are higher than those

commonly observed in other acute infections. The risk of keratitis

caused by P. aeruginosa is linked to contact lens wear. ExoU+

strains are more commonly isolated from keratitis associated with

contact lens wear14,15. Furthermore, ulcers caused by exoU+

strains result inworse visual outcomes than those caused by strains

lacking exoU16. The main reason for this could be that the exoU+

strains tend to bemore prevalent in household tap water including

sinks and drains, which could contaminate contact lens as many

people insert lenses in the bathroom. However, there is lack of

literaturedefining the rolesof environmental reservoirs indictating

the prevalence of exoU+ versus exoS+ strains in keratitis. More

studies are needed to confirm the disproportionate distribution of

exoU+andexoS+strains inenvironmental reservoirs andfitnessof

different genotypes in various environments.

With the availability of metagenome data, the genomic context of

the exoU carrying genomic island has been elucidated. The exoU

island is derived from the integrative plasmid pKCL102 and is

integrated at a tRNA-Lys gene adjacent to the locus PA0976 of

PAO117,18. The pKCL102 contains XerC/XerD-integrase, which is

responsible for site-specific integration and because of possession

of origin of replication (oriV), it can replicate autonomously.

Thereby, pKCL102 can occur in multiple copies17. We have previ-

ously demonstrated that in the keratitis strain PA34, the exoU gene

is found on a 7.5 kb island flanked by tRNA-Lys and homologs of

the PAO1 genes PA0976 and PA098819. However, there is a wide

variation in the sizeof the exoU islandbetween strains, for example,

it is 14 kb (PAPI-2) in strain PA14 (highly virulent reference strain),

81 kb (exoU island A) in ocular isolate 6077, 29.8 kb (exoU island B)

in ocular isolate 19660, 3.9 kb (exoU island C) in blood isolate

X13273 and 3.5 kb in an environmental isolate (Figure 1)20,21.

Despite the differences in the size of exoU carrying islands between

strains, the exoU gene appears to encode a functional cytotoxin19.

The difference in island size is attributed to the presence of several

mobile elements including insertion sequences and transposons,

which can be subjected to recombination, deletion or elimination

in response to the environmental selective pressure. It has been

hypothesised that such mobile elements potentially lead to exci-

sion of exoS leaving the strain as exoU+ (cytotoxic)21. However,

exoU and exoS are not closely located on the chromosome and no

explanationhas emerged for strains that carry either both exoU and

exoS or neither. More importantly, understanding the selection

pressures such as growth in the presence of predators (e.g. pro-

tozoa)or antimicrobials thatmight favour the acquisitionof exoU in

different environmental settings will help to better understand

pathogenesis and epidemiology of different types of P. aeruginosa

infections.

Not only are exoU carrying strains able to cause more severe

infections, co-selection of exoU gene and antimicrobial resistance,

including disinfectant resistance, has been widely reported in

exoU+ ocular and non-ocular strains14,23–26. This has raised con-

cerns that antibiotic resistance may be a factor for the evolution of

more virulent strains of P. aeruginosa.Most studies have shown a

significant correlation of exoU with fluoroquinolone resistance in

P. aeruginosa. The majority of exoU+ strains have mutations in

DNA gyrase (gyrA and gyrB) and topoisomerase (parC and parE),
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Figure 1. Graphical representation of various exoU carrying islands. The phylogenetic tree is based on core genome SNPs, constructed using
Parsnp v1.222. Protein coding regions are represented by arrows and key features/associated genes are shown in different colours (as labelled in
the figure). Strains were selected based on previous literature and the name of the genomic islands given are as originally published.
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which are responsible for fluoroquinolones resistance. However,

deletion or acquisition of exoU alone (not the pathogenicity island)

in experimental models does not affect fluoroquinolone suscepti-

bility16, which suggests that other genes in the pathogenicity island

maybe important in thedevelopmentof this resistancephenotype.

Limited studies have also shown a correlation between exoU

carriage and resistance to beta-lactams and aminoglycosides16,27.

Our previous study examined the correlation between carriage of

exoUor exoS andmutationandexpressionof beta-lactamasegenes.

We observed that exoU+ strains were usually more resistant to

beta-lactams than exoS+ strains (Figure 2)28, and this may have

been due to exoU+ strains having more mutations in genes

associated with beta-lactam resistance (mexR, ampC and ampR).

Gene expression analysis suggested that such mutations generally

lead to antibiotic resistance28. However, the reason for a higher

mutation rate in above-mentioned resistance genes in exoU+

strains remains unanswered. Perhaps selection pressure, which

favours acquisition of exoU+, is associated with higher mutation

rates in exoU strains.

Taking all the information together, it is clear that exoU in

P. aeruginosa is ecologically important and an important deter-

minant of virulence and antimicrobial resistance. Perhaps screen-

ing for exoU might help predict clinical outcomes and resistance

patterns, which in turn could lead to development of strategies of

improved therapies. Furthermore, given that exoU+ strains are

distributed differently in the different environment, the exoU

profile of strains may help to track the epidemiology of

P. aeruginosa infections. Further studies on the incompatibility

of exoU and exoS within the same P. aeruginosa genome, and

factors favouring acquisition of the exoUmight help to understand

acquired resistance in P. aeruginosa.
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