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The initial step in prokaryote species and genera 

descriptions is now largely based on the 16S rRNA 

gene sequencing approach followed often by a very 

restricted additional phenotypic characterisation of the 

representatives of the potential novel taxa. Despite the 

advantages of the sequence-based approaches, there 

appears to be a tendency to classify new species on the 

basis of comparative sequence analyses of 16S rRNA gene 

sequences and other gene sequence data (multilocus 

sequence analyses, MLSA), contrary to the indications of 

other data. However, the biological meaning behind these 

sequence data is not always clear, and one should be 

careful with comprehensive taxonomic rearrangements 

until there is better insight of these data.

Organisms can be classified in different ways, but the 

resulting classification systems remain abstract ideas (mental 

representations). In biology, the ultimate goal of taxonomy is 

to establish a system that mirrors the “order in nature”. The 

term “natural” is now most often associated with evolution. In 

prokaryote microbiology, the taxonomic concepts try to mirror 

the origin of life, hence the cell as the basic unit of life remains 

the level of consideration.

The analysis of the small subunit ribosomal RNA (16S rRNA) gene 

has clearly revolutionised prokaryotic taxonomic studies. For 

the first time, a hierarchical taxonomy on the basis of a practical 

molecular marker was possible.

The advantages and the pitfalls of 16S rRNA sequence-based 

Prokaryotic taxonomy in the sequencing 
era and the role of MLSA in classification
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studies have been already summarised by Ludwig and Klenk1. 

One important step, the alignment, can be critical at variable 

regions if deletions or insertions have occurred and sometimes 

it is very difficult to indicate the homologous bases. For the 16S 

rRNA (gene) sequences (and for sequences of protein coding 

genes), the functional pressure dictates the preservation of 

the sequence responsible for the three-dimensional structures 

of the final gene products and hence the probability of base 

substitutions leading to functional products. The limitations 

of tree reconstructions, the different information content, 

problems of plesiomorphy, functional constraints, multiple 16S 

rRNA gene copies with small intragenomic differences (up to 2 

or even 5%) and so on have also been thoroughly addressed by 

Ludwig and Klenk1 and others, but despite these problems, 16S 

rRNA gene sequence-based comparisons have been and are still 

invaluable in describing the breadth of prokaryotic diversity and 

are indispensable to allocate an unknown to a taxon.

One major critical point is the resolution power of the 16S rRNA 

gene sequence below the genus level, because of its conserved 

structure. Organisms sharing very similar or even identical 16S 

rRNA sequences may be more diverse at the whole genome level, 

than those having more variable positions2, and it is also very 

important to note that the branching patterns at the periphery of 

trees (sometimes at the genus level, but most often at the species 

level) cannot reliably reflect phylogeny in the sense of common 

ancestry (independent from the “treeing algorithm”). Here it 

should be noted briefly, that 16S rRNA sequence comparisons are 

often simply taken as to be “phylogenetic”3. Sneath4 has, however, 

provided a clear argument, that these analyses were clearly 

phenetic and not cladistic. Hence many so-called “phylogenetic” 

trees, published in the taxonomic literature, are often based on 

simple similarity calculations and are phenetic and not cladistic.

An example is shown in Figure 1 for the genus Acinetobacter. 

Here the 16S rRNA gene sequence in general is clearly not 

reliable for the identities at the species level. This is the case for 

the majority of bacterial and archaeal genera, especially those 

harbouring many species.

But what is in this context a species, or better, what reflects best 

the mental representation “species”?

It is agreed overall that the taxonomic category “species” 

represent the fundamental units in taxonomy. Despite the 

different approaches to define this unit, any species definition 

should be pragmatic, operational and universally applicable, 

and should serve the whole community8. Stackebrandt et al.9 

provided in 2002 a species circumscription as “a category that 

circumscribes a (preferably) genomically coherent group of 

individual isolates/strains sharing a high degree of similarity in 

(many) independent features, comparatively tested under highly 

standardised conditions”.

At this time large-scale genomic sequencing was beyond the 

imagination of most biologists and hence the description of a 

species was based on the 70% DNA-DNA hybridisation (DDH) 

standard already introduced by Wayne et al.10, which was for 

a long time pragmatic and universally applicable within the 

bacterial domain of life4,8. This method has often been criticised 

for being difficult to implement due to the cumbersome DDH 

experiments and the high experimental error. The advantages 

and pitfalls have been reviewed in detail by Rosselló-Mora11.

With the development of new sequencing methods, it has now 

become feasible to generate gene and genome sequences in a 

relatively short period of time. One very important development 

in the analysis of bacterial genomes for taxonomic purposes was 

the introduction of the average nucleotide index12-16.

Current available comparisons of DDH results of genome 

sequences show 95% average nucleotide identity of shared 

genes (ANI), which correlates well with the 70% DDH value 

defining bacterial species13-16. As outlined by Cole et al.12 

multilocus sequence analysis (MLSA) represents an “intermediate 

resolution” of the 16S rRNA gene and genome-based approach 

to resolve the “phylogenetic” resolution at the species level. 

MLSA (see, for example,17) is based on multilocus sequence 

typing (MLST) an approach to microbial typing based upon the 

sequences of multiple genes, (often housekeeping genes) that 

was first introduced by Maiden et al.18. Housekeeping genes are 

preferably used for MLST analysis because they are expected to 

evolve at a slow and constant rate.

For the majority of bacterial pathogens, MLST websites are 

now available (http://www.mlst.net/): the most comprehensive 

databases exist for Campylobacter jejuni and Neisseria 

meningitidis. MLST analysis in epidemiological studies is not 

based on the calculation of phylogenetic relationships but is 

rather a cluster analysis based on “allelic profiles”, whereas 

similarities between different alleles are not considered. 

“Phylogenetic” calculations using the sequence information 

behind the MLST schemes (referred as MLSA) can be used for 

bacterial identification and classification, because it offers the 

opportunity to incorporate the insights available from population 

genetics and phylogenetic approaches into bacterial systematics.

The application of MLSA as a method to replace DNA-DNA 

hybridisation is also associated with problems, as shown here 

briefly for the genus Acinetobacter. Acinetobacter comprises 

strictly aerobic, non-motile, Gram-negative, oxidase-negative and 

catalase-positive diplococcoid rods. The delineation of species 

within the genus Acinetobacter has resulted in a complex 

situation. Extensive investigations on strains belonging to the 

genus Acinetobacter using the DNA–DNA pairing studies have 

resulted in the recognition of several DNA–DNA homology 

groups (genomic species). The genus comprises now 22 species 

with validated names and 11 genomic species that have not 

been named until now. The majority of them are difficult to 

differentiate phenotypically. On the basis of 16S rRNA gene 

sequencing studies they show similarities between 93.5% and 
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99.1% (Figure 1) but without a clear species allocation. The 

branching patterns shown in the tree cannot reliably reflect 

phylogeny in the sense of common ancestry.

The genus Acinetobacter is also homogeneous with respect to 

phenotypic traits. For these reasons, molecular identification 

methods are increasingly developed and being validated against 

DNA–DNA hybridisation data. These methods include also the 

study of “housekeeping” genes, for example, those encoding 

RNA polymerase subunit B (rpoB), gyrase subunit B (gyrB), or 

the recA protein (recA). Especially for the clinically relevant 

species of the Acinetobacter baumanni group (comprising 

A. calcoaceticus, A. baumannii, Acinetobacter genomic 

species 3 and Acinetobacter genomic species 13) even more 

comprehensive MLST schemes have been developed, including 

fragments of the gltA, gyrB, gdhB, recA, cpn60, gpi and rpoD 

genes (for example,19). These MLST data clearly show even a high 

diversity among the A. baumannii isolates and hence the high 

resolution of MLST, even below the species level.

A comprehensive application of MLSA analysis on the whole 

genus Acinetobacter has not been applied so far. A detailed 

comparison of the rpoB sequences of the type (and other) strains 

of all Acinetobacter species (Figure 2) shows similarities of 77.3 

to 99.0%. The derived amino acid sequence data (Figure 2) reveal 

much higher similarities of 84.6 to 100%. The same situation 

was found for the gyrB sequence similarities (ranging from 75.1 

to 100%) in comparison to the derived amino acid sequence 

similarities (84.8 to 100%, data not shown) as well as for the recA 

sequence similarities (80 to 97.4%) in comparison to the amino 

acid sequence similarities (96.2 to 100%, data not shown).

Branching patterns obtained with the rpoB sequences clearly 

show the differences to the 16S rRNA gene-based tree and the 

branching patterns based on the gyrB and the recA sequences 

again showed differences. Furthermore, amino acid sequence-

based trees partially show different branching patterns than 

corresponding gene sequence-based trees (for example, for 

recA).

Of course, one possibility to overcome the problem of contrasting 

branching patterns is the combination of sequences from protein 

coding gene sequences with 16S rRNA gene sequences or 

sequences of genes that shared the same resolution as the 16S 

rRNA-based analysis, which was done, for example, by Serrano 

et al.24 who applied MLSA to resolve taxonomic conflicts in 

genus Marichromatium (anoxygenic phototrophic bacteria of 

the family Chromatiaceae). But this may be highly problematic, 

because the resulting differences may not reflect the result of 

very different genetic (evolutionary) processes.

Concatenation is often recommended to study the sequences 

of more genes, but this may lead to additional problems25. In a 

simulation by Kubatko and Degnan25, the concatenation approach 

produced a high level of discord among individual gene trees and 

led to a statistically inconsistent estimation. In addition, they 
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Figure 1. Phylogenetic analysis based on 16S rRNA gene sequences available from the European Molecular Biology Laboratory data library 
(accession numbers in parentheses). Trees were constructed using the ARB software package (version December 20075) and the corresponding 
SILVA SSURef 100 database (release August 20096).
A. Tree building was performed using the maximum likelihood method with fastDNAml7 without conservatory filter.
B. Tree building was performed with the neighbour-joining method without conservatory filter. Bar, 0.10 nucleotide substitutions per nucleotide 
position.
Some branches are highlighted to point to selected differences.
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found that the use of the bootstraps to measure support for the 

inferred phylogeny may lead to moderate to strong support for 

an incorrect tree under these conditions.

These selected examples clearly show that sequence data have to 

be interpreted very carefully as similarity at the phenotypic level 

(here the amino acid sequence is regarded as the phenotype) is 

very much higher than the underlying genotypic data.

With the investigation of genome data, however, new questions 

and problems are becoming obvious, which have not been 

sufficiently resolved until now. Given the enormous fluidity of the 

genomes, the exact rate and magnitude of gene exchange, which 

occurs over a broad range of taxonomic levels, it is expected, 

that a general definition of the category “species” may not be 

adequate given the expected and already documented genomic 

differences and the derived evolutionary consequences.

All genes in the genome, including the 16S rRNA genes, are subject 

to LGT (lateral or horizontal gene transfer) and recombination 

events and these events may differ significantly within different 

bacterial groups26. The majority of bacteria contain in their 

genomes specific genetic elements with encoding functions 

responsible for their own LGT and they may integrate genes 

or operons into the genome by site-specific recombination. 

MLST is an important method to study LGT (see26 for more 

details). As a consequence, these investigations are important 

for MLSA analyses. As a recommendation, genes that have been 

largely affected by LGT should perhaps not be considered in 

comparative MLSA studies for taxonomic purposes.

This statement may be extended also to the analysis of whole 

genome sequences and, despite the advantages in this area, many 

questions remain unanswered as summarised by Konstantinidis 

et al.14,15 and Cole et al.12. In this regard, an important fact is that 

genes and a genome do not exist on their own. In taxonomy (and 

also in many other biological disciplines) the living unit, that is, 

the cell should be the correct level of consideration.

Although molecular analysis can provide an enormous amount 

of data, we are far from able to interpret these data. There are 

numerous questions, for example, “Which genes belong to 

the conserved genome core are considered probably useful 

to define a taxon and which belong to accessory dispensable 

genetic elements?” The “overall” impact of processes such as 

LGT, gene duplication, recombination and rearrangements of 

genes in the genome is not clear and may vary considerably in 

different lineages (for example,27-29). In addition, the presence 

Figure 2. Phylogenetic resolution of Acinetobacter species and genomic species based on partial rpoB sequences (A) and corresponding amino 
acid sequences (B). Phylogenetic trees were generated with the Neighbour-Joining method20. Evolutionary distances were computed using the 
Kimura 2-parameter method (for gene sequences21) and the JTT matrix-based method (for amino acid sequences) and are in the units of the 
number of base/amino acid substitutions per site. All codon positions were included in the gene sequence analysis. All positions containing 
gaps and missing data were eliminated. A total number of 842 nucleotide and 280 amino acid positions were in the final data set. Numbers at 
branching points represent the percentage of replicate trees that confirm respective branching points in the bootstrap test (1000 replications)22. 
Only bootstrap values ≥70 are shown. The genome sequences strain Pseudomonas aeruginosa PAO1 was used as the out-group. Analyses 
were conducted in MEGA523. Some branches are highlighted to point to selected differences.
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of genes and gene clusters (whether expressed or “silent”) can 

have a totally different biological meaning, and the roles of 

structural elements (some of them phenotypically recognisable 

by the so-called “chemotaxonomic” methods) and biochemical 

pathways (also recognised by studying the phenotype at different 

levels) should be consistent with the underlying genetic data, 

which is essentially the aim of a “polyphasic taxonomy” as 

originally defined by Colwell et al.30. Despite the advantages 

in sequencing, the task of describing novel taxa is one that 

still requires careful selection and use of a wide variety of 

methodologies. The availability of an increasing number of 

sequenced genomes from a diverse range of prokaryotes is 

providing a wealth of new data, which have to be interpreted 

with care. Nevertheless, experience shows that only the interplay 

between genetic and phenotypic data sets provides a sound basis 

for appreciating and describing the diversity of prokaryotes and 

has the potential to become the foundation of a more stable, 

in-depth taxonomy of the prokaryotes31.
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