Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Prosogynopora riseri, gen. et sp. nov., a phylogenetically problematic lithophoran proseriate (Platyhelminthes : Rhabditophora) with inverted genital pores from the New England coast

Christopher E. Laumer A C , Gonzalo Giribet A and Marco Curini-Galletti B
+ Author Affiliations
- Author Affiliations

A Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.

B Dipartimento di Scienze della Natura e del Territorio, Sezione di Zoologia, Archeozoologia e Genetica, University of Sassari, via F. Muroni 25, 07100 Sassari, Italy.

C Corresponding author. Email: claumer@oeb.harvard.edu

Invertebrate Systematics 28(3) 309-325 https://doi.org/10.1071/IS13056
Submitted: 8 November 2013  Accepted: 26 March 2014   Published: 30 June 2014

Abstract

A new lithophoran proseriate flatworm, Prosogynopora riseri, gen. et sp. nov. (Platyhelminthes: Rhabditophora: Proseriata), is described from the New England coast (USA). The species shares characters with members of the families Calviriidae and Coelogynoporidae, e.g. the presence of paracnida, the short common female duct, a septum and diaphragm at the base of the pharynx. However, the inverted topology of the genital system, presenting an anterior female pore shortly behind the mouth and a male pore opening nearly on the caudal terminus, is unique within the Proseriata, and permits inclusion into neither family on morphological grounds. We investigated the phylogenetic position of the new species within the available diversity of proseriate 18S and 28S rRNA sequences. However, an exploration of diverse homology schemes, alignment conditions and optimality criteria proved the position of P. riseri, gen. et sp. nov. to be remarkably unstable, particularly with respect to the method of alignment, variously suggesting sister-group relationships with (or within) Coelogynoporidae, with Calviriidae, or with a clade composed of all other Lithophora. Despite its unique morphology and the absence of molecular phylogenetic evidence for its inclusion within any family as currently defined, we refrain from assigning a higher taxonomic rank to the new lineage, pending critical re-assessment of homology in several character systems and the availability of further taxon- and gene-rich enquiries into the phylogeny of Proseriata. Apingospermata, new taxon and Dolichogynoducta, new taxon are proposed as two rankless taxonomic names of Lithophora, corresponding to well-supported clades in our molecular phylogenetic hypothesis.


References

Appeltans, W., Ahyong, S. T., Anderson, G., Angel, M. V., Artois, T., Bailly, N., Bamber, R., Barber, A., Bartsch, I., Berta, A., Błażewicz-Paszkowycz, M., Bock, P., Boxshall, G., Boyko, C. B., Brandão, S. N., Bray, R. A., Bruce, N. L., Cairns, S. D., Chan, T.-Y., Cheng, L., Collins, A. G., Cribb, T., Curini-Galletti, M., Dahdouh-Guebas, F., Davie, P. J. F., Dawson, M. N., De Clerck, O., Decock, W., De Grave, S., de Voogd, N. J., Domning, D. P., Emig, C. C., Erséus, C., Eschmeyer, W., Fauchald, K., Fautin, D. G., Feist, S. W., Fransen, C. H. J. M., Furuya, H., Garcia-Alvarez, O., Gerken, S., Gibson, D., Gittenberger, A., Gofas, S., Gómez-Daglio, L., Gordon, D. P., Guiry, M. D., Hernandez, F., Hoeksema, B. W., Hopcroft, R. R., Jaume, D., Kirk, P., Koedam, N., Koenemann, S., Kolb, J. B., Kristensen, R. M., Kroh, A., Lambert, G., Lazarus, D. B., Lemaitre, R., Longshaw, M., Lowry, J., Macpherson, E., Madin, L. P., Mah, C., Mapstone, G., McLaughlin, P. A., Mees, J., Meland, K., Messing, C. G., Mills, C. E., Molodtsova, T. N., Mooi, R., Neuhaus, B., Ng, P. K. L., Nielsen, C., Norenburg, J., Opresko, D. M., Osawa, M., Paulay, G., Perrin, W., Pilger, J. F., Poore, G. C. B., Pugh, P., Read, G. B., Reimer, J. D., Rius, M., Rocha, R. M., Saiz-Salinas, J. I., Scarabino, V., Schierwater, B., Schmidt-Rhaesa, A., Schnabel, K. E., Schotte, M., Schuchert, P., Schwabe, E., Segers, H., Self-Sullivan, C., Shenkar, N., Siegel, V., Sterrer, W., Stöhr, S., Swalla, B., Tasker, M. L., Thuesen, E. V., Timm, T., Todaro, M. A., Turon, X., Tyler, S., Uetz, P., van der Land, J., Vanhoorne, B., van Ofwegen, L. P., van Soest, R. W. M., Vanaverbeke, J., Walker-Smith, G., Walter, T. C., Warren, A., Williams, G. C., Wilson, S. P., and Costello, M. J. (2012). The magnitude of global marine species diversity. Current Biology 22, 2189–2202.
The magnitude of global marine species diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs12gtb7K&md5=1dc243389107e379b7ac46b6d2cd8621CAS | 23159596PubMed |

Artois, T., Fontaneto, D., Hummon, W. D., McInnes, S. J., Todaro, M. A., Sørensen, M. V., and Zullini, A. (2011). Ubiquity of microscopic animals? Evidence from the morphological approach in species identification. In ‘Biogeography of microscopic organisms, is everything small everywhere’. (Ed. D. Fontaneto.) The Systematics Association Special Volumes. pp. 244–283.

Bryant, D. (2003). Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Molecular Biology and Evolution 21, 255–265.
Neighbor-net: an agglomerative method for the construction of phylogenetic networks.Crossref | GoogleScholarGoogle Scholar | 14660700PubMed |

Bursey, J., Smith, J. P. S., and Litvaitis, M. (2012). Kataplana celeretrix n. sp. (Platyhelminthes: Proseriata: Otoplanidae) from the coast of North Carolina, USA. Zootaxa 3184, 59–63.

Cannon, L. R. G. (1986). ‘Turbellaria of the world: a guide to families & genera’ 1st ed. (Queensland Museum: South Brisbane, Australia.)

Cannon, L. R. G., and Faubel, A. (1988). Turbellaria. In ‘Introduction to the study of meiofauna’. (Eds R. P. Higgins and H. Thiel.) pp. 273–282. (Smithsonian Institution Press: Washington, D.C.).

Cantino, P. D., and de Quieroz, K. (2010). International code of phylogenetic nomenclature, Version 4c. International code of phylogenetic nomenclature, Version 4c. Available at: http://www.ohio.edu/phylocode/ [Verified 10 February 2014].

Carranza, S., Giribet, G., Ribera, C., Baguñà, , and Riutort, M. (1996). Evidence that two types of 18S rDNA coexist in the genome of Dugesia (Schmidtea) mediterranea (Platyhelminthes, Turbellaria, Tricladida). Molecular Biology and Evolution 13, 824–832.
Evidence that two types of 18S rDNA coexist in the genome of Dugesia (Schmidtea) mediterranea (Platyhelminthes, Turbellaria, Tricladida).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XktFyitbg%3D&md5=0a6e51f5b01a231b4dfa60aa49eba4f7CAS | 8754218PubMed |

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540–552.
Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVSgt7g%3D&md5=b9e72f4f43e92e5aaa6c2696c6b069dbCAS | 10742046PubMed |

Casu, M., Lai, T., Sanna, D., Cossu, P., and Curini-Galletti, M. (2009). An integrative approach to the taxonomy of the pigmented European Pseudomonocelis Meixner, 1943 (Platyhelminthes: Proseriata). Biological Journal of the Linnean Society 98, 907–922.
An integrative approach to the taxonomy of the pigmented European Pseudomonocelis Meixner, 1943 (Platyhelminthes: Proseriata).Crossref | GoogleScholarGoogle Scholar |

Casu, M., Cossu, P., Sanna, D., Lai, T., Scarpa, F., and Curini-Galletti, M. (2011). A reappraisal of the monophyly of the genus Pseudomonocelis Meixner, 1943 (Platyhelminthes: Proseriata), with the description of a new species from the Mediterranean. Zootaxa 3011, 59–68.

Curini-Galletti, M. (1997). Contribution to the knowledge of the Proseriata (Platyhelminthes: Seriata) from the Gulf of Eilat (Red Sea): genus Minona Marcus, 1946. Israel Journal of Zoology 43, 121–131.

Curini-Galletti, M. (2001). The Proseriata. In ‘Interrelationships of the Platyhelminthes’. The Systematics Association Special Volumes Series 60. pp. 41–48. (Taylor and Francis, Inc.: London and New York).

Curini-Galletti, M., and Cannon, L. R. G. (1997). A polypharyngeal marine flatworm (Platyhelminthes, Proseriata, Archimonocelididae) from eastern Australia. Zoological Journal of the Linnean Society 121, 485–494.
A polypharyngeal marine flatworm (Platyhelminthes, Proseriata, Archimonocelididae) from eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Curini-Galletti, M., and Martens, P. M. (1996). New species of Archilina Ax 1959 (Platyhelminthes Proseriata) from the Red Sea and the Caribbean. Tropical Zoology 9, 187–199.
New species of Archilina Ax 1959 (Platyhelminthes Proseriata) from the Red Sea and the Caribbean.Crossref | GoogleScholarGoogle Scholar |

Curini-Galletti, M. C., Puccinelli, I., and Martens, P. M. (1988). Karyometrical analysis of 10 species of the subfamily Monocelidinae (Proseriata, Platyhelminthes) with remarks on the karyological evolution of the Monocelididae. Genetica 78, 169–178.
Karyometrical analysis of 10 species of the subfamily Monocelidinae (Proseriata, Platyhelminthes) with remarks on the karyological evolution of the Monocelididae.Crossref | GoogleScholarGoogle Scholar |

Curini-Galletti, M., Oggiano, G., and Casu, M. (2002). The genus Nematoplana Meixner, 1938 (Platyhelminthes: Unguiphora) in eastern Australia. Journal of Natural History 36, 1023–1046.
The genus Nematoplana Meixner, 1938 (Platyhelminthes: Unguiphora) in eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Curini-Galletti, M., Webster, B. L., Huyse, T., Casu, M., Schockaert, E., Artois, T., and Littlewood, D. T. J. (2010). New insights on the phylogenetic relationships of the Proseriata (Platyhelminthes), with proposal of a new genus of the family Coelogynoporidae. Zootaxa 2537, 1–18.

Curini-Galletti, M., Artois, T., Delogu, V., De Smet, W. H., Fontaneto, D., Jondelius, U., Leasi, F., Martínez, A., Meyer-Wachsmuth, I., Nilsson, K. S., Tongiorgi, P., Worsaae, K., and Todaro, M. A. (2012). Patterns of diversity in soft-bodied meiofauna: dispersal ability and body size matter. PLoS ONE 7, e33801.
Patterns of diversity in soft-bodied meiofauna: dispersal ability and body size matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltF2kur0%3D&md5=4dc5db30b9d4b36e53eae081abd6e713CAS | 22457790PubMed |

Ehlers, B., and Ehlers, U. (1980). Zur Systematik und geographischen Verbreitung interstitieller Turbellarien der Kanarschen Inseln. Mikrofauna des Meeresbodens 80, 573–593.

Farris, J. S., Albert, V. A., Källersjö, M., Lipscomb, D., and Kluge, A. G. (1996). Parsimony jackknifing outperforms neighbor-joining. Cladistics 12, 99–124.
Parsimony jackknifing outperforms neighbor-joining.Crossref | GoogleScholarGoogle Scholar |

Faubel, A., and Rohde, K. (1988). Sandy beach meiofauna of eastern Australia (southern Queensland and New South Wales). IV. Proseriata, Platyhelminthes. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut 95, 7–28.

Fonseca, V. G., Carvalho, G. R., Sung, W., Johnson, H. F., Power, D. M., Neill, S. P., Packer, M., Blaxter, M. L., Lambshead, P. J. D., Thomas, W. K., and Creer, S. (2010). Second-generation environmental sequencing unmasks marine metazoan biodiversity. Nature Communications 1, 98.
Second-generation environmental sequencing unmasks marine metazoan biodiversity.Crossref | GoogleScholarGoogle Scholar | 20981026PubMed |

Franzén, Å. (1977). Sperm structure with regards to fertilization biology and phylogenetics. Verhandlungen der Deutschen Zoologischen Gesellschaft 77, 123–138.

Giribet, G. (2003). Stability in phylogenetic formulations and its relationship to nodal support. Systematic Biology 52, 554–564.
Stability in phylogenetic formulations and its relationship to nodal support.Crossref | GoogleScholarGoogle Scholar | 12857646PubMed |

Giribet, G. (2007). Efficient tree searches with available algorithms. Evolutionary Bioinformatics Online 3, 341–356.
| 1:CAS:528:DC%2BD1cXjvVWlsL4%3D&md5=7fa27c6d3432f30089b45a5ac87e25d2CAS | 19461977PubMed |

Giribet, G., and Edgecombe, G. D. (2013). Stable phylogenetic patterns in scutigeromorph centipedes (Myriapoda: Chilopoda: Scutigeromorpha): dating the diversification of an ancient lineage of terrestrial arthropods. Invertebrate Systematics 27, 485–501.
Stable phylogenetic patterns in scutigeromorph centipedes (Myriapoda: Chilopoda: Scutigeromorpha): dating the diversification of an ancient lineage of terrestrial arthropods.Crossref | GoogleScholarGoogle Scholar |

Giribet, G., and Wheeler, W. C. (1999). On Gaps. Molecular Phylogenetics and Evolution 13, 132–143.
On Gaps.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmt1Omsbs%3D&md5=9f19684e0ed38e2a5a3ca2089aeaee74CAS | 10508546PubMed |

Goloboff, P. A. (1999). Analyzing large data sets in reasonable times: solutions for composite optima. Cladistics 15, 415–428.
Analyzing large data sets in reasonable times: solutions for composite optima.Crossref | GoogleScholarGoogle Scholar |

Goloboff, P. A., Farris, J. S., and Nixon, K. C. (2008). TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786.
TNT, a free program for phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar |

Hendelburg, J. (1983). Platyhelminthes – Turbellaria. In ‘Reproductive biology of invertebrates, Vol. II: Spermatogenesis and Sperm Function’. (Eds R. G. Adiyodi and K. G. Adiyodi.) pp. 75–104. (J. Wiley and Sons, Inc.: Chichester, NY).

Huson, D. H., and Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23, 254–267.
Application of phylogenetic networks in evolutionary studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntValsw%3D%3D&md5=e2041d7a97f598d18086ab3aa9a5ba2eCAS | 16221896PubMed |

Karling, T. G. (1956). Morphologisch-histologische Untersuchungen an dem männlichen Atrialorganen der Kalyptorhynchia (Turbellaria). Arkiv för Zoologi 9, 197–279.

Karling, T. G. (1966). Marine Turbellaria from the Pacific coast of North America IV. Coelogynoporidae and Monocelididae. Arkiv för Zoologi 18, 493–528.

Katoh, K., and Toh, H. (2008). Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics 9, 286–298.
Recent developments in the MAFFT multiple sequence alignment program.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt1artrs%3D&md5=d3f40cfe601202676deea9a82d9894d7CAS | 18372315PubMed |

Laumer, C. E., and Giribet, G. (2014). Inclusive taxon sampling suggests a single, stepwise origin of ectolecithality in Platyhelminthes. Biological Journal of the Linnean Society 111, 570–588.
Inclusive taxon sampling suggests a single, stepwise origin of ectolecithality in Platyhelminthes.Crossref | GoogleScholarGoogle Scholar |

Lee, M. S. Y. (2001). Unalignable sequences and molecular evolution. Trends in Ecology & Evolution 16, 681–685.
Unalignable sequences and molecular evolution.Crossref | GoogleScholarGoogle Scholar |

Levan, A., Fredga, K., and Sandberg, A. A. (1964). Nomenclature for centromeric position on chromosomes. Hereditas 52, 201–220.
Nomenclature for centromeric position on chromosomes.Crossref | GoogleScholarGoogle Scholar |

Lindgren, A. R., and Daly, M. (2007). The impact of length-variable data and alignment criterion on the phylogeny of Decapodiformes (Mollusca: Cephalopoda). Cladistics 23, 464–476.
The impact of length-variable data and alignment criterion on the phylogeny of Decapodiformes (Mollusca: Cephalopoda).Crossref | GoogleScholarGoogle Scholar |

Littlewood, D. T. J., Rohde, K., Bray, R. A., and Herniou, E. A. (1999a). Phylogeny of the Platyhelminthes and the evolution of parasitism. Biological Journal of the Linnean Society 68, 257–287.
Phylogeny of the Platyhelminthes and the evolution of parasitism.Crossref | GoogleScholarGoogle Scholar |

Littlewood, D. T. J., Rohde, K., and Clough, K. A. (1999b). The interrelationships of all major groups of Platyhelminthes: phylogenetic evidence from morphology and molecules. Biological Journal of the Linnean Society 66, 75–114.
The interrelationships of all major groups of Platyhelminthes: phylogenetic evidence from morphology and molecules.Crossref | GoogleScholarGoogle Scholar |

Littlewood, D. T. J., Curini-Galletti, M., and Herniou, E. A. (2000). The interrelationships of Proseriata (Platyhelminthes: Seriata) tested with molecules and morphology. Molecular Phylogenetics and Evolution 16, 449–466.
The interrelationships of Proseriata (Platyhelminthes: Seriata) tested with molecules and morphology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsV2nu74%3D&md5=98c63340b38ae9547e5637a0ade5e35fCAS |

Litvaitis, M. K., Curini-Galletti, M. C., Martens, P. M., and Kocher, T. D. (1996). A reappraisal of the systematics of the Monocelididae (Platyhelminthes, Proseriata): inferences from rDNA sequences. Molecular Phylogenetics and Evolution 6, 150–156.
A reappraisal of the systematics of the Monocelididae (Platyhelminthes, Proseriata): inferences from rDNA sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltF2kt7k%3D&md5=225d723a4220478a622d2711f61da757CAS | 8812315PubMed |

Lockyer, A. E., Olson, P. D., and Littlewood, D. T. J. (2003). Utility of complete large and small subunit rRNA genes in resolving the phylogeny of the Neodermata (Platyhelminthes): implications and a review of the cercomer theory. Biological Journal of the Linnean Society 78, 155–171.
Utility of complete large and small subunit rRNA genes in resolving the phylogeny of the Neodermata (Platyhelminthes): implications and a review of the cercomer theory.Crossref | GoogleScholarGoogle Scholar |

Martens, P. M. (1984). Comparison of three different extraction methods for Turbellaria. Marine Ecology Progress Series 14, 229–234.
Comparison of three different extraction methods for Turbellaria.Crossref | GoogleScholarGoogle Scholar |

Martens, P. M., and Curini-Galletti, M. C. (1989). Monocelididae and Archimonocelididae (Platyhelminthes: Proseriata) from South Sulawesi (Indonesia) and Northern Australia with biogeographical remarks. Tropical Zoology 2, 175–205.
Monocelididae and Archimonocelididae (Platyhelminthes: Proseriata) from South Sulawesi (Indonesia) and Northern Australia with biogeographical remarks.Crossref | GoogleScholarGoogle Scholar |

Martens, P. M., and Curini-Galletti, M. (1993). Taxonomy and phylogeny of the Archimonocelididae Meixner, 1938 (Platyhelminthes, Proseriata). Bijdragen tot de Dierkunde 63, 65–102.

Martens, P. M., and Schockaert, E. R. (1986). The importance of turbellarians in the marine meiobenthos: a review. Hydrobiologia 132, 295–303.
The importance of turbellarians in the marine meiobenthos: a review.Crossref | GoogleScholarGoogle Scholar |

Martens, P. M., and Schockaert, E. R. (1989). Phylogeny of the digonoporid Proseriata. Fortschritte der Zoologie 19, 399–403.

Martens, P. M., Curini-Galletti, M. C., and Oostveldt, P. V. (1989). Polyploidy in Proseriata (Platyhelminthes) and its phylogenetical implications. Evolution 43, 900–907.
Polyploidy in Proseriata (Platyhelminthes) and its phylogenetical implications.Crossref | GoogleScholarGoogle Scholar |

Matthey, R. (1949). ‘Les chromosomes des vertébrés.’ (F. Rouge: Lausanne)

Mazzi, V. (1977). ‘Manuale di tecniche Istologiche e Istochimiche.’ (Piccin Ed., Padova, Italy.)

Miller, W., and Faubel, A. (2003). Six new species of Proseriata (Plathelminthes) from eastern Australia. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut 100, 27–57.

Nixon, K. C. (1999). The Parsimony Ratchet, a new method for rapid parsimony analysis. Cladistics 15, 407–414.
The Parsimony Ratchet, a new method for rapid parsimony analysis.Crossref | GoogleScholarGoogle Scholar |

Posada, D. (2008). jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution 25, 1253–1256.
jModelTest: Phylogenetic Model Averaging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlKgsb4%3D&md5=a227fa0ae4120a3a8c06cab96986f12aCAS | 18397919PubMed |

Riser, N. W. (1981). New England Coelogynoporidae. Hydrobiologia 84, 139–145.
New England Coelogynoporidae.Crossref | GoogleScholarGoogle Scholar |

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
| 22357727PubMed |

Sanders, J. G. (2010). Program note: Cladescan, a program for automated phylogenetic sensitivity analysis. Cladistics 26, 114–116.
Program note: Cladescan, a program for automated phylogenetic sensitivity analysis.Crossref | GoogleScholarGoogle Scholar |

Schockaert, E. R. (1996). Turbellarians. In ‘Methods for the examination of organismal diversity in soils and sediments.’ (Ed G. S. Hall.) pp. 211–225. (C.A.B. International: Wallingford).

Schockaert, E. R., Curini-Galletti, M., De Ridder, W., Volonterio, O., and Artois, T. (2009). A new family of lithophoran Proseriata (Platyhelminthes), with the description of seven new species from the Indo-Pacific and South America, and the proposal of three new genera. Zoological Journal of the Linnean Society 155, 759–773.
A new family of lithophoran Proseriata (Platyhelminthes), with the description of seven new species from the Indo-Pacific and South America, and the proposal of three new genera.Crossref | GoogleScholarGoogle Scholar |

Schockaert, E. R., Curini-Galletti, M., De Ridder, W., and Artois, T. (2011). On the Calviriidae Martens and Curini-Galletti, 1993 (Platyhelminthes, Proseriata), with the description of three new species. Zootaxa 3034, 32–46.

Sewell, K. B., Cannon, L. R. G., and Blair, D. (2006). A review of Temnohaswellia and Temnosewellia (Platyhelminthes: Temnocephalida: Temnocephalidae), ectosymbionts from Australian crayfish Euastacus (Parastacidae). Memoirs of the Queensland Museum 52, 199–280.

Sharma, P. P., Vahtera, V., Kawauchi, G. Y., and Giribet, G. (2011). Running WILD: the case for exploring mixed parameter sets in sensitivity analysis. Cladistics 27, 538–549.
Running WILD: the case for exploring mixed parameter sets in sensitivity analysis.Crossref | GoogleScholarGoogle Scholar |

Shimodaira, H., and Hasegawa, M. (2001). CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17, 1246–1247.
CONSEL: for assessing the confidence of phylogenetic tree selection.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2FgtFOlsw%3D%3D&md5=2e6b69bf2a602aaab2c623f68e7e43d2CAS | 11751242PubMed |

Sopott-Ehlers, B. (1976). Interstitielle Macrostomida und Proseriata (Turbellaria) von der französischen Atlantikküste und den Kanarischen Inseln. Mikrofauna des Meeresbodens 60, 539–571.

Sopott-Ehlers, B. (1981). Ultrastructural observations on paracnids. I: Coelogynopora axi Sopott (Turbellaria, Proseriata). In ‘The Biology of the Turbellaria’. (Eds E. R. Schockaert and I. R. Ball.) pp. 253–257. (Springer Netherlands: Dordrecht). Available at: http://link.springer.com/content/pdf/10.1007/978-94-009-8668-8_33.pdf [Verified 7 August 2013].

Sopott-Ehlers, B. (1985). Ultrastrukturelle Beobachtungen an Paracniden. II. Carenscoilia bidentata Sopott (Plathelminthes, Proseriata). Microfauna Marina 2, 85–93.

Stocsits, R. R., Letsch, H., Hertel, J., Misof, B., and Stadler, P. F. (2009). Accurate and efficient reconstruction of deep phylogenies from structured RNAs. Nucleic Acids Research 37, 6184–6193.
Accurate and efficient reconstruction of deep phylogenies from structured RNAs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWlt7bK&md5=7c9297477c8f65b124ca26b646143b6eCAS | 19723687PubMed |

Sukumaran, J., and Holder, M. T. (2010). DendroPy: a Python library for phylogenetic computing. Bioinformatics 26, 1569–1571.
DendroPy: a Python library for phylogenetic computing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVOltb0%3D&md5=05bdfccdea3906d843d461a6e272fca5CAS | 20421198PubMed |

Timoshkin, O. A., Lukhnev, A. G., and Zaytseva, E. P. (2010). First data on the endemic fauna of Turbellaria Proseriata (Platyhelminthes, Otomesostomidae) from Lake Baikal. The Biological Bulletin 37, 861–875.
First data on the endemic fauna of Turbellaria Proseriata (Platyhelminthes, Otomesostomidae) from Lake Baikal.Crossref | GoogleScholarGoogle Scholar |

Tyler, S., and Artois, T. (2013). WoRMS - World Register of Marine Species – Proseriata. Available at: http://www.marinespecies.org/aphia.php?p=taxdetails&id=%20142027 [Verified 18 January 2014].

Tyler, S., Schilling, S., Hooge, M., and Bush, L. (2012). Turbellarian taxonomic database, Version 1.7. Available at: http://turbellaria.umaine.edu.

Vaidya, G., Lohman, D. J., and Meier, R. (2011). SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180.
SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information.Crossref | GoogleScholarGoogle Scholar |

Varón, A., Vinh, L. S., and Wheeler, W. C. (2010). POY version 4: phylogenetic analysis using dynamic homologies. Cladistics 26, 72–85.
POY version 4: phylogenetic analysis using dynamic homologies.Crossref | GoogleScholarGoogle Scholar |

Wheeler, W. (1996). Optimization alignment: the end of multiple sequence alignment in phylogenetics? Cladistics 12, 1–9.
Optimization alignment: the end of multiple sequence alignment in phylogenetics?Crossref | GoogleScholarGoogle Scholar |

Wheeler, W. C., and Hayashi, C. Y. (1998). The phylogeny of the extant chelicerate orders. Cladistics 14, 173–192.
The phylogeny of the extant chelicerate orders.Crossref | GoogleScholarGoogle Scholar |

Willems, W. R., Wallberg, A., Jondelius, U., Littlewood, D. T. J., Backeljau, T., Schockaert, E. R., and Artois, T. J. (2006). Filling a gap in the phylogeny of flatworms: relationships within the Rhabdocoela (Platyhelminthes), inferred from 18S ribosomal DNA sequences. Zoologica Scripta 35, 1–17.
Filling a gap in the phylogeny of flatworms: relationships within the Rhabdocoela (Platyhelminthes), inferred from 18S ribosomal DNA sequences.Crossref | GoogleScholarGoogle Scholar |

Zwickl, D. J. (2006). Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. Dissertation. University of Texas at Austin. Available at http://garli.googlecode.com/

Zwickl, D. J. (2012). Using partitioned models. Available at: https://www.nescent.org/wg_garli/Using_partitioned_models.