Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Astrocoryne cabela, gen. nov. et sp. nov. (Hydrozoa : Sphaerocorynidae), a new sponge-associated hydrozoan

Davide Maggioni A B D , Paolo Galli A B , Michael L. Berumen C , Roberto Arrigoni C , Davide Seveso A B and Simone Montano A B
+ Author Affiliations
- Author Affiliations

A Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy.

B MaRHE Center, Università degli Studi di Milano-Bicocca, Magoodhoo Island, Faafu Atoll, Republic of Maldives.

C Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.

D Corresponding author. Email: davide.maggioni@unimib.it

Invertebrate Systematics 31(6) 734-746 https://doi.org/10.1071/IS16091
Submitted: 24 December 2016  Accepted: 10 April 2017   Published: 16 November 2017

Abstract

The family Sphaerocorynidae includes two valid genera and five species, most of which have a confusing taxonomic history. Here, a new genus and species, Astrocoryne cabela, gen. et sp. nov., is described from the Maldives and the Red Sea, based on both morphological and molecular evidence. Astrocoryne cabela has an apomorphy represented by the type of tentacles, here named ‘dicapitate’, and consisting of capitate tentacles with a proximal capitulum-like cluster of nematocysts. Molecular analyses confirmed the monophyly of this species, as well as its belonging to the Sphaerocorynidae, together with Sphaerocoryne spp. and Heterocoryne caribbensis Wedler & Larson, 1986, for which we present molecular data for the first time. Moreover, the high divergence of A. cabela from other species of the family justifies the establishment of a new genus. Interestingly, specimens from the Maldives and the Red Sea showed marked morphological variation in the polyp stage, although only a slight genetic divergence was detected. This study highlights that a comprehensive morpho-molecular assessment of Sphaerocorynidae is strongly needed in order to clarify the taxonomic issues and the diversity of this taxon.

Additional keywords: Capitata, new genus, new species, Maldives, Red Sea.


References

Bigelow, H. B. (1909). The Medusae. Reports on the scientific results of the expedition to the eastern tropical pacific, in charge of Alexander Agassiz, by the U.S. Fish Commission steamer ‘Albatross’ from October, 1904, to March, 1905. Memoirs of the Museum of Comparative Zoology at Harvard College 37, 1–243.

Boero, F., and Bouillon, J. (2005). Cnidaria and Ctenophora. In ‘Marine Parasitology’. (Ed. K. Rohde.) pp. 177–182. (CSIRO Publishing: Collingwood, Australia.)

Bouillon, J. (1978). Hydroméduses de la Mer de Bismarck (Papouasie, Nouvelle-Guinée). Partie 1: Anthomedusae Capitata (Hydrozoa – Cnidaria). Cahiers de Biologie Marine 19, 249–297.

Bouillon, J. (1984). Sphaerocoryne peterseni: nouvelle espèce d’Anthoméduse de la Papouasie Nouvelle-Guinée. Indo-Malayan Zoology 1, 245–248.

Brinckmann-Voss, A., and Lindner, A. (2008). Monocoryne colonialis sp. nov., a colonial candelabrid hydroid (Cnidaria: Hydrozoa: Candelabridae) from the North Pacific. Journal of the Marine Biological Association of the United Kingdom 88, 1631–1635.
Monocoryne colonialis sp. nov., a colonial candelabrid hydroid (Cnidaria: Hydrozoa: Candelabridae) from the North Pacific.Crossref | GoogleScholarGoogle Scholar |

Calder, D. (1971). Hydroids and hydromedusae of southern Chesapeake Bay. Virginia Institute of Marine Science. Special Papers in Marine Science 1, 1–125.

Calder, D. R. (2010). Some anthoathecate hydroids and limnopolyps (Cnidaria, Hydrozoa) from the Hawaiian archipelago. Zootaxa 2590, 1–91.

Calder, D. R., Mallinson, J. J., Collins, K., and Hickman, C. P. (2003). Additions to the hydroids (Cnidaria) of the Galápagos, with a list of species reported from the islands. Journal of Natural History 37, 1173–1218.
Additions to the hydroids (Cnidaria) of the Galápagos, with a list of species reported from the islands.Crossref | GoogleScholarGoogle Scholar |

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540–552.
Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVSgt7g%3D&md5=12c15c65b143ca193ea00e1aa007f6b7CAS |

Conover, J. T., and Sieburth, J. M. (1964). Effect of Sargassum distribution on its epibiota and antibacterial activity. Botanica Marina 6, 147–157.
Effect of Sargassum distribution on its epibiota and antibacterial activity.Crossref | GoogleScholarGoogle Scholar |

Cunha, A. F., Maronna, M. M., and Marques, A. C. (2016). Variability on microevolutionary and macroevolutionary scales: a review on patterns of morphological variation in Cnidaria Medusozoa. Organisms, Diversity & Evolution 16, 431–442.
Variability on microevolutionary and macroevolutionary scales: a review on patterns of morphological variation in Cnidaria Medusozoa.Crossref | GoogleScholarGoogle Scholar |

Cunningham, C. W., and Buss, L. W. (1993). Molecular evidence for multiple episodes of paedomorphosis in the family Hydractiniidae. Biochemical Systematics and Ecology 21, 57–69.
Molecular evidence for multiple episodes of paedomorphosis in the family Hydractiniidae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktVGhurY%3D&md5=d24963739721483013aeec60f91207e8CAS |

DiBattista, J. D., Choat, J. H., Gaither, M. R., Hobbs, J. P. A., Lozano‐Cortés, D. F., Myers, R. F., Paulay, G., Rocha, L. A., Toonen, R. J., Westneat, M. W., and Berumen, M. L. (2016). On the origin of endemic species in the Red Sea. Journal of Biogeography 43, 13–30.
On the origin of endemic species in the Red Sea.Crossref | GoogleScholarGoogle Scholar |

Fleming, J. A. (1828). ‘History of British Animals.’ (Bell and Bradfute: Edinburgh, UK.)

Galea, H. R. (2008). On a collection of shallow-water hydroids (Cnidaria: Hydrozoa) from Guadeloupe and Les Saintes, French Lesser Antilles. Zootaxa 1878, 1–54.

Galea, H. R. (2013). New additions to the shallow-water hydroids (Cnidaria: Hydrozoa) from the French Lesser Antilles: Martinique. Zootaxa 3686, 1–50.
New additions to the shallow-water hydroids (Cnidaria: Hydrozoa) from the French Lesser Antilles: Martinique.Crossref | GoogleScholarGoogle Scholar |

Gili, J. M., and Hughes, R. G. (1995). The ecology of marine benthic hydroids. Oceanography and Marine Biology 33, 351–426.

Haeckel, E. (1879). ‘Das System der Medusen. Erster Teil einer Monographie der Medusen.’ (Denkschriften der Medicinisch-Naturwissenschaftlichen Gesellschaft: Jena, Germany.) [In German]

Hughes, T. P., Bellwood, D. R., and Connolly, S. R. (2002). Biodiversity hotspots, centres of endemicity, and the conservation of coral reefs. Ecology Letters 5, 775–784.
Biodiversity hotspots, centres of endemicity, and the conservation of coral reefs.Crossref | GoogleScholarGoogle Scholar |

Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFWisLc%3D&md5=9b63ef51572a7695e00dde761602e188CAS |

Kinne, O. (1956). Über den einfluß des salzgehaltes und der temperatur auf wachstum, form und vermehrung bei dem hydroidpolypen Cordylophora caspia (Pallas), Athecata, Clavidae. Zoologische Jahrbucher. Abteilung fur Allgemeine Zoologie und Physiologie der Tiere 66, 565–638.

Kinne, O., and Paffenhöfer, G. A. (1965). Hydranth structure and digestion rate as a function of temperature and salinity in Clava multicornis (Cnidaria, Hydrozoa). Helgoländer Wissenschaftliche Meeresuntersuchungen 12, 329–341.
Hydranth structure and digestion rate as a function of temperature and salinity in Clava multicornis (Cnidaria, Hydrozoa).Crossref | GoogleScholarGoogle Scholar |

Lanfear, R., Calcott, B., Ho, S. Y., and Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1ehsbg%3D&md5=60257dbe2868778a4d0b3f3c019d85e1CAS |

Maggioni, D., Montano, S., Seveso, D., and Galli, P. (2016). Molecular evidence for cryptic species in Pteroclava krempfi (Hydrozoa, Cladocorynidae) living in association with alcyonaceans. Systematics and Biodiversity 14, 484–493.
Molecular evidence for cryptic species in Pteroclava krempfi (Hydrozoa, Cladocorynidae) living in association with alcyonaceans.Crossref | GoogleScholarGoogle Scholar |

McCrady, J. (1859). Gymnopthalmata of Charleston harbor. Proceedings of the Elliot Society of Natural History 1, 103–221.

Medlin, L., Elwood, H. J., Stickel, S., and Sogin, M. L. (1988). The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499.
The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXovFyruw%3D%3D&md5=9f109092627b5a1dc4d9276e4b5acaecCAS |

Mergner, H., and Wedler, E. (1977). Ueber die hydropolypenfauna des Roten Meeres und seiner ausgänge. Meteor Forschungsergebnisse 24, 1–32.

Montano, S., Maggioni, D., Arrigoni, R., Seveso, D., Puce, S., and Galli, P. (2015). The hidden diversity of Zanclea associated with scleractinians revealed by molecular data. PLoS One 10, e0133084.
The hidden diversity of Zanclea associated with scleractinians revealed by molecular data.Crossref | GoogleScholarGoogle Scholar |

Montano, S., Maggioni, D., Galli, P., and Hoeksema, B. W. (2017). A cryptic species in the Pteroclava krempfi species complex (Hydrozoa, Cladocorynidae) revealed in the Caribbean. Marine Biodiversity 47, 83–89.
A cryptic species in the Pteroclava krempfi species complex (Hydrozoa, Cladocorynidae) revealed in the Caribbean.Crossref | GoogleScholarGoogle Scholar |

Müller, W. A., and Leitz, T. (2002). Metamorphosis in the Cnidaria. Canadian Journal of Zoology 80, 1755–1771.
Metamorphosis in the Cnidaria.Crossref | GoogleScholarGoogle Scholar |

Nawrocki, A. M., Schuchert, P., and Cartwright, P. (2010). Phylogenetics and evolution of Capitata (Cnidaria: Hydrozoa), and the systematics of Corynidae. Zoologica Scripta 39, 290–304.
Phylogenetics and evolution of Capitata (Cnidaria: Hydrozoa), and the systematics of Corynidae.Crossref | GoogleScholarGoogle Scholar |

Orlov, D. V. (1997). The role of larval settling behaviour in determination of the specific habitat of the hydrozoan Dynamena pumila (L.). Larval settlement in Dynamena pumila (L.). Journal of Experimental Marine Biology and Ecology 208, 73–85.
The role of larval settling behaviour in determination of the specific habitat of the hydrozoan Dynamena pumila (L.). Larval settlement in Dynamena pumila (L.).Crossref | GoogleScholarGoogle Scholar |

Pearse, A. S. (1950). Notes on the inhabitants of certain sponges at Bimini. Ecology 31, 149–151.
Notes on the inhabitants of certain sponges at Bimini.Crossref | GoogleScholarGoogle Scholar |

Petersen, K. W. (1990). Evolution and taxonomy in capitate hydroids and medusae (Cnidaria: Hydrozoa). Zoological Journal of the Linnean Society 100, 101–231.
Evolution and taxonomy in capitate hydroids and medusae (Cnidaria: Hydrozoa).Crossref | GoogleScholarGoogle Scholar |

Piraino, S., Todaro, C., Geraci, S., and Boero, F. (1994). Ecology of the bivalve-inhabiting hydroid Eugymnanthea inquilina in the coastal sounds of Taranto (Ionian Sea, SE Italy). Marine Biology 118, 695–703.
Ecology of the bivalve-inhabiting hydroid Eugymnanthea inquilina in the coastal sounds of Taranto (Ionian Sea, SE Italy).Crossref | GoogleScholarGoogle Scholar |

Prévot, E. (1959). Morphologie et évolution des structures tentaculaires chez les hydraires gymnoblastes Capitata. Recueil des Travaux de la station marine d’Endoume 29, 91–128. [In French]

Puce, S., Calcinai, B., Bavestrello, G., Cerrano, C., Gravili, C., and Boero, F. (2005). Hydrozoa (Cnidaria) symbiotic with Porifera: a review. Marine Ecology (Berlin) 26, 73–81.
Hydrozoa (Cnidaria) symbiotic with Porifera: a review.Crossref | GoogleScholarGoogle Scholar |

Puce, S., Cerrano, C., Di Camillo, C. G., and Bavestrello, G. (2008). Hydroidomedusae (Cnidaria: Hydrozoa) symbiotic radiation. Journal of the Marine Biological Association of the United Kingdom 88, 1715–1721.
Hydroidomedusae (Cnidaria: Hydrozoa) symbiotic radiation.Crossref | GoogleScholarGoogle Scholar |

Reimer, J. D., Herrera, M., Gatins, R., Roberts, M. B., Parkinson, J. E., and Berumen, M. L. (2017). Latitudinal variation in the symbiotic dinoflagellate Symbiodinium of the common reef zoantharian Palythoa tuberculosa on the Saudi Arabian coast of the Red Sea. Journal of Biogeography 44, 661–673.
Latitudinal variation in the symbiotic dinoflagellate Symbiodinium of the common reef zoantharian Palythoa tuberculosa on the Saudi Arabian coast of the Red Sea.Crossref | GoogleScholarGoogle Scholar |

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar |

Rützler, K. (1978). Sponges in coral reefs. In ‘Coral Reefs: Research Methods. Monographs on Oceanographic Methodology 5’. (Eds D. R. Stodart and R. E. Johanes.) pp. 299–313. (UNESCO: Paris, France.)

Schuchert, P., and Reiswig, H. M. (2006). Brinckmannia hexactinellidophila, n. gen., n. sp.: a hydroid living in tissues of glass sponges of the reefs, fjords, and seamounts of Pacific Canada and Alaska. Canadian Journal of Zoology 84, 564–572.
Brinckmannia hexactinellidophila, n. gen., n. sp.: a hydroid living in tissues of glass sponges of the reefs, fjords, and seamounts of Pacific Canada and Alaska.Crossref | GoogleScholarGoogle Scholar |

Schuchert, P. (2010). The European athecate hydroids and their medusae (Hydrozoa, Cnidaria): Capitata part 2. Revue Suisse de Zoologie 117, 337–555.

Schulze, F. E. (1880). On the structure and arrangement of the soft parts in Euplectella aspergillum. Transactions of the Royal Society of Edinburgh 29, 661–673.
On the structure and arrangement of the soft parts in Euplectella aspergillum.Crossref | GoogleScholarGoogle Scholar |

Seveso, D., Montano, S., Reggente, M. A. L., Maggioni, D., Orlandi, I., Galli, P., and Vai, M. (2017). The cellular stress response of the scleractinian coral Goniopora columna during the progression of the black band disease. Cell Stress & Chaperones 22, 225–236.
The cellular stress response of the scleractinian coral Goniopora columna during the progression of the black band disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitFentr%2FP&md5=4c04352be9fa4cf16bed1d31225f11d5CAS |

Shimabukuro, V. (2007). As associações epizóicas de Hydrozoa (Cnidaria: Leptothecata, Anthoathecata e Limnomedusae): I) estudo faunístico de hidrozoários epizóicos e seus organismos associados; II) dinâmica de comunidades bentônicas em substratos artificiais em São Sebastião, SP. Master’s thesis, Universidade de São Paulo, Brazil. [In Portuguese]

Shimabukuro, V., Marques, A. C., and Migotto, A. E. (2006). The anthoathecate hydroid fauna (Hydrozoa, Anthoathecata) of the coast of Ceará State, Brazil. Biota Neotropica 6, 1–13.
The anthoathecate hydroid fauna (Hydrozoa, Anthoathecata) of the coast of Ceará State, Brazil.Crossref | GoogleScholarGoogle Scholar |

Sukumaran, J., and Holder, M. T. (2010). DendroPy: a Python library for phylogenetic computing. Bioinformatics 26, 1569–1571.
DendroPy: a Python library for phylogenetic computing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVOltb0%3D&md5=653c492eebb410f678a8c14346de2db4CAS |

Talavera, G., and Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56, 564–577.
Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKrs7%2FP&md5=0047ba3b5231ef0904a5c2560f64ab2cCAS |

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 2725–2729.
MEGA6: molecular evolutionary genetics analysis version 6.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKhurzP&md5=31e52c88992083420b0597f29824352bCAS |

Tyler, J. C., and Böhlke, J. E. (1972). Records of sponge-dwelling fishes, primarily of the Caribbean. Bulletin of Marine Science 22, 601–642.

Uriz, M. J., Rosell, D., and Maldonado, M. (1992). Parasitism, commensalism or mutualism? The case of Scyphozoa (Coronatae) and horny sponges. Marine Ecology Progress Series 81, 247–255.
Parasitism, commensalism or mutualism? The case of Scyphozoa (Coronatae) and horny sponges.Crossref | GoogleScholarGoogle Scholar |

Varela, C. (2012). Registros nuevos de hidrozoos (Cnidaria: Hydroidomedusae) para Cuba, con la descripción de una especie nueva. Solendon 10, 1–7.

Vervoort, W. (1949). Notes on a small collection of hydroids from Jersey (Channel Islands). Zoölogische Mededeelingen 30, 133–162.

Wedler, E., and Larson, R. (1986). Athecate hydroids from Puerto Rico and the Virgin Islands. Studies on Neotropical Fauna and Environment 21, 69–101.
Athecate hydroids from Puerto Rico and the Virgin Islands.Crossref | GoogleScholarGoogle Scholar |

Wulff, J. L. (2006). Ecological interactions of marine sponges. Canadian Journal of Zoology 84, 146–166.
Ecological interactions of marine sponges.Crossref | GoogleScholarGoogle Scholar |

Yamada, M., and Konno, K. (1973). Polyp and medusa of the hydroid Sphaerocoryne multitentaculata (Warren) from Japan. Publications of the Seto Marine Biological Laboratory 20, 103–109.

Zietara, M. S., Arndt, A., Geets, A., Hellemans, B., and Volckaert, F. A. (2000). The nuclear rDNA region of Gyrodactylus arcuatus and G. branchicus (Monogenea: Gyrodactylidae). The Journal of Parasitology 86, 1368–1373.
The nuclear rDNA region of Gyrodactylus arcuatus and G. branchicus (Monogenea: Gyrodactylidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltFKksQ%3D%3D&md5=bf75fabb1c5bf4524d0e3047d64cc306CAS |

Zwickl, D. (2006). Garli: genetic algorithm for rapid likelihood inference. Available at http://www.bio.utexas.edu/faculty/antisense/garli/Garli.html [verified 8 May 2017].