Functional Plant Biology

Contents

Volume 46 Issue 5 2019

Disentangling the net: concomitant xylem and over-bark size measurements reveal the phloem-generated turgor signal behind daytime stem swelling in the mangrove Avicennia marina Alicia Donnellan Barraclough, Roman Zweifel, Jarrod Cusens and Sebastian Leuzinger	393–406	Trees heavily rely on water stored inside their stems during water shortage. This study addressed the stem water storage patterns of the mangrove <i>Avicennia marina</i> and discovered that the tree's sugar transport system stored water during the daytime, a little observed phenomenon. The authors suggest this unusual adaptation could have a role in helping <i>A. marina</i> thrive in salty environments.
Ameliorating effects of exogenous Ca ²⁺ on foxtail millet seedlings under salt stress Fei Han, Mingjie Sun, Wei He, Xiumin Cui, Hong Pan, Hui Wang, Fupeng Song, Yanhong Lou and Yuping Zhuge	407–416	Salt stress has started threatening regional development and could continue to threaten agricultural production and food security. The mitigation mechanism of Ca ²⁺ of foxtail millet to salt stress is not only related to the yield and the patterns of saline-alkaline land utilisation but is also related to the food security of human beings. We examined the effects of different Ca ²⁺ concentrations on foxtail millet growth, physiology, ion balance and gene expression under salt stress induced with 1.0% w/v NaCl, and found the optimal Ca ²⁺ concentration to improve salt tolerance. This study provides theoretical and technical support for the cultivation of foxtail millet and the utilisation of salinised land with saline-alkaline soil.
Isobaric tags for relative and absolute quantitation-based quantitative proteomics analysis provides novel insights into the mechanism of cross-incompatibility between tree peony and herbaceous peony Dan He, Xue-Yuan Lou, Song-Lin He, Ya-Kai Lei, Bo-Va Lv, Zheng Wang, Yun-Bing Zheng and Yi-Ping Liu	417–427	Tree peony, known as the king of flowers, can be improved and bred by interspecific hybridisation. To elucidate the molecular mechanisms of the cross-incompatibility between tree peony and herbaceous peony, six differentially expressed proteins containing enolase, DnaK, GroEL, calmodulin, adenine nucleotide translocator and glyoxalase I were found by isobaric tags for relative and absolute quantitation-based quantitative proteomic analysis. These results should facilitate interspecific hybridisation in agricultural practice.
The VvBAP1 gene is identified as a potential inhibitor of cell death in grape berries Shifeng Cao, Zeyu Xiao, Vladimir Jiranek and Stephen D. Tyerman	428–442	A type of programmed cell death in grape berries occurs late in ripening influencing yield via berry shrinkage, and ultimately affecting wine quality. A gene transcript (<i>VvBAP1</i>) linked to cell death in the grape berry has been discovered that also confers ROS and drought tolerance to <i>Arabidopsis</i> when overexpressed. This discovery will allow future research to uncover the downstream regulators of berry cell death that occurs only in some cultivars of grapevine.

Cover illustration: Improved performance of transgenic Arabidopsis over-expressing OsRBGD3 under cold stress and ABA (see Lenka et al. pp. 482–491). Image by Sangram K. Lenka and Senthilkumar K. Muthusamy.

The role of jasmonate signalling in quinolizidine alkaloid biosynthesis, wounding and aphid predation response in narrow-leafed lupin Karen M. Frick, Rhonda C. Foley, Kadambot H. M. Siddique, Karam B. Singh and Lars G. Kamphuis	443–454	The factors that increase the levels of toxic quinolizidine alkaloids (QAs) in the grain legume narrow-leafed lupin are poorly understood. We hypothesised that jasmonates are involved in regulating QA biosynthesis in response to biotic stresses. We identified that methyl jasmonate induces QA biosynthesis in high-QA narrow-leafed lupin, but observed no response in low-QA narrow-leafed lupin. Furthermore, predation by aphids – a major insect pest of narrow-leafed lupin – did not affect QA levels in low-QA cultivars.
Amplification of abiotic stress tolerance potential in rice seedlings with a low dose of UV-B seed priming <i>Dhanya T. Thomas and Jos T. Puthur</i>	455–466	UV-B seed priming is a means of inducing abiotic stress tolerance in a cost-effective manner with appropriate and essential expenditure of energy towards stress tolerance. This priming method effectively influence various physio-chemical features in the rice seedlings under different stress conditions and brings about more positive stress tolerance features for NaCl stress than for PEG and UV-B stress.
Confirmation of mesophyll signals controlling stomatal responses by a newly devised transplanting method <i>Takashi Fujita, Ko Noguchi, Hiroshi Ozaki and Ichiro Terashima</i>	467–481	Is mesophyll involved in stomatal responses to environmental stimuli? The mesophyll segments of <i>Commelina communis</i> pretreated in the light at low CO ₂ air were more effective to induce stomatal opening in the epidermal strips transplanted from the plants kept in the dark than those pretreated in the dark and/or high CO ₂ . Our results indicate the involvement of mesophyll in stomatal responses.
Heterologous expression of rice RNA-binding glycine-rich (RBG) gene OsRBGD3 in transgenic Arabidopsis thaliana confers cold stress tolerance Sangram K. Lenka, Amit K. Singh, Senthilkumar K. Muthusamy, Shuchi Smita, Viswanathan Chinnusamy and Kailash C. Bansal	482–491	Cold stress leads to major crop losses in many parts of the world, so identifying key genes of agronomic importance could provide a sustainable solution to this problem. We have identified the key role of a rice gene (<i>OsRBGD3</i>) attributed to cold tolerance, root elongation and early flowering. Use of this gene will provide agricultural industry an opportunity for breeding future frost-resistant and early flowering crops.