Functional Plant Biology

Contents

Volume 46 Issue 2 2019

<i>Review</i> : The effects of total glucosides of paeony (TG and paeoniflorin (Pae) on inflammatory-immune responses in rheumatoid arthritis (RA) <i>Lei Zhang, Jun Yu, Chun Wang and Wei Wei</i>	GP) 107–117	This review provides novel insights into the treatment of rheumatoid arthritis. Total glucosides of paeony (TGP) and paeoniflorin (Pae) inhibit lymphocyte proliferation; repress the activation of macrophages, monocytes and fibroblast-like synoviocytes (FLSs); decrease prostaglandin E_2 ; upregulate E-prostanoid-G-protein-cyclic adenosine monophosphate and blockade the mitogen-associated-protein kinases pathway in FLSs. These results provide the basic and clinical application of TGP and Pae.
<i>Review</i> : Two molecular species of phytochrome A with distinct modes of action <i>V. Sineshchekov</i>	118–135	Phytochrome A – the key photoreceptor in the higher plants – mediates three fundamental types of their photoregulation reactions. It is widely accepted that it is represented in plants as a single molecular species. This review presents an alternative point of view: the existence of two phytochrome A types differing by the molecular structure and mode of action.
Hydrogen sulfide may function downstream of hydrogen peroxide in salt stress-induced stomatal closure in <i>Vicia faba</i> <i>Yinli Ma, Wei Zhang, Jiao Niu, Yu Ren</i> <i>and Fan Zhang</i>	136–145	The roles of hydrogen sulfide (H_2S) and hydrogen peroxide (H_2O_2) during salt stress-induced stomatal closure were examined in <i>Vicia faba</i> L. Our data showed that H_2S and H_2O_2 are involved in salt stress-induced stomatal closure, and H_2S may function downstream of H_2O_2 in the process. We have provided direct evidence for further studies on stomatal movement signalling networks under salt stress.
Blue and red light effects on stomatal oscillations <i>Trevor Ballard, David Peak and Keith Mott</i>	146–151	Plants absorb CO_2 through pores in their leaves called stomata, which are known to open and close in response to myriad environmental and physiological triggers. We demonstrate here that blue light inhibits stomatal aperture oscillations in both the guard cells and surrounding tissue layers, whereas these oscillations continue under the influence of red light. This observation of blue light behaviour agrees with recent research and suggests another physiological pathway for oscillations.
DNA synthesis pattern, proteome, and ABA and GA signalling in developing seeds of Norway maple (Acer platanoides) Aleksandra M. Staszak, Monika Rewers, Elwira Sliwinska, Ewelina A. Klupczyńska and Tomasz A. Pawłowski	152–164	Norway maple embryo (axis and cotyledons) development was studied, including DNA synthesis, proteins, and plant hormone signalling. Results revealed that cell cycle/endoreduplication activity is a good indicator of developmental stages, distinguishing maturation phases, including deposition of storage reserves, desiccation and dormancy acquisition. Our results provide novel insights into the mechanisms underlying the development of temperate tree seeds.

Cover illustration: Reactive oxygen species (ROS) accumulation in the primary root of the *rbohc* mutant and *perk4-1/rbohc* double mutant in response to exogenous ABA (see Ma *et al.* pp. 165–174). Five-day-old seedlings were cultured on MS medium without or with 50 μ M ABA for 5 h, then stained with 50 μ M H2DCF-DA. Scale bars = 100 μ m. Image by Xiaonan Ma.

Hydrogen peroxide plays an important role in PERK4-mediated abscisic acid-regulated root growth in <i>Arabidopsis</i> <i>Xiaonan Ma, Xiaoran Zhang, Ling Yang,</i> <i>Mengmeng Tang, Kai Wang, Li Wang,</i> <i>Ling Bai and Chunpeng Song</i>	165–174	Reactive oxygen species (ROS) are important regulators of ABA signalling in root growth. This work aimed to explore the mechanisms of PERK4-associated ABA inhibition of root growth. Our results provided new perspectives that enhance our understanding of the process, and provided a foundation for elucidation of the molecular mechanisms of PERK4-mediated ABA-regulated primary root growth.
Costs and benefits of photosynthetic stems in desert species from southern California <i>Eleinis Ávila-Lovera, Roxana Haro,</i> <i>Exequiel Ezcurra and Louis S. Santiago</i>	175–186	Woody plants with green stems are common in the drylands of the world; however, the advantages of having such stems (e.g. extra carbon gain) may be offset by water costs. We found that green stems can gain as much carbon as leaves do but are subjected to greater water losses through their cuticle. This trade- off between carbon gain and water loss has important implications for plant responses to future droughts.
MdMYBL2 helps regulate cytokinin-induced anthocyanin biosynthesis in red-fleshed apple (Malus sieversii f. niedzwetzkyana) callus Yicheng Wang, Jingjing Sun, Nan Wang, Haifeng Xu, Changzhi Qu, Shenghui Jiang, Hongcheng Fang, Mengyu Su, Zongying Zhang and Xuesen Chen	187–196	During the cultivation of fruit trees, the rational application of hormones based on different environmental conditions can improve the appearance and nutritional value of fruit crops. Herein, we discussed the involvement of cytokinin in the anthocyanin biosynthesis pathway, which may have implications for the development of new cultivation techniques aimed at improving fruit coloration under diverse environmental conditions.