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ABSTRACT

Wetland plants, including rice (Oryza spp.), have developed multiple functional adaptive traits to
survive soil flooding, partial submergence or even complete submergence. In waterlogged soils
and under water, diffusion of O2 and CO2 is extremely slow with severe impacts on
photosynthesis and respiration. As a response to shallow floods or rising floodwater, several
rice varieties, including deepwater rice, elongate their stems to keep their leaves above the
water surface so that photosynthesis can occur unhindered during partial submergence. In stark
contrast, some other varieties hardly elongate even if they become completely submerged. Instead,
their metabolism is reduced to an absolute minimum so that carbohydrates are conserved enabling
fast regrowth once the floodwater recedes. This review focuses on the fascinating functional
adaptive traits conferring tolerance to soil flooding, partial or complete submergence. We provide
a general analysis of these traits focusing on molecular, anatomical and morphological, physiological
and ecological levels. Some of these key traits have already been introgressed into modern high-
yielding genotypes improving flood tolerance of several cultivars used by millions of farmers in
Asia. However, with the ongoing changes in climate, we propose that even more emphasis
should be placed on improving flood tolerance of rice by breeding for rice that can tolerate longer
periods of complete submergence or stagnant flooding. Such tolerance could be achieved via
additional tissues; i.e. aquatic adventitious roots relevant during partial submergence, and leaves
with higher underwater photosynthesis caused by a longer gas film retention time.

Keywords: aerenchyma formation, flooding tolerance, gas film, Oryza sativa, ROL barrier, root
traits, stem elongation, submergence.

Introduction

Flooding is one of the most severe natural disasters threatening the food supply worldwide,
and both frequency and severity have increased in the past decades (Pedersen et al. 2017).
Flooding can cause severe damage to both the root and shoot systems of plants, and the soil
root system is particularly prone to flooding stress due to the reduced gas diffusion rate in
waterlogged soils (Armstrong 1979). Waterlogged soils prevent plants from obtaining
sufficient O2 for root respiration from the rhizosphere since the O2 is consumed by
microorganisms, and slow diffusion restricts the replenishment of O2 from the atmosphere
above (Ponnamperuma 1972). Consequently, root tissues become severely hypoxic, or even
anoxic, with consequences for water and nutrient uptake (Pedersen et al. 2021; Tong et al.
2023). Deeper floods inundating the shoot result in additional stress caused by the slow gas
exchange underwater (CO2 for photosynthesis andO2 for respiration (Colmer and Pedersen
2008)) as well as the reduction in light (resulting from reflection and absorption
(Kirk 1994)). The resulting decline in carbohydrate production further accelerates tissue
death (Voesenek and Bailey-Serres 2009; Kurokawa et al. 2018).

Wetland plants, including rice (Oryza spp.), have developed multiple functional
adaptive traits to survive soil flooding, partial submergence, or even complete submergence.
In shallow floods, several rice varieties elongate their stems to keep their leaves above
the water surface (known as snorkelling) so that photosynthesis can occur unhindered
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(Hattori et al. 2009). Aerenchyma is another important trait
present in the roots, stems and leaves (Yamauchi et al. 2016),
where it serves as a low-resistance pathway for O2 diffusion to
the submerged parts of the plant. However, if O2 becomes
insufficient to fuel aerobic respiration, rice can switch to
anaerobic respiration allowing the plant to produce energy in
the absence of molecular O2 (Lee et al. 2014). During partial
submergence, a brand new root system develops in some rice
types, and these roots emerge from the stem in the water
and are referred to as aquatic adventitious roots (Lorbiecke
and Sauter 1999; Lin et al. 2021). In addition to nutrient and
water uptake, aquatic adventitious roots also help anchoring
the plant as the original soil roots are perishing due to lack of
O2. Therefore, rice is used as a model plant to study the
molecular mechanisms of plant tolerance to flooding since
responses to flooding vary among the different rice varieties.

This review focuses on the fascinating functional adaptive
traits conferring tolerance to soil flooding as well as partial or
complete submergence.We provide a general analysis of these
traits at the molecular, anatomical and morphological,
physiological and ecological levels. Finally, we identify a
number of traits to focus on in the quest of breeding for more
flood-resilient rice cultivars in order to tackle the ongoing
climate changes.

Escape response to flooding

Growing along river or lake banks with fluctuating water
levels, deepwater rice has a striking capacity for stem and
leaf elongation to keep track with rising floodwaters. This
capacity allows deepwater rice to remain in contact with
atmosphericO2 and CO2 so that respiration and photosynthesis
are maintained even during severe floods (Fig. 1) (Raskin and
Kende 1984a; Bleecker et al. 1986; Catling 1992; Lorbiecke
and Sauter 1999; Nagai et al. 2020; Lin et al. 2023). This
kind of ‘escape response’ to rising floodwater is classified as
low-O2 escape syndrome (LOES) (Voesenek and Bailey-Serres
2015). Stem elongation mainly occurs at the intercalary
meristem of the second and third internode (Kende et al.
1998; Nagai and Ashikari 2023), and the involvement of
gibberellin acids (GA) in regulating stem elongation has
been extensively studied (Raskin and Kende 1984b; van der
Knaap et al. 2000; Hattori et al. 2009; Nagai et al. 2020).
Compared to paddy rice (cv. T65), deepwater rice (cv. C9285)
accumulated much more GA1 and GA4 after being exposed to
partial submergence (Hattori et al. 2009; Nagai et al. 2020).
Three major quantitative trait loci (QTLs) are involved in
stem elongation with QTL12 having the largest effect (Hattori
et al. 2009). Two ERFVII transcription factors, i.e. SNORKEL1
and SNORKEL2, play a significant role in controlling stem
elongation, but ethylene rather than GA induces the expression
of SNORKEL1 and SNORKEL2, revealing a function of
SNORKEL1 and SNORKEL2 in the interplay between ethylene
and GA signalling (Hattori et al. 2009).

GAs activate the intercalary meristem of the rice stem and
regulate the stem cell elongation during submergence. TheGA
biosynthesis gene SEMIDWARF1 (SD1) controls the stem
elongation in deepwater rice (Kuroha et al. 2018), and it
has been shown that the domestication of paddy rice resulted
in the loss of function of this allele (Sasaki et al. 2002). The
ethylene-responsive transcription factor OsEIL1a activates
the SD1 haploid gene in deepwater rice cv. C9285 upon
submergence, and SD1 further stimulates the biosynthesis
of GA4, enabling the internode elongation (Kuroha et al.
2018). Evolutionary analysis revealed that the characteristic
SD1 haploid gene of deepwater rice was originally evolved
from Oryza rufipogon (Kuroha et al. 2018). Excitingly, two
genes controlling internode elongation in response to GA
acting in anantagonisticmanner have recently been discovered
(Nagai et al. 2020). In the presence of GA, the expression of
ACCELERATOR OF INTERNODE ELONGATION 1 (ACE1)
gene was highly induced, and cell division in the region of
intercalary meristem was further activated, eventually leading
to internode elongation. By contrast, DECELERATOR OF
INTERNODE ELONGATION 1 (DEC1), encoding a zinc-finger
transcription factor, suppressed internode elongation. Based
on the analysis of genetic diversity, ACE1 and DEC1 were
both frequently engaged in domesticating shorter plants to
improve lodging resistance in rice populations as well as
taller rice plants that were suitable to grow in deepwater
habitats (Nagai et al. 2020). In addition, QTLs governing
internode elongation during the early vegetative stage with
relative minor effect were discovered on chromosomes 2
and 4 in deepwater rice, despite that the associated genes
have not been cloned within the QTLs (Nagai et al. 2012).

Quiescence response to flooding

Quiescence enables plants to survive flooding via
carbohydrate conservation. In other words, in deep but short
floods, it might be more fruitful to wait out the submergence
event rather than investing carbohydrates in elongation (see
above) and then run out of reserves before surfacing. FR13A is
a flood-tolerant Indian landrace of rice (Xu et al. 2006; Bailey-
Serres et al. 2010), and via map-based positional cloning,
SUBMERGENCE1A (SUB1A) was identified to play a major
role in its flood tolerance via repression of shoot elongation
(Xu et al. 2006). This strategy is referred to as low-O2

quiescence syndrome (LOQS), and it reduces metabolism
and preserves energy reserves during submergence (Fig. 1)
(Voesenek and Bailey-Serres 2009, 2015). It has also been
shown that the action of SUB1A reduces the rate of starch
hydrolysis and accumulation of ethanol, lactate, and alanine
as well as metabolic by-products of amino acids (Fukao et al.
2006; Barding et al. 2012). FR13A and the related nearly
isogenic lines are all able to survive complete submergence
for more than 2 weeks (Das et al. 2005; Fukao et al. 2006).
Once the floodwater subsides, plants recover to grow due to
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the better carbohydrate status, and since they have only
elongated little during the submergence event, they are also
much less prone to lodging (Ismail et al. 2013).

The ability of paddy rice to tolerate submergence is
consequently greatly enhanced by the SUB1A gene. SUB1A,

a member of the ERFVII transcription factor family, has
been extensively studied to understand the physiological and
molecular mechanisms of submergence tolerance in rice, and
it has been found that SUB1A restricts ethylene biosynthesis,
and reduces metabolism and energy consumption early in the
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Fig. 1. Adaptive traits conferring flood tolerance in rice. (1) Escape response: stem elongation occurs when the intercalary meristem is
activated and cell division takes place in response to ethylene and GA during submergence. (2) Quiescence response: SUB1A boosts GA
signalling repressors Slender Rice-1 (SLR1) and SLR1 Like-1 (SLRL1), and reduces the expression of the GA-induced genes. In addition,
the growth rate and metabolism are reduced. (3) Anaerobic germination: anaerobic germination helps rice to geminate under water
and promotes elongation of the coleoptile. (4) Aerenchyma formation at the internode and (5) in the roots facilitates rapid O2 diffusion
to submerged tissues. (6) The root barrier to radial O2 loss: formation of a root barrier to radial O2 loss prevents O2 loss to the
rhizosphere and enhances the O2 status in roots. (7) Underwater photosynthesis: superhydrophobic leaf cuticles retain a gas film
enabling gas exchange with the floodwater, which enhances underwater photosynthesis and respiration. (8) Aquatic adventitious root
growth: aquatic adventitious roots emerge and grow in the water in response to partial submergence and take over the function of the
soil root system. Several components are created with BioRender.com. ROL, radial O2 loss.
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submergence event (Tamang and Fukao 2015; Fukao et al.
2019). Furthermore, SUB1A suppresses shoot elongation
and prevents excessive energy consumption by reducing the
response to GA and by activating brassinosteroid biosynthesis
(Fukao and Bailey-Serres 2008; Schmitz et al. 2013).
Moreover, SUB1A stimulates the onset of mitosis and increases
the expression of phosphorylated protein kinase 3 (MPK3), and
it has therefore been proposed that SUB1A also promotes
flooding tolerance by controlling MPK3 activity in rice (Singh
and Sinha 2016). During flooding, SUB1A also enhances leaf
gasfilm thickness and retention time (see section on underwater
photosynthesis) (Chakraborty et al. 2021).

Following de-submergence, rice also suffers from oxidative
stress followed by rapid increase in cell dehydration (Fukao
and Xiong 2013). Interestingly, SUB1A increases plant
survival through detoxification of reactive O2 species (ROS)
during the recovery phase after a submergence event.
However, the decrease in ABA caused by submergence is not
due to SUB1A (Fukao et al. 2011). SUB1A likewise promotes
photosynthesis andmetabolic recovery from flooding damage
during de-submergence (Alpuerto et al. 2016). It has been
shown that SUB1A contributes to the rapid restoration of
PSII performance, such as Fv/Fm, ØPSII and metabolism of
protein and amino acids including arginine, phenylalanine,
proline, threonine and valine. The ERFVII family proteins
often serve as substrates of the N-degron pathway in an
O2-dependent manner (Bailey-Serres et al. 2012), but the
SUB1A protein is not a substrate for the N-degron pathway
(Gibbs et al. 2011). Recent research has demonstrated that
the direct interaction of N-terminus and C-terminus of SUB1A
helps stabilising the protein and prevents degradation via the
N-degron pathway (Lin et al. 2019). Transcriptomic analysis
also supports the role of SUB1A in rapid recovery during
submergence and de-submergence (Jung et al. 2010; Locke
et al. 2018).

Ectopic expression of SUB1A results in GA-insensitive
phenotype plants. With submergence, SUB1A boosted the
abundance of the GA signalling repressors Slender Rice-1
(SLR1) and SLR1 Like-1 (SLRL1), and remarkably reduced
the expression of the GA-induced genes (Fukao and Bailey-
Serres 2008). Ethylene, which promotes the expression of
SUB1A, further stimulates the increased abundance of GA
signalling inhibitory factors and decreases GA responsiveness
(Fukao and Bailey-Serres 2008). By contrast, GA responsive-
ness and stem elongation was enhanced by ethylene in
waterlogging-intolerant rice varieties (Fukao and Bailey-
Serres 2008). The above shows that SUB1A enhances the
abundance of the GA signal repressors SLR1 and SLRL1,
which in turn decreases GA responsiveness by ethylene during
flooding (Fukao and Bailey-Serres 2008).

In conclusion, the quiescence response coded by SUB1 has
been found to be effective at all growth stages from early
seedling stage to about aweek before flowering, and therefore
new Sub1 varieties have been spreading fast and are now
grown by millions of farmers in Asia (Ismail et al. 2013).

Anaerobic germination and anaerobic
seedling development

Anaerobic germination and anaerobic seedling development
are extremely important for wetland plants, given that these
traits enable seedlings to grow rapidly above the water and
take in O2 from the atmosphere (Fig. 1). Anaerobic germina-
tion and anaerobic seedling development are both linkedwith
rapid seed germination and coleoptile elongation, with the
activities of alcoholic fermentation enzymes taking over
energy production from aerobic respiration (Miro and Ismail
2013; Miro et al. 2017; Yu et al. 2021). The majority of crops
are unable to germinate underwater due to the limited ATP
produced by glycolysis and ethanolic fermentation (Yu
et al. 2021), and it is particularly the root development and
growth, which are hampered by low O2 availability (Sauter
2013; Pedersen et al. 2021). Therefore, the ability of rice to
germinate underwater is unique, and the majority of rice
varieties can germinate under severe hypoxia, or even anoxia,
and they also extend their coleoptile to a certain degree, but
they fail to produce proper leaves and roots (Alpi and Beevers
1983; Miro and Ismail 2013; Yu et al. 2021). However, the
coleoptile of some wild rice relatives elongates prior to the
development of a root system when it sprouts in wet soils
(Fig. 1), allowing the coleoptile, (which is of high tissue
porosity; see section on aerenchyma below) to reach the
surface of the water where it can obtain O2 from the air;
the O2 subsequently diffuses downwards to support root
development (Lee and Lin 1995; Ella and Setter 1999;
Magneschi et al. 2009). Anaerobic germination and anaerobic
seedling development are highly beneficial to agricultural
production, since direct-seeded rice reduces labour costs
and water requirements for rice transplanting (Ismail et al.
2012; Tuong et al. 2015).

Anaerobic Germination 1 (AG1) derived from a Japanese
landrace Khao Hlan On (KHO) is so far the most important
QTL related with tolerance to anaerobic germination
and anaerobic seedling development (Angaji et al. 2010;
Kretzschmar et al. 2015). Several other QTLs with major and
minor impacts on anaerobic germination have been identified
through a variety of genetic linkage mapping analyses (Ling
et al. 2004; Angaji et al. 2010; Baltazar et al. 2019).
Trehalose-6-phosphate phosphatase 7 (TPP7), which was
found on chromosome 9 in KHO, has ultimately been
identified as Anaerobic Germination 1 (AG1) (Kretzschmar
et al. 2015). Trehalose-6-phosphate (T6P) helps monitoring
the amount of sucrose, the coordination of carbon catabolism
and the transfer of carbon from source to sink tissues (Yadav
et al. 2014; Figueroa and Lunn 2016). Interestingly, the
energy sensor sucrose non-fermenting 1-related protein
kinase 1 (SnRK1A) is inhibited by increased T6P levels
(Zhang et al. 2009). Under water, the activation of the
α-Amylase activities in the early coleoptile improves the
trehalose content in the seed coleoptile and it also enhances
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anaerobic germination and elongation (Kretzschmar et al.
2015). Consequently, chromosomal deletion, which include
the loss of the TPP7 gene, results in an impaired anaerobic
germination tolerance of the high-yield cv. IR64 (Kretzschmar
et al. 2015).

Anaerobic germination involves multiple processes, and
rapid starch breakdown is the most important among them
to maintain the metabolism of carbohydrates and supply
energy for germination (Ella and Setter 1999; Ismail et al.
2009; Magneschi et al. 2009). It has been shown that enzyme
activity of α-Amylase was increased to promote starch
breakdown (Bailey-Serres and Chang 2005; Ismail et al.
2012). Moreover, alcohol dehydrogenase (ADH), a key
enzyme in the anaerobic pathway of carbohydratemetabolism,
was highly activated during anaerobic germination (Waters
et al. 1991; Gibbs et al. 2000; Ismail et al. 2012). In addition,
the enzyme activity for cellular expansion and cell wall
loosening was enhanced (Choi et al. 2003; Ismail et al. 2009),
and the level of GA was increased (Gu et al. 2010).

At the molecular level, the calcineurin b-like interacting
protein kinase 15 (CIPK15) is seen as a central hub in
response to low-O2 conditions and sugar starvation. The
expression of CIPK15 is highly induced in embryonic
tissues of the rice seeds (Lee et al. 2009; Yim et al. 2012).
CIPK15 further promotes the activation of the energy sensor
SnRK1A, which amplifies transcription of specific amylase
genes in the starchy endosperm enabling the nutrient
transport from the endosperm to the embryo (Lee et al.
2009; Yu et al. 2015, 2021). Both hypoxia and sucrose
starvation promote the expression of SnRK1A (Ramon et al.
2019). SnRK1A phosphorylates the transcription factor MYB
SUCROSE 1 (MYBS1) and activated MYBS1 interacts with the
TA box at the promoter region of a-Amylase (α-Amy) genes.
MYBS2 competes with MYBS1 for the promoter binding
of α-Amy gene, and SnRK1A-INTERACTING NEGATIVE
REGULATORs (SKIN1/2) negatively regulate the expression
of MYBS1 and a-Amy3 (Zhang et al. 2009; Chen et al.
2019). α-Amylase hydrolyses seed starch to provide sugars
serving as substrate for fermentation-mediated energy
production to support anaerobic germination and anaerobic
seedling development underwater. CIPK15 also contributes to
the upregulated expression of ADH genes (Lee et al. 2009;
Miro and Ismail 2013), which is required to maintain the
regeneration of NAD+ in anaerobic respiration. The coupling
of SnRK1A-dependent starch catabolism and anaerobic
metabolism supplies energy for the elongation of underwater
coleoptiles (Lee et al. 2014).

The regulation of anaerobic germination and anaerobic
seedling development is a quantitative trait and 11 signifi-
cant marker-associated sites have been discovered through
a genome-wide associated study of 273 Japonica rice
varieties (Nghi et al. 2019). Based on RNA-Seq analysis, a
total number of 26 genes associated with the establishment
of cell membrane and cell wall during embryonic sheath
elongation have been identified (Hsu and Tung 2017).

However, further investigation is still required to pinpoint the
regulatory mechanisms governing this feature particularly to
flooding-tolerant genotypes. In molecular breeding, the
discovery of novel QTLs for anaerobic tolerance during
germination aids in the understanding of the genetic and
molecular bases of anaerobic tolerance and then these potent
QTLs can be used for molecular marker-assisted selection in
agriculture.

Aerenchyma formation and O2 diffusion

Aerenchyma forms a low-resistance pathway for gas diffusion
between roots and shoot with O2 diffusion downwards and
CO2 and CH4 diffusing in the opposite direction. Aerenchyma
formation in rice is a result of programmed cell death in roots,
stem and leaf tissues, and programmed cell death has been
studied in great detail (see Nishiuchi et al. 2012 for a
thorough review on the topic). When soil flooding kicks in,
O2 initially present in the soil pores is soon consumed by
plant roots and soil microbes rendering the soil anoxic after
a few days (Ponnamperuma 1972). Therefore, the only
source of O2 to the roots is diffusion of molecular O2 from
shoot to root via internal gas spaces (Drew et al. 2000;
Colmer 2003a; Yamauchi et al. 2018). The development of
aerenchyma in rice tissues greatly reduces the resistance to
long-distance O2 diffusion and in combination with the
barrier to radial O2 loss (see next section) oxygenation of root
tissues is sustained under soil flooding (Fig. 1). Rice forms two
types of aerenchyma; i.e. constitutive aerenchyma that is also
formed in drained soils, and inducible aerenchyma forming as
a response to soil flooding (Yukiyoshi and Karahara 2014;
Yamauchi et al. 2016).

Aerenchyma is constitutively formed in rice under aerobic,
drained conditions. The molecular mechanism behind
constitutive aerenchyma formation has long been a puzzle,
and only recently it was discovered that formation of
constitutive aerenchyma is mediated by auxin (Yamauchi
et al. 2019). Auxin/indole-3-acetic acid protein (AUX/IAA;
IAA) and auxin response factor (ARF)-mediated signalling
are essential both for aerenchyma and lateral root formation.
ARF-dependent transcriptional regulation is repressed by
IAAs. IAA13 belongs to the IAA family, and lack of IAA13
(iaa13mutant) results in a phenotype of reduced aerenchyma
and lateral root formation (Yamauchi et al. 2019). ARF19
belongs to the ARF family, and it was further identified as
the target of IAA13, and LBD1-8 (a protein containing a
lateral organ boundary domain, LBD) was subsequently
identified as the target of ARF19 (Yamauchi et al. 2019).
IAA13,ARF19 and LBD1-8 are all highly expressed in the root
cortex, indicating that they are involved in co-regulating the
formation of constitutive aerenchyma. Importantly, overex-
pression of LBD1-8 in the iaa13 background fully restored
the formation of constitutive aerenchyma, and auxin
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transport inhibitors prevented the formation of aerenchyma,
while the application of natural auxin reversed the inhibitory
effect (Yamauchi et al. 2019). The current evidence indicates
that constitutive aerenchyma formation is under the control
of auxin signalling via AUX/IAA and ARF module (Yamauchi
et al. 2019). Interestingly, recent research implies that there is
a direct link between constitutive aerenchyma and plant
tolerance to waterlogging. Despite sharing the same potential
to form inducible aerenchyma, maize (Zea mays) and wheat
(Triticum aestivum) both have relatively little waterlogging
tolerance probably due to the absence of constitutive
aerenchyma, which is thought to facilitate oxygenation of
root tissues at the onset of soil flooding and prior to the
formation of inducible aerenchyma (Colmer and Voesenek
2009; Yamauchi et al. 2018).

Formation of inducible aerenchyma under waterlogged
conditions is mainly controlled by the ethylene and ROS
signalling pathways (Yamauchi et al. 2017). There is always
a low, constitutive production of ethylene in rice roots, but
in a drained soil ethylene is lost to the rhizosphere via
radial diffusion. However during waterlogging, outward
diffusion is impeded and ethylene accumulates in the tissue
where it triggers programmed cell death as well as an
increased ethylene production (Yamauchi et al. 2018). In
contrast, ROS are mainly produced by NADPH oxidase and
respiratory burst oxidase homologues (RBOH), triggering
signal transduction in different processes in plants (Mhamdi
and Van Breusegem 2018; Mittler et al. 2022). It has
recently been shown that the RBOH subtype (RBOHH) plays
an important role in ethylene-induced root aerenchyma
formation (Yamauchi et al. 2017). In cortex cells of rice
roots, hypoxia induces the expression of the CDPK5 and
CDPK13, which encode calcium-dependent protein kinases,
and the co-expression of RBOHH with CDPK5 or CDPK13
results in ROS accumulation in infiltrated tobacco
(Nicotiana tabacum) leaves (Yamauchi et al. 2017, 2018).
However, inhibition of RBOH activity or cytosolic calcium
influx abolishes the aerenchyma formation induced by
ethylene, and knocking out RBOHH reduces the accumula-
tion of ROS and induces the formation of aerenchyma in
rice roots (Yamauchi et al. 2017). These results indicate
that under hypoxic conditions, RBOHH-mediated ROS
production is crucial for ethylene-induced root aerenchyma
formation through CDPK5 and CDPK13 in rice (Yamauchi
et al. 2017).

In addition to the root, rice plants also form aerenchyma in
the internode during partial or complete submergence.
Aerenchyma formation in the internode also facilitates O2

diffusion from shoot to root and thereby enhances flood
tolerance. The aerenchyma is ubiquitously present in each
internode of the deepwater rice cv. Pin Gaew 56 (PG56)
(Steffens et al. 2011) with pronounced developmental
gradients of inducible aerenchyma formation from old to
younger internodes; the nodes do not form aerenchyma
(Steffens et al. 2011). Two lowland rice types also exhibit

aerenchyma development at the internode, albeit to a lesser
degree (Steffens et al. 2011). Treatment with the ethylene-
releasing compound ethephon or submergence both
promoted aerenchyma formation in different rice genotypes
(Steffens et al. 2011), and anatomical analysis indicated that
pre-aerenchymal cells contain less starch, no chloroplasts and
have thinner cell walls (Steffens et al. 2011). In addition, high
levels of singlet O2 and H2O2 were observed in these pre-
aerenchymal cells as compared with other parenchymal
cells. Interestingly, the formation of singlet O2 and H2O2

promoted by ethephon is essential for the formation of
aerenchyma. This is further supported by the enhanced
aerenchyma formation in the rice mutant of the H2O2

scavenger -MT2b (Steffens et al. 2011).

Formation of a root barrier to radial O2 loss

Constitutive as well as inducible aerenchyma are key traits for
root growth in flooded soils, but without the inducible barrier
to radial O2 loss, maximum root length is significantly
restricted. Even with aerenchyma constituting 50% of the
root cross-sectional area, the root of rice would not grow
much longer than 150 mm (see modelling of maximum root
length in Pedersen et al. 2021). In order to grow longer
roots, O2 must be retained inside the root tissue in order to
diffuse all the way to the root tip, since cell divisions and
continuous root extension cannot take place in the absence
of molecular O2 (Armstrong and Webb 1985). Fortunately,
rice roots can form a barrier to radial O2 loss in the
proximal parts of the mature adventitious roots to prevent
O2 loss to the anoxic rhizosphere (Fig. 1) (Colmer 2003b).

In rice, the root barrier to radial O2 loss is inducible. Paddy
rice growing in non-flooded soils do not form a barrier to
radial O2 loss, but the formation is triggered as soon as the
soil becomes waterlogged (Colmer et al. 1998; Colmer
2003b; Ejiri et al. 2021). The functional properties; i.e. high
resistance to O2 diffusion in the outer part of the root can
be observed already after 6 h of exposure to anoxia and
after 24 h, the barrier is complete (Shiono et al. 2011). The
environmental signalling for barrier formation is surprisingly
not related to lowO2, high CO2 or high ethylene (Colmer et al.
2006), which would otherwise characterise an anoxic soil.
Instead, it has been shown that H2S (Peralta Ogorek et al.
2023a), Fe2+ (Mongon et al. 2014) and low-molecular-weight
carboxylic acids (Colmer et al. 2019) can all act as environ-
mental signals for barrier formation. These chemical
compounds are all produced by anaerobic bacteria in anoxic
soils, indicating that the barrier formation relies on functional
anoxia of the microbial community in the rhizosphere.

Although the induction of the barrier to radial O2 loss is
swift and functionally in place within 24 h of exposure to
soil flooding, cell wall modifications of the outer part of the
root are not yet detectable with histochemical staining. Cell
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wall depositions of suberin and/or lignin in the outer part of
the root are thought to form the functional biochemical
components of the barrier (Schreiber 1999; Kotula et al.
2009; Watanabe et al. 2017). Suberin is mainly deposited in
the exodermal cell walls (Kotula et al. 2009; Nishiuchi et al.
2021), whereas lignin is mainly found in the sclerenchyma
(Armstrong 2000; Soukup et al. 2007). The molecular
mechanisms controlling barrier formation have not yet been
fully elucidated. However, laser microdissection enabled
isolation of the outer part of the root and subsequent tissue-
specific transcriptome analysis showed that flooding
resulted in upregulation of two genes involved in the suberin
biosynthesis (cytochrome P450 (OsCYP86B3) and ABC
transporter (OsABCG5)) suggesting that these molecular
regulators are essential for the development of the barrier
(Shiono et al. 2014). This study also showed that the expression
of different transcription factors, including WRKY, NAC and
MYB, increased under conditions of soil flooding (Shiono
et al. 2014), and these transcription factors might directly
or indirectly contribute to the development of radial O2 loss
barriers. Given the lack of relevant rice mutants, functional
studies of these genes associated with barrier development
still need investigation. There are also studies indicating
that lignin plays an important role in the formation of a
barrier to radial O2 loss (Kotula et al. 2009; Shiono et al.
2011; Abiko et al. 2012). A very recent study showed that
lignin-related genes were upregulated during barrier
formation as a response to external H2S application with 11
genes involved in the phenylpropanoid and/or lignin
metabolic processes (Peralta Ogorek et al. 2023a). Moreover,
genes involved in the biosynthesis of lignin were also
upregulated as a response to low molecular carboxylic acids
and the subsequent formation of a barrier to radial O2 loss
(Colmer et al. 2019). Nevertheless, the roles of suberin and
lignin in barrier formation have not yet been fully elucidated.

It has very recently been shown that the formation of the
barrier to radial O2 loss relies on ABA signal transduction.
The application of the ABA biosynthesis inhibitor FLU
prevented the formation of the barrier, as well as in the rice
mutant, osaba1 (Shiono et al. 2022). An impaired ROL barrier
was observed in the rice mutant with a defective ABA
biosynthesis gene (osaba1), and the barrier was made fully
functional by adding exogenous ABA to the root medium.
These findings suggest that ABA is an inducer of suberin
lamellae formation as visualised by more pronounced suberin
depositions in the exodermis (Shiono et al. 2022). In order to
better understand how the barrier is regulated at the
molecular level, it thus seems appropriate to look into these
ABA-related genes.

In addition to the primary role of the barrier to radial O2

loss; i.e. maintaining high O2 status of the root tissues, the
barrier also has additional functions in roots of rice. Gas
diffusion is generally restricted by the barrier as shown for
H2 and water vapour (Peralta Ogorek et al. 2021) and also
H2S (Peralta Ogorek et al. 2023a). Moreover, apoplastic

movements of H2O (Song et al. 2022), Na+ (Krishnamurthy
et al. 2011) and Fe2+ (Jimenez et al. 2021) are also greatly
restricted by the barrier and therefore, this trait can be
considered a jack of all trades with its multiple functional
roles (Peralta Ogorek et al. 2023b).

An often-overlooked trait also restricting radial O2 loss
from roots under soil flooding is a low surface area to
volume ratio. The thicker the root, the smaller the relative
surface from which O2 can be lost to the anoxic rhizosphere,
and therefore a thick root will lose less O2 compared with a
thin root if the concentration gradient from tissue to
environment is the same (Pedersen et al. 2021). Paddy rice
forms thick adventitious roots as a response to soil flooding
(Lorbiecke and Sauter 1999), and thick roots in combination
with a tight barrier to radial O2 loss is thus an excellent
combination of root traits serving to conserve O2 within the
cortical tissues.

Aquatic adventitious root growth as
response to partial submergence

Adventitious root development is a key trait conferring flood
tolerance since these roots replace the impaired soil root
system during submergence. Even if the existing soil root
system has high amounts of cortical aerenchyma, molecular
diffusion of O2 can be too slow to satisfy tissue demand
when the distance is long as would be the case if a large
portion of the shoot is submerged into water. However, the
primordia of adventitious root growth are constitutively
formed at the node as part of the normal developmental
process (Lorbiecke and Sauter 1999; Steffens and Rasmussen
2016). During flooding, entrapped ethylene in the stem
tissues promotes the formation of adventitious roots at the
nodes (Fig. 1). In rice, the epidermal cell death above the
root primordia is coordinated with adventitious root growth
(Steffens and Sauter 2005), both of which are mediated by
ethylene, ROS and mechanical signalling (Steffens and Sauter
2009; Steffens et al. 2012). During flooding, the expression of
the ethylene biosynthesis genes, ACO1 and EOL1, are highly
induced in the epidermal cells above the adventitious root
tips, and ethylene accumulation stimulates NADPH oxidase
activity and elevates biosynthesis of H2O2 (Steffens and
Sauter 2009; Steffens et al. 2012). Meanwhile, the expression
of the H2O2 scavenger gene, MT2b, is inhibited, further
promoting ethylene and H2O2 signalling transduction
(Steffens and Sauter 2009). Ethylene also promotes the
production of ROS in the adventitious root primordia, and
mechanical signals and ROS are both required for the
emergence of adventitious roots as mechanical signals locally
provide spatial information triggering programmed cell death
of epidermal cells (Steffens et al. 2012). While GA alone is not
functional, it acts synergistically with ethylene to induce the
formation of adventitious roots (Steffens et al. 2006), but
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adventitious root growth induced by ethylene is suppressed
by exogenous application of ABA (Steffens et al. 2006).

The lack of O2 in flooded soils damages the soil roots and
eventually they become dysfunctional and perish. However,
the new adventitious roots developed by deepwater rice as
responses to partial submergence are primarily formed in
the floodwater and are therefore referred to as aquatic
adventitious roots. These roots are capable of obtaining O2

from the floodwater since they do not form a barrier to radial
O2 loss (the barrier is very weak) rendering these roots
permeable to O2 (Lin et al. 2021). Deepwater rice (Lin et al.
2023) and paddy rice (Inouye and Mochizuki 1980) form
two types of adventitious roots differing in morphology and
timing of emergence. First, relatively thin roots emerge as
fast as 3 days after exposure to partial submergence, and these
continue to grow for about 2 weeks, reaching a maximum
length of 200 mm (Lin et al. 2023). Second, another thicker
type then forms some days later, reaching 350 mm and
continues to grow for 6–8weeks. This second type can continue
to form from new or existing primordia following periods of
recurrent flooding, whereas the first thinner type only grows
during the first flood event and dies if they become de-
submerged (Lin et al. 2023). The upregulation of key genes
between thin and thick adventitious roots indicates a common
contribution in activating meristems in aquatic adventitious
roots, enhancing their response to flooding. Morphological
and anatomical analyses indicate that thick adventitious are
more suitable for long-term floods than the thinner, but the
exact importance for water and nutrient uptake of these two
types of roots awaits further investigation (Lin et al. 2023).

Underwater photosynthesis during
submergence

The terrestrial leaves of rice can photosynthesise under water
although at a much lower rate than in air. The lower
photosynthetic rate is due to the extremely slow gas diffusion
in water resulting in CO2 limitation of photosynthesis and
possibly also photorespiration caused by internal build-up
of photosynthetically produced O2 (Colmer et al. 2011).
Both processes restrict underwater photosynthesis in rice to
maximum rates of about 25% of that attained in air, but the
achieved photosynthetic rates during partial or complete
submergence are normally below 10% of those in air (Winkel
et al. 2016), and consequently, the production of organic
carbon is limited. However, the molecular O2 produced in
underwater photosynthesis can diffuse over long distances
internally via the well-developed aerenchyma providing a
low-resistance pathway (Pedersen et al. 2021). Therefore,
molecular O2 can sustain aerobic processes in tissues as far
away as in the root tips (Yamauchi et al. 2018).

A crucial leaf trait enabling underwater photosynthesis is
the superhydrophobic leaf cuticle that retains a thin gas
film during partial or complete submergence (Fig. 1). Leaf

gas films are visible as a silvery sheen from the submerged
parts of the leaves (Raskin and Kende 1983), and they
prevent flooding of the stomata, which are positioned in the
grooves both on the ad- and abaxial side of the plicate leaves
(Lauridsen et al. 2014). Hydrophobicity of rice leaves is the
result of three leaf traits: (1) at the macro level by the
plicate leaf structure, where the deep grooves prevent water
from wetting the bottom of the grooves; (2) at the micro level
where the leaf papillae add extra 3D structure to the leaf
surface; and (3) at the nano level caused by the wax
platelets forming the cuticle surface (Bhushan et al. 2009).
In addition to preventing flooding of the stomata and the
sub-stomatal cavities, the leaf gas films present a large surface
area for gas exchange with the surrounding floodwater
(Verboven et al. 2014). Once CO2 is trapped inside the gas
film, it can quickly diffuse to the nearest stomata and enter
the leaf; the diffusion inside the gas film is 10 000-fold faster
than in the floodwater. Similarly, O2 produced in photosyn-
thesis can swiftly diffuse into the gas film and further dissolve
in thefloodwater via the vast surface area presented by the gas
film, andbothprocesses contribute to establishingphotosynthetic
rates, which are about 5-fold higher in the presence of leaf gas
films than without at environmentally relevant CO2 concen-
trations in the floodwater (Pedersen et al. 2009).

Regrettably, the superhydrophobic features of the leaf
cuticle are gradually lost over a submergence event and
therefore the leaf gas films also disappear. Four genotypes of
completely submerged rice all lost their leaf gas films within
4–7 days of submergence under field conditions (Winkel et al.
2014). Following loss of gas films, underwater net photosyn-
thesis also declined significantly, and chlorophyll senescence
accelerated. In this study, gas film retention time was not
related to the SUB1 locus, which was represented in two of
the four tested genotypes (FR13A in which the SUB1 locus
occurs naturally and Swarna-SUB1 where SUB1 had been
introgressed) (Winkel et al. 2014). In the interim, a later
study found that leaf gas film thickness was significantly
higher in SUB1 genotypes than genotypes not containing
the SUB1 locus, and it seemed related to lower expression of
LGF1 gene (Kurokawa et al. 2018) in the latter (Chakraborty
et al. 2021). For rice submerged in a field situation, the
benefits of superhydrophobic leaves and the associated leaf gas
films as related to underwater photosynthesis and respiration
are restricted to about 1 week of complete submergence,
whereas under controlled laboratory conditionswith submergence
into clean artificial floodwater, the gas films can persist longer
(Pedersen et al. 2009).

Perspectives

Since cultivated rice was domesticated from wild ancestors
that were true wetland plants, Oryza sativa (Asian rice) and
Oryza glaberrima (African rice) both possess root traits

8

C. Lin et al. Functional Plant Biology 51 (2024) FP23226



enabling growth in waterlogged soils. However, higher
aerenchyma formation (constitutive as well as inducible), a
large cortex to stele ratio, and an even tighter barrier to radial
O2 loss could all improve growth in flooded paddy soils and
even holds the potential to reduce greenhouse gas emissions
(Jimenez and Pedersen 2023). Importantly, it was recently
shown that some of these root traits (e.g. the barrier to radial
O2 loss and thick adventitious roots) formed during soil
flooding also prime the root system of rice for a subsequent
drought (Song et al. 2023; Peralta Ogorek et al. 2023c) a
situation that often occurs in the farmer's field. Multiple
genes or QTLs underlying the control of these key root traits
can be introgressed into modern high-yielding cultivars via
pyramidisation producing novel cultivars that can withstand
multiple abiotic stresses, but his approach requires that the
genes or QTLs are known (Lin et al. 2022), so much more
research focusing on genetic regulation of quantitative root
traits are needed.

In deeper floods resulting in partial or complete submer-
gence, focus needs to be more on shoot traits enabling
growth and survival during deep flood events. We therefore
suggest further investigating the genes in the two QTLs
regulating adventitious root growth in deepwater rice. The
functions of both types of aquatic adventitious roots with
respect towater andnutrient uptakeduringpartial submergence
have to be further studied to justify introducing aquatic
adventitious roots as a flood tolerance trait in rice cultivars
for areas experiencing shallow flooding causing partial
submergence of paddy rice for months (Kuanar et al. 2017).
Similarly, muchmore focus is needed on the superhydrophobic
properties of the rice cuticle and why hydrophobicity, and
therefore also the beneficial leaf gas films, are lost after only a
few days of submergence (Winkel et al. 2014). It is interesting
that initial leaf gas film thickness is linked to SUB1
(Chakraborty et al. 2021), but themechanism remains unknown.
We propose to investigate the role of leaf morphology since
research has shown that the vast majority of the gas volume is
retained within the grooves of the plicate leaves (Lauridsen
et al. 2014), and therefore leaves with deeper grooves and
steeper angles within each groove may retain gas films longer
than leaves with a more flattened surfaces.

In this review, we have summarised the many root and
shoot traits in rice conferring tolerance to waterlogging or
submergence. However, unlike rice, the majority of the
world's crop plants are very susceptible to different types of
flooding, and therefore more research and integration are
needed to apply this knowledge from rice to improve flood
tolerance in other crops such as maize, wheat, barley
(Hordeum vulgare) and soybean (Glycine max).
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