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ABSTRACT

Polyamines (PAs) and nitric oxide (NO) are crucial signalling molecules that exhibit a promising role
in improving stress tolerance in plants, maintaining their growth and development. They act as
protecting agents for plants through activation of stress adaptation strategies such as membrane
stabilisation, acid neutralisation and suppression of ROS generation. NO interacts with PAs
during several developmental processes and stress responses. External supplementation of PAs
to plants is also reported to cause an increase in NO content. However, it is unclear whether
PAs promote synthesis of NO by either as substrates, cofactors, or signals. Impact of NO on
synthesis of PAs has been also reported in some studies, yet the exact governing mechanisms of
the interrelation between NO and PAs is currently obscure. Understanding the crosstalk
between PAs and NO during growth and stress condition in plants can aid in providing better
tolerance to plants against stressful environment.
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Polyamines and nitric oxide: signalling molecules for plant growth
regulation and stress resistance

Polyamines (PAs) are aliphatic amines found either in free, conjugated or bound forms in 
the plant cells and their contents vary on the basis of species and developmental stage of the 
plants (Mustafavi et al. 2018; Chen et al. 2019). PAs show direct protective effect in plant 
cells owing to their cationic nature that enables them to interact with macromolecules 
having negative charge for stabilising their structure during normal as well as stressful 
situations (Takahashi 2020). They also play the role of signalling molecules for regulation 
of several cellular processes in plants, especially during exposure to abiotic stresses 
(Pál et al. 2015; Paul et al. 2018; Allakhverdiev 2020). Nitric oxide (NO), a gaseous free 
radical, regulates plant growth and development and varies in concentration in different 
tissues depending on plant species and environmental conditions (Domingos et al. 2015; 
Kolbert et al. 2019). NO is a crucial signalling molecule in plants surviving under stressful 
conditions by interacting with other signalling molecules including phytohormones and 
reactive oxygen species (ROS) along with regulating the protein activity and expression 
of genes (Simontacchi et al. 2015; Sahay and Gupta 2017; Nabi et al. 2019). 

Collectively, PAs and NO are crucial signalling molecules acting as regulators of 
plant growth and development (Krasuska et al. 2017). Both interact with phytohormones 
to perform various biological functions under normal as well as stressful situations 
responses (Nahar et al. 2016). Scavenging of ROS through antioxidant activation, 
protecting biomolecules and bio-membranes are common mechanisms of action of PAs 
and NO (Choudhary et al. 2022). The biosynthesis pathways of PAs and NO overlap 
as PAs either induce generation of NO or directly convert to NO (Nahar et al. 2016). 
Inter-relation between PAs and NO can provide improved resistance to plants under 
challenging environment; however, the studies are limited in this context (Nahar et al. 
2016; Choudhary et al. 2022). This special issue brings latest researches evaluating the 
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crosstalk between PAs and NO into light for better 
understanding by the scientific community. 

Latest insights into polyamine and nitric
oxide interaction in plants

Maize (Zea mays L.) is a major staple crop that is extremely 
prone to yield losses due to adverse environmental 
constraints. PAs are known to regulate plant responses to 
environmental perturbations including abiotic and biotic 
stresses to maintain the viability of the living cells under 
such unfavourable conditions. The relative production of 
higher PAs such as spermidine (Spd), spermine (Spm) with 
respect to the diamine putrescine (Put) and PA catabolism 
regulates the stress tolerance in plants. Understanding the 
regulatory role of PAs in response to stresses in maize can 
aid in development of novel stress tolerance strategies to 
cope up with the escalating demands for maize production. 
In this volume, Ramazan et al. (2023) critically reviewed 
and summarised the up-to-date reports on the role of PAs in 
enhancing stress resistance in maize. The accumulation, 
metabolism and mechanism PAs action, their role as sig-
nalling molecules, and a connection with other metabolic 
pathways, and genetic manipulation studies conducted in 
relation to PAs have been discussed (Ramazan et al. 2023). 

Sodium nitroprusside (SNP), an exogenous donor of NO, 
is known to curtail the postharvest losses caused in the 
cut flowers in the form of a postharvest vase preservative. 
A study by Ul Haq et al. (2023) explores the potential of SNP 
to ameliorate the senescence at postharvest stage in cut spikes 
of Consolida ajacis (L.) Schur. The C. ajacis spikes treated with 
SNP (20–80 μM range) depicted improved vase life and 
quality of flowers in comparison to the control spikes held 
in distilled water. SNP treatments also caused a prominent 
increase in sugars, phenols and soluble proteins as well as 
improved the membrane stability as indicated by decrease 
in the lipoxygenase activity. These results were accompanied 
by upregulation of activity of antioxidant enzymes, namely 
catalase (CAT), superoxide dismutase (SOD) and ascorbate 
peroxidase (APX). This research suggests 40 μM SNP to be 
an adequate concentration to preserve the quality of flowers 
and extend the display period of spikes of C. ajacis. Overall, 
SNP can modulate various physiological and biochemical 
processes related to senescence to mitigate the adverse 
postharvest alterations. SNP aids in preserving the quality 
of flowers through improvement of membrane stability, 
vase life, flower quality, content of sugars, soluble proteins 
and phenols, and antioxidant activity (Ul Haq et al. 2023). 

Plants reallocate the resources from mature and old tissues 
of leaves to new tissues and organs towards the end of the 
growing season via a process termed as leaf senescence. At 
present, optimising the senescence for particular species is 
a major objective of the crop breeding initiatives. The work 

by Altaf et al. (2023) examined the effectiveness of PAs in 
delaying the leaf senescence in Berginia ciliata (Haw.) 
sternb leaf discs via regulation of several biochemical and 
physiological processes to delay the process of senescence 
in B. ciliata leaf discs. Leaf discs exposed to exogenously 
supplied Put (20 μM), Spd (20 μM) and Spm (15 μM) 
remained green and fresh by almost 4 days in comparison 
to the control, thereby showed delay in the senescence. PAs 
application also resulted in an increase in chlorophyll 
content, soluble protein content, membrane stability and 
reduction in ROS by enhancing the activity of antioxidant 
enzymes such as SOD, APX and CAT. This was accompanied 
by reduced lipid peroxidation as indicated by the low levels 
of malondialdehyde (MDA) level and improved membrane 
stability measured in terms of membrane stability index 
(see Altaf et al. 2023). 

Various anthropogenic activities, for instance the 
combustion of fossil fuels, mining, agrochemical usage in 
agricultural sector, and industrial pollution have led to 
elevated arsenic (As) content in environment. A paper by 
Kapoor et al. (2023) studied the mitigation of arsenate 
(AsV)-incited stress in chickpea (Cicer arietinum L.) plants 
via supplementation of NO and SPD. AsV treatment caused 
reduction in length of C. arietinum seedlings, their biomass 
and relative water content along with other biochemical 
parameters. Addition of SPD or SNP, either alone or together 
with AsV, improved these parameters. Also, As + SNP + SPD 
treatment decreased the AsV-induced enhancement in 
electrolyte leakage and MDA content in chickpea seedlings, 
while stimulated the contents of sugar, proline and glycine 
betaine by 89, 249 and 333%, respectively, compared to 
control. SNP and SPD also regulated the detoxification of 
methylglyoxal (MG) by regulating the activity of glyoxalase 
enzymes. Overall, NO and SPD, when supplied synergistically, 
protected the chickpea plants from AsV stress by activation of 
antioxidant machinery and glyoxalase system (Kapoor 
et al. 2023). 

Chromium (Cr), a toxic heavy metal, significantly limits 
the growth and productivity of crops. As NO and Spm play 
a significant role in enhancing the plant resistance against 
abiotic stresses, Basit et al. (2023) investigated the protective 
potential of seed priming of rice (Oryza sativa L.) plants with 
NO (100 μM) and/or Spm (0.01 mM) in alleviating the toxic 
impacts of Cr. Their results showed that application of Cr 
alone (100 μM) prominently reduced the rate of seed 
germination rate, as well as had negative impact on plant 
photosynthetic parameters, nutrients uptake and activity of 
antioxidant enzymes, but enhanced the generation of ROS. 
NO + Spm treatment significantly rescued rice seedlings from 
Cr-stress by reducing the accumulation of Cr and improv-
ing the nutrient uptake, germination indices, photosynthetic 
pigment level and total soluble sugar content. By improv-
ing antioxidative enzyme activities, NO + Spm treatment 
declined the content of oxidative markers, namely superoxide 

−radical, O2˙ , hydrogen peroxide, H2O2 and MDA, along with 
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the electrolyte leakage. Their results suggest that simul-
taneous application of NO and Spm can be used for 
fostering resistance against Cr stress in rice as the combined 
treatments (NO + Spm) displayed more efficacy in mitigating 
Cr-induced adverse effects than NO and Spm alone. 

The HAK (High-affinity K+) transporters are essential for 
plant growth and stress tolerance. In this volume, Saha 
et al. (2023) have elucidated the evolutionary aspects, overall 
structural and functional characterisation along with the 
global expression pattern of rice HAK transporters under 
the influence of exogenous spermidine and salt stress. They 
clustered the rice transporters phylogenetically with various 
members from dicot and monocot family and studied the 
structural patterns of exon–intron, substitution matrix based 
on evolutionary divergence and analysed the conserved 
motifs and orthologous–paralogous relationships. Besides 
structural characterisation of OsHAK gene members, their 
global expression patterns were studied under salt stress 
and their profile depicted a clade-specific expression pattern. 
The authors also selected five OsHAK genes for expression 
analysis in root and shoot of two varieties of rice under 
short-term salt exposure in the presence and absence of 
exogenous spermidine. The data collected by this study 
can be used for dissecting the regulatory role of HAK 
transporters in rice under different abiotic stresses. 

In another study, Shah et al. (2023) showed that combined 
application of zinc oxide nanoparticles (ZnONPs) and 
potassium (K+) regulated the NO content in the seedlings of 
faba bean (Vicia faba L.) to alleviate As stress. The increase 
in NO content was accompanied by an increment in 
chlorophyll content, rate of photosynthesis, and antioxidant 
activity resulting in improved plant growth. Arsenic stress 
caused reduction in lengths of root and shoot, chlorophyll 
content and net photosynthetic rate in soil grown faba 
bean seedlings. However, ZnONPs and K+ ameliorated the 
As stress by decreasing the accumulation of O2˙− and H2O2 
through increased antioxidant activity of SOD, APX, CAT 
and peroxidase (POD) enzymes in faba bean seedling. Also, 
ZnONPs and K+ prominently increased the NO content, 
cysteine content and serine acetyltransferase activity, while 
decreased the uptake of As in the As-stressed faba bean 
seedlings. Thus, this study opens new doors for research to 
explore the molecular mechanisms of interaction between K+ 

interaction and nanoparticles involved in providing abiotic 
stress tolerance to faba bean seedlings. 

Singh et al. (2023) also investigated the amelioration 
efficacy of NO against copper (Cu) and copper nanoparticles 
(CuONPs) toxicity in sorghum (Sorghum bicolor L.) seedlings. 
Cu and CuONPs application resulted in a reduced growth, 
decreased contents of chlorophyll, carotenoids and proteins, 
and enhanced Cr accumulation in the seedlings. in root and 
shoot which was coincided with increased accumulation of 
Cu. However, supplementation with SNP as a source of NO 
reversed the toxic impacts of Cu and CuONPs on these 
parameters. Also, SNP positively regulated the antioxidant 

−activity to reduce the stress-induced increase in H2O2, O2˙ , 
and MDA content, thereby mitigated the Cu and CuONP-
induced oxidative stress. Furthermore, SNP addition regulated 
the proline metabolism in the seedlings under stress condition 
by increasing free proline accumulation. Overall, this study 
demonstrated that NO can mitigate the toxicity of Cu and 
CuONPs in sorghum seedlings and the results can be used in 
developing new resistant varieties of sorghum with high 
tolerance to Cu or CuONP stress (Singh et al. 2023). 

Concluding remarks and future outlooks

Altogether, the recent research in this field provides advanced 
knowledge on understanding the crosstalk between two 
endogenous signalling molecules of plants, PAs and NO, for 
regulation of growth and enhancement of stress tolerance. 
The roles of different PAs and NO in physiological 
processes inside plants have been delineated in the latest 
studies. Some studies also elaborate on their synergistic action 
for improved plant growth under stressed condition. These 
reports affirm the potential of PAs and NO to act as a 
shielding agent for plants during stress exposure and the 
decoding the underlying mechanisms can help in developing 
stress-resistant varieties with improved productivity. 
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