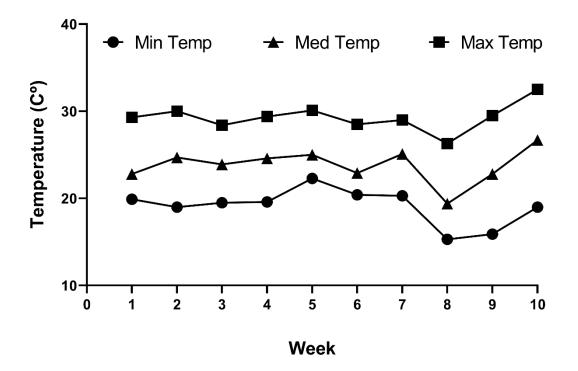
10.1071/FP22145

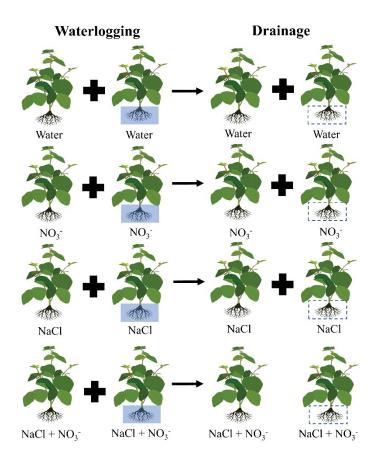
Functional Plant Biology

Supplementary Material

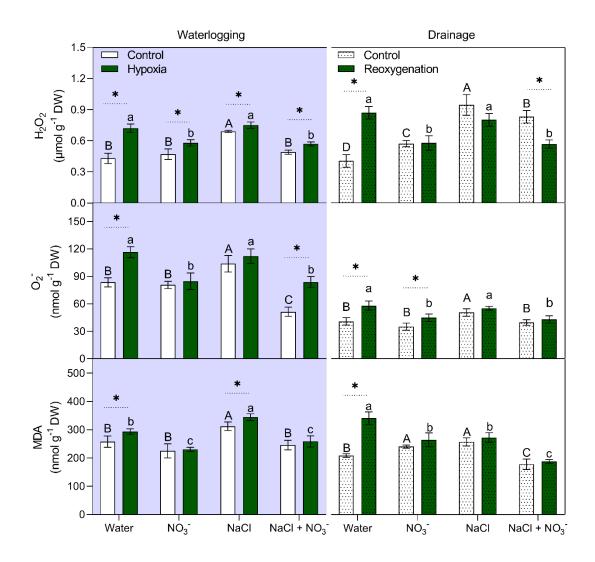
Nitrate supply decreases fermentation and alleviates oxidative and ionic stress in nitrogen-fixing soybean exposed to saline waterlogging


Tamires da Silva Martins^{A,*}, Cristiane Jovelina Da-Silva^{A,*}, Eduardo Pereira Shimoia^A, Douglas Antônio Posso^A, Ivan Ricardo Carvalho^B, Ana Claudia Barneche de Oliveira^C, and Luciano do Amarante^A

^ADepartamento de Botânica, Universidade Federal de Pelotas, Capão do Leão 96160-000, Brazil.


^BDepartamento de Estudos Agrários, Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Ijuí 98700-000, Brazil.

^cEmpresa Brasileira de Pesquisa Agropecuária, Embrapa Clima Temperado, Pelotas 96010-971, Brazil.


*Correspondence to: Tamires da Silva Martins Departamento de Botânica, Universidade Federal de Pelotas, Capão do Leão 96160-000, Brazil Email: tamires0martins@gmail.com Cristiane Jovelina Da-Silva Departamento de Botânica, Universidade Federal de Pelotas, Capão do Leão 96160-000, Brazil Email: cristianejovelinadasilva@gmail.com

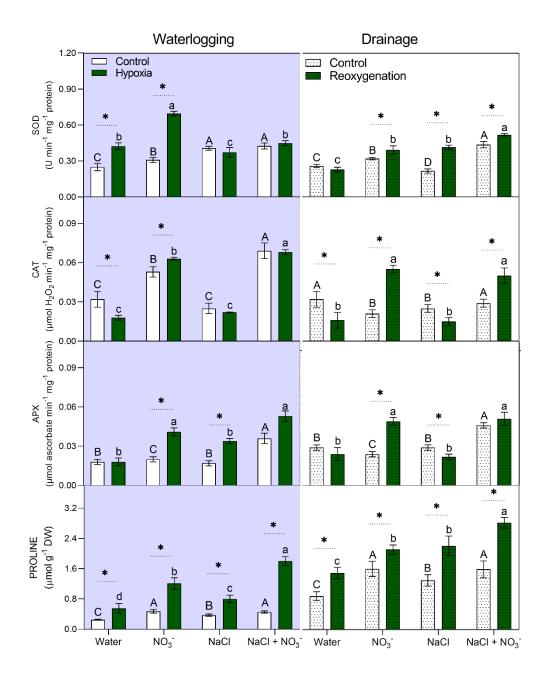

Fig. S1. Minimum daily temperature (Min Temp), medium daily temperature (Med Temp), and maximum daily temperature (Max Temp) during the entire experiment (January to February/2020). The plants were exposed to waterlogging and drainage between weeks nine and ten. Source: Agroclimatological Station of Pelotas, Empresa Brasileira de Pesquisa Agropecuária, Embrapa Clima Temperado, Pelotas, Brazil. Available at: <u>http://agromet.cpact.embrapa.br/</u>.

Fig. S2. Nodulated soybean plants at the R2 stage grown in the absence of mineral nitrogen exposed to waterlogging and different treatments: Water, NO_3^- (3.4 mM), NaCl (50 mM), and NaCl + NO_3^- . The evaluations were carried out during waterlogging (six days) and drainage (two days). n=4.

Fig. S3. Effect of nitrate (NO₃; 3.4 mM) supplementation on the levels of H₂O₂, O₂⁻ and malondialdehyde (MDA) in leaves of soybean plants exposed to salinity (NaCl; 50 mM) during waterlogging (six days) or reoxygenation (two days). Values are mean \pm SD, n = 4. Asterisks indicate significant differences between plants under hypoxia/reoxygenation and control conditions (*t*-test; *P*<0.05), distinct uppercase letters indicate significant differences among control plants, and distinct lowercase letters indicate significant differences among plants under hypoxia/reoxygenation (Scott-Knott; *P* < 0.05). DW, dry weight.

Fig. S4. Effect of nitrate (NO₃; 3.4 mM) supplementation in the activity of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) and levels of proline (PROLINE) in leaves of soybean plants exposed to salinity (NaCl; 50 mM) during waterlogging (six days) or drainage (two days). Values are mean \pm SD, n = 4. Asterisks indicate significant differences between plants under hypoxia/reoxygenation and control conditions (*t*-test; *P*<0.05), distinct uppercase letters indicate significant differences among plants under hypoxia/reoxygenation (Scott-Knott; *P* < 0.05).

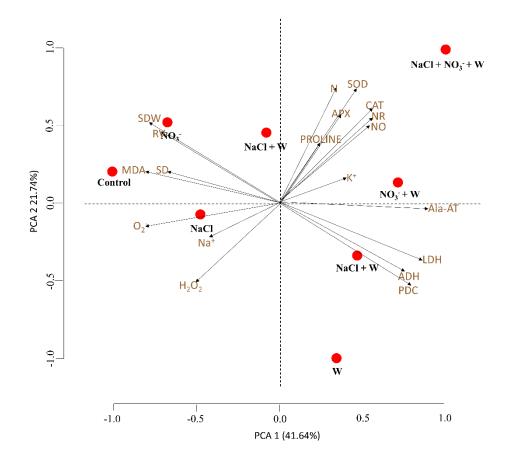


Fig. S5. Principal component analysis based on biochemical data of roots of soybean plants treated with nitrate (NO_3^-) and NaCl during six days of waterlogging (W). Control plants were not exposed to waterlogging neither NaCl nor NO_3^- treatments. The data used in the analysis were the activity of nitrate reductase (NR), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), lactate dehydrogenase (LDH), alcohol dehydrogenase (ADH), alanine aminotransferase (Ala-AT), and pyruvate decarboxylase (PDC), the levels of NO_3^- , nitric oxide (NO), lipid peroxidation (MDA), superoxide (O_2^-), hydrogen peroxide (H₂O₂), proline (PROLINE), sodium (Na⁺), and potassium (K⁺), and root volume (RV), root dry weight (RDW) and stem diameter (SD).

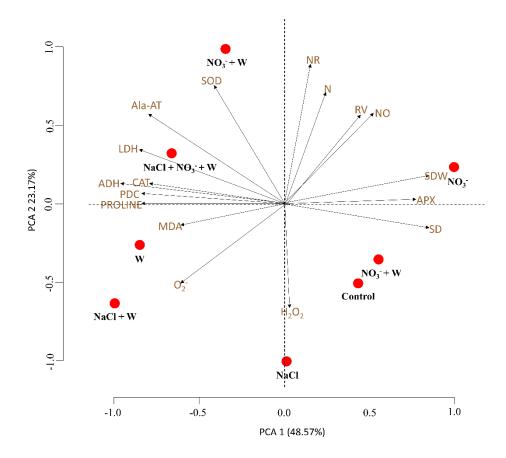


Fig. S6. Principal component analysis based on biochemical data of roots of soybean plants treated with nitrate (NO₃⁻) and NaCl during reoxygenation (two days) after six days of waterlogging (W). Control plants were not exposed to waterlogging neither NaCl nor NO₃⁻ treatments. The data used in the analysis were the activity of nitrate reductase (NR), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), lactate dehydrogenase (LDH), alcohol dehydrogenase (ADH), alanine aminotransferase (Ala-AT), and pyruvate decarboxylase (PDC), the levels of NO₃⁻, nitric oxide (NO), lipid peroxidation (MDA), superoxide (O₂⁻), hydrogen peroxide (H₂O₂), proline (PROLINE), sodium (Na⁺), and potassium (K⁺), and root volume (RV), root dry weight (RDW) and stem diameter (SD).

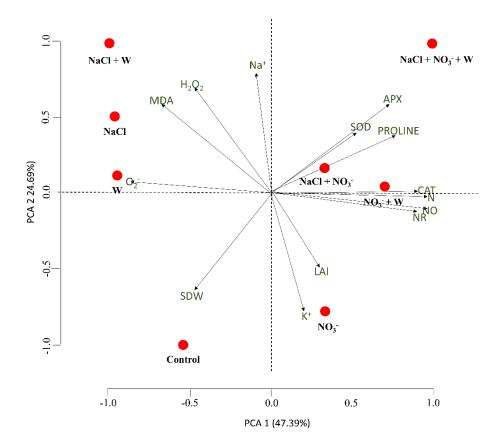


Fig. S7. Principal component analysis based on biochemical data of leaves of soybean plants treated with nitrate (NO_3^{-}) and NaCl during six days of waterlogging (W). Control plants were not exposed to waterlogging neither NaCl nor NO_3^{-} treatments. The data used in the analysis were the activity of nitrate reductase (NR), superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX), the levels of NO_3^{-} , nitric oxide (NO), lipid peroxidation (MDA), superoxide (O_2^{-}) , hydrogen peroxide (H₂O₂), proline (PROLINE), sodium (Na⁺), and potassium (K⁺), shoot dry weight (SDW) and leaf area index (LAI).

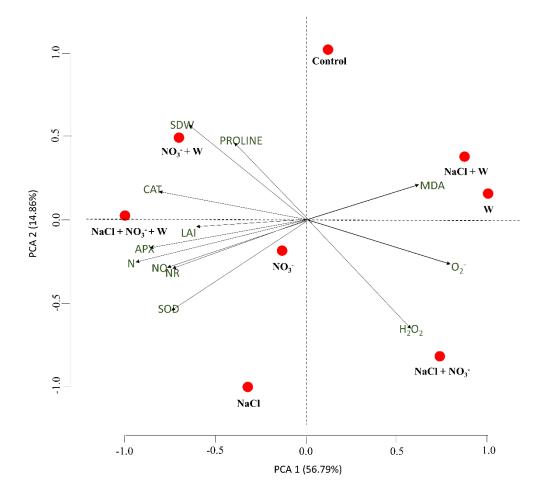


Fig. S8. Principal component analysis based on biochemical data of leaves of soybean plants treated with nitrate (NO₃⁻) and NaCl during reoxygenation after six days of waterlogging (W). Control plants were not exposed to waterlogging neither NaCl nor NO₃⁻ treatments. The data used in the analysis were the activity of nitrate reductase (NR), superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX), the levels of NO₃⁻, nitric oxide (NO), lipid peroxidation (MDA), superoxide (O₂⁻), hydrogen peroxide (H₂O₂), proline (PROLINE), sodium (Na⁺), and potassium (K⁺), shoot dry weight (SDW) and leaf area index (LAI).