10.1071/FP22051

Functional Plant Biology

Supplementary Material

Combined physiological responses and differential expression of drought-responsive genes preliminarily explain the drought resistance mechanism of *Lotus corniculatus*

Leiting Wang^A, Zhongling Jian^A, Puchang Wang^B, Lili Zhao^{A,C,*}, and Keke Chen^A

^ACollege of Animal Science, Guizhou University, Guiyang 550025, China.

^BGuizhou Institute of Prataculture, Guiyang 550006, China.

^cState Engineering Technology Institute for Karst Rocky Desertification Control, Guiyang 550025, China.

*Correspondence to: Lili Zhao College of Animal Science, Guizhou University, Guiyang 550025, China Email: zhaolili_0508@163.com

Supporting information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

To identify the internal control genes of *L. corniculatus* under drought stress, we performed expression level detection and stability analysis on eight candidate genes (Fig. S1). The differences in the expression levels of internal control genes H2A and UBI in *L. corniculatus* were the least obvious under different drought stresses, and the Ct value of UBI was lower (Fig. S1*a*). Further expression stability analysis of these candidate genes showed that UBI had the best stability (Fig. S1*b*). In conclusion, UBI is the most reliable reference candidate gene for *L. corniculatus* under drought stress.

Fig. S1. Analysis of expression stability of reference genes in *L. corniculatus* under drought stress. (*a*) The expression changes of candidate reference genes under different drought stress. (b) The expression stability of candidate reference genes by an on-line tool in all samples. The value is the comprehensive analysis result of the

comparative ΔCt , Best Keeper, Norm Finde and ge Norm software. *M value*: Average expression stability.

Fig. S2. Changes in the relative water contents of soil and leaves with increasing drought time. Tukey's test was performed to determine the significance of the differences between the drought treatments in the SPSS 19.0 (SPSS Inc. Chicago, IL, USA) to assess the differences between the WC and drought treatments. Values are means \pm SD (n = 3). Different lowercase letters indicate P < 0.05.

Analysis of subtraction efficiency

When the isolated total RNA was tested for integrity on a 1% denatured agarose gel, the 28S, 18S and 5S bands could be clearly observed, and both the 28S and 18S bands were bright (Fig. S3*a*). The RNA OD260/OD280 absorbance ratio ranged from 1.9 to 2.1. The concentrations of total RNA in the WC- and drought-treated plants were 550 ng/µL and 520 ng/µl (Fig. S2b), respectively. These results indicated that total RNA was successfully isolated.

The cDNA obtained after the successful reverse transcription of mRNA was digested with RsaI. For subtractive hybridization after connecting the adapter, the products were subjected to 2 rounds of inhibitory PCR. It was observed on agarose gels that the bands of the subtracted samples from the second round of PCR (200–650 bp) were more concentrated and smaller than those from the first round of PCR (100–1500 bp) (Fig. S3*c*, *d*). We found that the number of genes showing differential expression was sufficiently reduced and that ESTs were effectively enriched.

LB medium was used for the colony culture of *E. coli* DH5 α . The storage capacity of the forward library was 3,000, and the reverse library capacity was 2,800 (Fig. S3h). Twenty-four positive clones were randomly selected from the constructed library for quality identification. PCR fragments ranging from 100 to 500 bp in size were observed on agarose gels (Fig. S3e-g). We considered these genes to represent specifically expressed genes.

Fig. S3. Generation of the *L. corniculatus* suppression subtraction hybridization (SSH) library. (*a*) Ethidium bromide-stained denaturing formaldehyde gel electrophoresis of total RNA. Lane M: 1Kb Plus DNA Ladder. (*b*) The concentration of the isolated total RNA. Values are the means \pm SD of three replicates, with *P* = 0.05 as the significance level. (*c*) and (*d*) show the results of the first and second rounds of the PCR-selected cDNA subtraction method. Lane 1: Unsubtracted forward secondary PCR products. Lane 2: Subtracted forward secondary PCR products. Lane M: 1Kb Plus DNA Ladder. (*e-g*) Lanes 1–24 show the identification of partial positive PCR clones. (*e*) Forward library, (*f*) Reverse library. Lane M and (*g*) 1Kb Plus DNA Ladder. (*h*) Subtracted library capacity appraisal.

Target gene	Primer (5′→3′)	Product size (bp)
PC 41 2	F: AGTTGTGCCGCAAAATTGGT	83
DUALJ	R: ACTGGATTCGGTGCATCACT	
BGAL4	F: AAGCTGAGGGTTGGCAACAA	110
	R: GTGACCGGTCCTAACACTCC	
BGAL5	F: GGAAGCATGGGAAAGGGTCA	124
	R: GGCACTTTGGCTCTCGGTAT	
BGAL6	F: GCTTCACAAGGAGGCCCAAT	81
	R: TCCTGCTATGCCAAATGCCT	
BGAL9	F: TGCGTCGATCGAGTATGGTG	132
	R: TGAATTCCGGCGGAGATGAG	
BGAL12	F: GGTCCCTTCGTTTGTGCTGA	100
	R: CCTTGAACGGCTCATTGTCTG	
IAA7	F: TGACTGGATGCTTGTCGGTG	114
	R: TTCTCCATGGCTCTTGGTGC	
IAA29	F: GCAGGTTACACGCTCACCTT	109
	R: TCCTCAATATCGCCAAACGC	
IAA30	F: AGTTGGCAACCAATGCAACC	103
	R: TGCCTTCCATGTAGACCTTCAC	
CML38	F: ACGGGTTCCTGTGTTTGGAG	139
	R: CTCTTCAAACTCTCCGGCGT	
CML39	F: TGTAACATGAGGAAGGACGCC	87
	R: GAGCTCGGAAGGCGAAATCT	
CML42	F: CAAAAGCTCACCACCAAGCTC	102
	R: GTGACAAGAGCACGGACCAT	
MPK3	F: CGCACGCTTCGTGAGATTAAG	131
	R: GTGTCCATGAGTTCGGTGGT	
MPK4	F: ATGTCCCTCCTATCCGACCC	88
	R: TCGCAACTTCTTCCCGTGT	
MPK6	F: CATTATCCGAAGAACATTGCCAG	116
	R: GTTCAGGAGGAGATTACTTGGTTTC	
MPK15	F: CAGATGCCACTCGGATCCTT	106
	R: AACTCTCTTCGTGAAGGCGG	
MPK20	F: TGGTGTTGTCTGTTCAGCGA	108
	R: TCACGGAGAATACGTGCAGC	
PP2A	F: GGTCTCTCACCTTCGTTGGA	84
	R: ACACATCGGTCCTTCATGCG	
UBI	F: TGTCCCAGTCGTTCTACGGA	149
	R: TTGCAGCGTCACTAGCACTT	

Table S1. Description of primers used for validation of genes by qPCR.

Table	S2 .	BLASTX	results	of	some	genes	(E-value	$\leq 1E-5)$	in	SSH	library	from	
-------	-------------	--------	---------	----	------	-------	----------	--------------	----	-----	---------	------	--

drought stress.

dro					
Sample No.	Sequences producing significant alignment	Species	Access number	E-value	Identities (%)
SSH-FH1-contig000 01) Hypothetical protein, partial	Hordeum vulgare subsp	CAG30723. 1	1.60E-11 6	100
SSH-FH1-contig000 02	Predicted: uncharacterized protein LOC106437402	Brassica napus	XP_013733 755.1	3.23E-13	100
SSH-FH1-contig000 04	Predicted: uncharacterized protein LOC103444761	Malus domestica	XP_008381 930.1	7.53E-12	100
SSH-FH1-contig000 05	P-glycoprotein protein	Lactuca sativa	BAF32961. 1	7.27E-07	88.46
SSH-FH1-contig000 16	Hypothetical protein PHAVU_008G179700g	Phaseolus vulgaris	XP_007141 246.1	6.87E-13	93.75
SSH-FH1-233-M13 A06	Transposon Ty3-I Gag-Pol polyprotein	Cajanus cajan	KYP63270. 1	1.35E-11	96.67
SSH-FH1-346-M13 B08	Ycf2	Lotus japonicus	NP_084839 .1	2.95E-18	97.37
SSH-FH1-448-M13 H08	Predicted: uncharacterized ATP-dependent helicase MPN_020-like	Brassica napus	XP_013708 970.1	4.13E-25	94.23
SSH-FH1-A110-M1 3F02	Hypothetical protein Poptr_cp075	Populus trichocarpa	YP_001109 553.1	3.24E-09	85.71
SSH-FH1-336-M13 H06	Strain MG-20 mitochondrion	Lotus japonicus	JN872551.2	6.03E-38	88.47
SSH-FH1-352-M13 H08	Ribosomal RNA gene	Lotus tenuis	KNA06354. 1	3.08E-39	60.38
SSH-FH1-417-M13 A05	Beta-galactosidase	Lupinus angustifolius	CCH4 7205.1	2.40E-09	67.41
SSH-FH1-A95-M13 G12	Calmodulin-like protein	Arabidopsis thaliana	AEE35461. 1	3.20E-37	95
SSH-FH2-contig000 01	PREDICTED: uncharacterized ATP-dependent helicase MPN_020-like	Brassica napus	XP_013708 970.1	4.86E-26	98.08
SSH-FH2-contig000 09) hypothetical protein KK1_048196	Cajanus cajan	KYP31477. 1	1.59E-18	91.84
SSH-FH2-contig000 16	PREDICTED: uncharacterized protein K02A2.6-like	Arachis duranensis	XP_015931 971.1	8.70E-11	79.49
SSH-FH2-117-M13 E03	PREDICTED: uncharacterized protein LOC101495741	Cicer arietinum	XP_012574 812.1	7.35E-13	69.64
SSH-FH2-104-M13 H01	mitogen-activated protein kinase	Arabidopsis thaliana	BAA09057. 1	2.45E-28	82.30
SSH-FH2-109-M13	PREDICTED: uncharacterized protein	Glycine max	XP_014621	5.97E-22	82.35

E02	LOC106795569		654.1	
SSH-FH2-115-M13 C03	unknown	Lotus japonicus	AFK41271. 1	7.17E-09 82.35
SSH-FH2-116-M13 D03	Retrovirus-related Pol polyprotein from transposon 17.6	Cajanus cajan	KYP76070. 1	2.53E-1878.46
SSH-FH2-139-M13 C06	envelope-like protein	Glycine max	AAO73524. 1	5.65E-1168.85
SSH-FH2-156-M13 D08	hypothetical protein PhapfoPp088	Phalaenopsis aphrodite subsp. formosana	YP_358634 .1	9.32E-1478.57
SSH-FH2-158-M13 F08	hypothetical protein AMTR_s03239p00005680, partial	Amborella trichopoda	ERN08425. 1	4.01E-16 82.61
SSH-FH2-17-M13 A03	maturase (mitochondrion)	Lotus japonicus	YP_005090 474.1	2.24E-08 83.87
SSH-FH2-159-M13 G08	hypothetical protein MTR_0333s0010	Medicago truncatula	XP_013442 070.1	9.15E-09 92.86
SSH-FH2-267-M13 C10	PREDICTED: uncharacterized protein LOC101503197, partial	Cicer arietinum	XP_004517 103.2	2.13E-2480
SSH-FH2-274-M13 B11	PREDICTED: uncharacterized protein LOC107607039	Arachis ipaensis	XP_016164 514.1	1.28E-09 87.88
SSH-FH2-295-M13 G01	Indole-3-acetic acid-induced protein ARG7	Cajanus cajan	KYP71979. 1	3.10E-13 96.55
SSH-FH2-311-M13 G03	hypothetical protein MTR_0389s0050, partial	Medicago truncatula	XP_013441 978.1	3.69E-06 79.31
SSH-FH2-326-M13 F05	hypothetical protein KK1_039730	Cajanus cajan	KYP38984. 1	9.20E-24 72.86
SSH-FH2-18-M13 B03	hypothetical protein VIGAN_10233900, partial	Vigna angularis var. angularis	BAU00723. 1	2.39E-11 96.77
SSH-FH2-347-M13 C08	hypothetical protein KK1_047086	Cajanus cajan	KYP32270. 1	2.56E-09100
SSH-FH2-371-M13 C11	ALG2-interacting protein X	Medicago truncatula	XP_003592 574.2	4.61E-1892.86
SSH-FH2-40-M13 H05	PREDICTED: uncharacterized protein LOC100800409	Glycine max	XP_003536 822.1	5.38E-1080
SSH-FH2-456-M13 H09	PREDICTED: uncharacterized protein LOC103420094	Malus domestica	XP_008356 376.1	1.27E-08 65.22
SSH-FH2-482-M13 B01	hypothetical protein MTR_3g435560	Medicago truncatula	XP_013459 289.1	1.53E-08 90.63
SSH-FH2-484-M13 D01	hypothetical protein VIGAN_01220600, partial	Vigna angularis var. angularis	BAT74520. 1	1.70E-12 74.47
SSH-FH2-506-M13 B04	unknown	Lotus japonicus	AFK43749. 1	2.49E-0987.5

SSH-FH2-530-M13 B07	hypothetical protein GLYMA_13G015600	Glycine max	KRH17782. 1	7.39E-08 100
SSH-FH2-534-M13 F07	Transposon Ty3-I Gag-Pol polyprotein, partial	Cajanus cajan	KYP47135. 1	1.82E-31 96.55
SSH-FH2-540-M13 D08	gag-pol polymerase	Arabidopsis lyrata subsp. lyrata	ABW81017 .1	8.72E-1083.33
SSH-FH2-552-M13 H09	PREDICTED: uncharacterized protein LOC106796443	Glycine max	XP_014624 207.1	1.36E-0992
SSH-FH2-561-M13 A11	GDP-D-mannose-4, 6-dehydratase (MUR1)	Arabidopsis thaliana	CAB62638. 1	6.80E-11 92.86
SSH-FH2-58-M13 B08	Transposon Ty3-I Gag-Pol polyprotein	Cajanus cajan	KYP37665. 1	1.76E-07 95.83
SSH-FH2-93-M13 E12	Retrovirus-related Pol polyprotein from transposon 412 family	Cajanus cajan	KYP56985. 1	5.38E-1872.73
SSH-FH2-A101-M1 3E01	Retrovirus-related Pol polyprotein from transposon 17.6	Cajanus cajan	KYP50545. 1	6.42E-2473.75
SSH-FH2-A113-M1 3A03	hypothetical protein MTR_0008s0310	Medicago truncatula	XP_013443 534.1	1.16E-1597.3
SSH-FH2-A149-M1 3E07	hypothetical protein OsJ_00596	Oryza sativa Japonica Group	EEE53976. 1	3.81E-07 64.44
SSH-FH2-A165-M1 3E09	putative gag protein	Coffea canephora	AJE29373.1	2.13E-06 60.34
SSH-FH2-A169-M1 3A10	Retrovirus-related Pol polyprotein from transposon TNT 1-94	Cajanus cajan	KYP40337. 1	2.03E-09100
SSH-FH2-A44-M13 D06	orf116d (mitochondrion)	Batis maritima	YP_009045 821.1	7.55E-0695.65
SSH-FH2-A51-M13 C07	Retrotransposable element Tf2	Cajanus cajan	KYP71657. 1	2.25E-23 82.46
SSH-FH2-A59-M13 C08	Serine/threonine-protein phosphatase	Cicer arietinum	XP_012572 055.1	5.14E-1090
SSH-FH2-A60-M13 D08	Pol polyprotein, partial	Cajanus cajan	KYP36967. 1	2.03E-2277.05
SSH-FH2-A146-M1 3B07	Putative ribonuclease H protein, partial	Glycine soja	KHN14248. 1	2.62E-0975.51