10.1071/FP21297

Functional Plant Biology

Supplementary Material

Identification and characterisation of blue light photoreceptor gene family and their expression in tomato (*Solanum lycopersicum*) under cold stress

Agossa Anicet Batcho^{A,B,*}, Joy Oluchi Nwogwugwu^C, Mohsin Ali^D, Basit Jabbar^E, Ayesha Javaid^F, and Martin Fellner^B

^ANational University of Sciences, Technology, Engineering and Mathematics (ENS-UNSTIM), Natitingou, Republic of Benin.

^BLaboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelů 27, Olomouc-Holice 783 71, Czech Republic.

^cDepartment of Forest Conservation and Protection, Forestry Research Institute of Nigeria, Ibadan, Nigeria.

^DIndependent Researcher, House No. 280 A/1 Sector F1 Mirpur 10250, AJK, Pakistan.

^ECentre of Excellence in Molecular Biology, University of the Punjab Lahore, Pakistan.

^FIndependent Researcher, Askari 13, Rawalpandi 46604, Pakistan.

^{*}Correspondence to: Agossa Anicet Batcho National University of Sciences, Technology, Engineering and Mathematics (ENS-UNSTIM), Natitingou, Republic of Benin Email: anicetbatcho1@gmail.com

SUPPLEMENT FILES

Table 1: Blue light gene specific primers sequences used for quantitative RT- PCR (qRT-PCR) analysis. Primers sequences were designed using Primer Premier software.

			Primer
Genes	Forward Primer	Revers Primer	efficiency
			(%)
CRY1	GGCACCAGAGGAAGAAGGGCACT	CATGGTGGTTCTGCAAGTAGC	95.4
CRY2	GGGATCGTTTAATGCAAGCTATAATT	CGAGTTATCAAACACAACTTCAACAG	96
PHOT1	CACTGATCCTAGGCTTCCCG	GTGGTTAGATCAGTCTCTGGACC	97.6
PHOT2	GAAACTTGGGAAGTTAAATCC	GCATCAAGAAGGGAACAATAAGC	98
РНҮА	GAAGCATGGAGGTGCTATGC	TATGCAATACGGTGGTCAAGG	98.5
РНҮВ	CTCCTCGGCAATGAAGTTGT	CGTGGATGCA TCTTCCTGCC	98
РНҮС	ACCGCTGCTGACCGTCGC	TTCGCAAGCATACCTGAGA	97

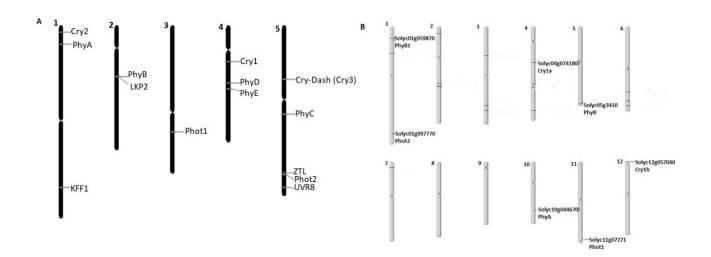
Table 2: Blue light photoreceptors with their photosensory domains and proposed modes from X-ray

 Crystal Structure analyses in tomato

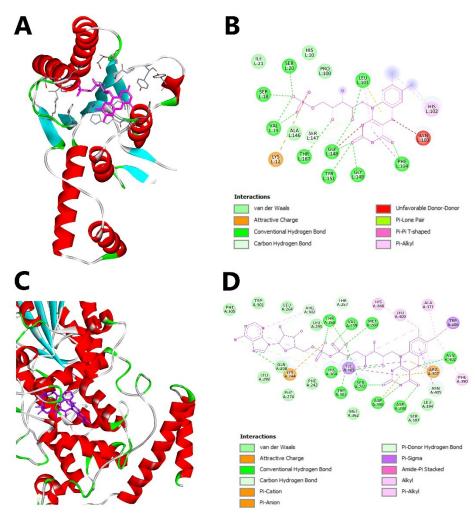
Proteins	Photosensory Domain	PDB ID	Cofactor	Mode of Action	
Phototropins	PAS & LOV	2Z6D, 2VOU 2VIA, 2VIB	FMN	Proteins belonging to the LOV domain family form a sub-class of PAS domains that bind to a flavin co-factor. The flavin moiety present in LOV domains could	
Cryptochrome s	PHR/DNA photolyase & MTHF	3FY4, 1QNF	FAD, FMN	either be flavin mononucleotide (FMN) or flavin dinucleotide (FAD) that are sensitive to blue light (400nm-500 nm) in the visible region of the electromagnetic	
Zeitlupe (FKF1)	Flavin-binding Kelch F-box	N/A	FMN	spectrum. The ZTL family bind to FMN as a chromophore. Photoreception by flavin changes the chemical state of the co-factor that initiates signaling by altering the protein structure	
Phytochromes	PAS, GAF & PHY	2VEA & 3C2W	Phytochromobilin tetrapyrrol chromophore (P¢B)	 PΦB bond to a specific Cys in the apoprotein, that occurs autocatalytically with lyase activity within the Phy polypeptide Phy apoproteins are encoded by a small family of genes, with holoproteins derived from each isoform having both distinct and overlapping functions in light perception 	
UVR8	Seven-bladed β-propeller &		No external cofactor and instead uses	Induces hydrogen bonds and hydrophobic interactions between adjacent blades and maintains the core structure. Trp-285 and	

C27. Both interact with COP1	two tryptophan residues, Trp 285 and Trp 233, as the chromophore for ultraviolet-B perception	Trp-233 are the key chromophore components responsible for UV-B sensing
------------------------------------	--	---

Table 3: Blue light photoreceptor gene family and their interaction in abiotic stress response


-

Type of Stress	Photoreceptors Genes	Abiotic Stress Response	Reference
Drought	Cry1 & Cry2	 a) Cry1 & Cry2 are photosensory receptors that regulate growth and development and circadian clock in plant by mediating important agronomic traits in crop species (entrainment of the circadian clock, guard cell development, stomatal opening, root growth, plant height, high-light stress response, osmotic stress response, shade avoidance). b) Constitutively photomorphogenic 1 (COP1), which represses light signaling, is a core photomorphogenic regulator c) As an E3 ubiquitin ligase COP1 contains a RING-finger motif, a coiled-coil domain, and WD40 repeats; the RING-finger motif interacts with ubiquitin-conjugating enzyme E2, the coiled-coil domain is involved in the formation of a complex between COP1 and SUPPRESSOR OF PHYA-105 (SPA), and WD40 repeats interact with target proteins in the regulation of stomatal movements in response to dehydration 	(Fantini et al., 2019)
	PHYs	 a) Phytochromes regulate the transcription of light-responsive genes by modulating the activity of several transcription factors. b) PhyA, PhyB and PhyE are involved in suppressing drought tolerance. These results imply a possible function of phytochrome C (PhyC) in mediating 	(Wang <i>et al.</i> , 2016)


		osmotic stress	
		c) In high R/FR condition, PhyA is	
		degraded and PhyB play critical role	
		in regulating promoting stomatal	
		opening and many other adaptive	
		reactions	
Drought &	Cry1 & Cry2	Cryptochrome-induced altered expression of	
Salinity		stress/ABA-responsive genes	(Zhou <i>et al.</i> , 2018)
	Cry1		(D'Amico-Damião &
Salinity	ZTL group	Overexpression of Cry1a confers oversensitive	Carvalho, 2018)
		to salt stress	
		a) PIF4 interact with Cry1 controlling	
		hypocotyl elongation under heat stress	
		b) ZTL and its interacting molecular	
	Cry1	chaperone, HSP90, establish a heat	(Gil & Park, 2019; Ma et
Heat	ZTL	stress-inducible protein quality control	al., 2016)
		system, which contributes to	
		maintaining thermostable growth and	
		circadian behaviors at high	
		temperatures.	
		c) In response to heat stress, ZTL and	
		HSP90 are localized to insoluble	
		protein aggregates and direct their	
		degradation via the ubiquitin-	
		proteasome pathways	
		d) Under heat stress, HSP90 and other	
		HSP members, including HSP70,	
		recognize insoluble protein	
		aggregates, to which ZTL is recruited	
		through the interactions with the HSP	
		family members.	
		e) HSP family members and their	
		interacting E3 ubiquitin ligase C-	
		terminus of HSP70 Interacting Protein	
		(CHIP) are known to mediate thermo-	
		tolerance in plants further supporting	
		torerance in plants further supporting	

			the physiological relevance of the	
			ZTL-HSP module in thermostabilizing	
			plant growth and the clock function.	
		1.	Cryptochromes affects chloroplast	
			light-harvesting complex and redox	
	Cry1 & Cry2		equilibrium of photosynthetic	
			apparatus.	(El-Esawi <i>et al.</i> , 2017)
High-light		2.	They also promote the transcription of	
			ROS-responsive genes	
		a)	Induce the opening stomatal pore to	
		, 	regulate CO_2 in leaf and stem	
	Phot1 & Phot2	b)	epidermis. Induce chloroplast accumulation	
			movement to the upper cell surface	
			that promote light capture for photosynthesis.	(Christie, 2007)
		c)	Promote cotyledon and leaf expansion	
			and stimulate increases in cytosolic Ca^{2+} .	
		d)	Regulate hypocotyl phototropism in	
			response to high intensities of unilateral blue light.	
		a)		
			factor with cold acclimatization	
			mechanisms.	
		b)	GIGANTEA (GI) was originally	
			identified based on its roles in	
			photoperiodic flowering and circadian	
			clock regulation. GI interacts with F-	
			box protein ZEITLUPE (ZTL) through	
Cold &	Crys		the amino-terminal flavin-binding	
Drought	ZTL		LIGHT, OXYGEN or VOLTAGE	(Greenham & McClung,
	LKP2		domain of ZTL, which is necessary to	2015; Franklin <i>et al.</i> , 2014)
	FKF1		sustain a normal circadian period by	
			regulating the proteasome-dependent	
			degradation of the central circadian	
			oscillator, TIMING OF CAB	
			EXPRESSION 1.	
		c)	Overexpression of LKP2 enhances	
			drought tolerance.	
		d)	Overexpression of LOV KELCH	

	PROTEIN 2 (LKP2), a homolog of	
	ZEITLUPE (ZTL) and FKF1, confers	
	drought stress tolerance due to	
	activation of DREB1 genes.	
e)	LKP2 degrades PRR5 protein	
	redundantly with ZTL and FKF1 to	
	confer drought stress tolerance	
	through degradation of Pseudo-	
	Response Regulator 5 (PRR5).	

Figure 1: Distribution of the blue light photoreceptor gene family on Arabidopsis and tomato chromosomes. The chromosomal location image was generated by the Chromosome Map Tool (<u>https://www.arabidopsis.org/jsp/ChromosomeMap/tool.jsp</u>) and MapInspect tool

Figure 2: 3D structure of DNA Binding Domain (DBD) identified in tomato blue light photoreceptor genes. (A): PAS/LOV1 domain in interaction with its cofactor FMN. (B): Intermolecular (protein-ligand) interactions of PAS/LOV1 domain with FMN. (C): 3D structure of PHR/DNA Photolyase in complex with its cofactor FAD. (D): Intermolecular (protein-ligand) interactions of PHR/DNA Photolyase with FAD.