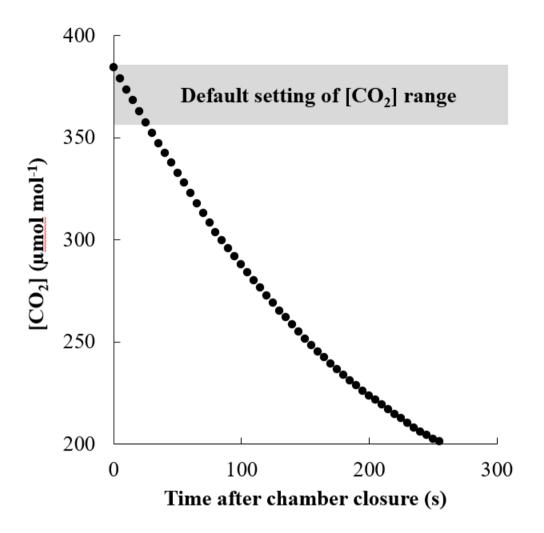
Supplementary Material

MIC-100, a new system for high-throughput phenotyping of instantaneous leaf photosynthetic rate in the field

Yu Tanaka^{A,E}, Kazuki Taniyoshi^A, Ayumu Imamura^B, Ryo Mukai^A, Shun Sukemura^A, Kazuma Sakoda^{A,C,D} and Shunsuke Adachi^B


^AGraduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-chou, Sakyo-ku, Kyoto, 606-8502, Japan.

^BCollege of Agriculture, Ibaraki University, 3-21-1 Chuo, Ami, Inashiki, Ibaraki 300-0393, Japan.

^cGraduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midoricho, Nishitokyo, Tokyo 188-0002, Japan.

^DJapan Society for the Promotion of Science, 5-3-1, Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan.

^ECorresponding author. Email: tanaka.yu.2s@kyoto-u.ac.jp

Fig. S1. The example of the $[CO_2]$ decline from 380 to 200 µmol mol⁻¹ after clamping the soybean leaf into the leaf chamber in MIC-100. The range of the [CO2] measurement is set from 380 to 200 µmol mol⁻¹ and the data is recorded every 5 s. The default setting of the $[CO_2]$ range (380 to 360 µmol mol⁻¹) is shown as gray area.