Supplementary Material

A high-throughput method for measuring critical thermal limits of leaves by chlorophyll imaging fluorescence

Pieter A. Arnold^{A,C}, Verónica F. Briceño^A, Kelli M. Gowland^A, Alexandra A. Catling^A, León A. Bravo^B and Adrienne B. Nicotra^A

^ADivision of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia.

^BDepartment of Agronomical Sciences and Natural Resources, Faculty of Agropecuary and Forestry Sciences and Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Casilla 54D, Temuco, Chile.

^CCorresponding author. Email: pieter.arnold@anu.edu.au

Table S1. A non-exhaustive sample of the variety of heating or cooling rates fortemperature change used for measuring thermal tolerance limits of leaves from theliterature

Cold tolerance limits									
Cooling	Reference								
rate									
$2 \ ^{\circ}C \ h^{-1}$	Taschler and Neuner (2004); Neuner and Pramsohler (2006); Sierra-Almeida and Cavieres (2012)								
$3-4 \ ^{\circ}C \ h^{-1}$	Robberecht and Junttila (1992)								
$5 \ ^{\circ}C \ h^{-1}$	Buchner and Neuner (2009)								
$10 \ ^{\circ}\mathrm{C} \ \mathrm{h}^{-1}$	Menon <i>et al.</i> (2015)								
1800 °C h^{-1}	Pospíšil <i>et al.</i> (1998)								
Heat tolerance limits									

Heating rate	Reference
$30 \ ^{\circ}\mathrm{C} \ \mathrm{h}^{-1}$	Frolec <i>et al.</i> (2008)
$42 \ ^{\circ}\mathrm{C} \ h^{-1}$	Bilger et al. (1984)
60 °C h ⁻¹	Schreiber and Berry (1977); Schreiber and Armond (1978); (Smillie 1979; Smillie and Nott 1979); Smillie and Gibbons (1981); Bilger <i>et al.</i> (1984); Braun <i>et al.</i> (2002); Knight and Ackerly (2002); Kim and Portis (2005); Neuner and Pramsohler (2006); Frolec <i>et al.</i> (2008); O'Sullivan <i>et al.</i> (2013); Tovuu <i>et al.</i> (2013); Buchner <i>et al.</i> (2015); O'Sullivan <i>et al.</i> (2017); Zhu <i>et al.</i> (2018)
90 °C h^{-1}	Macias (2011)
$120 \ ^{\circ}\mathrm{C} \ h^{-1}$	Bilger et al. (1984); Ilík et al. (2003); Frolec et al. (2008)
$180 \ ^{\circ}C \ h^{-1}$	Frolec et al. (2008)
$240~^{\circ}C~h^{-1}$	Nauš <i>et al.</i> (1992)
$300 \ ^{\circ}C \ h^{-1}$	Tovuu <i>et al.</i> (2013)
$600 \ ^{\circ}\mathrm{C} \ \mathrm{h}^{-1}$	Tovuu <i>et al.</i> (2013)
648 °C h ⁻¹	Tovuu <i>et al.</i> (2013)
1800 °C h^{-1}	Pospíšil <i>et al.</i> (1998)

Exp. 1		<i>.</i>			Exp. 1		~		
Dry		Spec	eies		Wet		Spec	ies	
surface					surface				
Trait	W. ceracea	M. citrina	E. rubra	Q. phellos	Trait	W. ceracea	M. citrina	E. rubra	Q. phellos
CT_{MIN}	$-13.8\pm0.4^{\circ}\mathrm{C}$	$-16.9\pm0.37^{\circ}\mathrm{C}$	$-14.0\pm0.3^{\circ}C$	NA	$CT_{\rm MIN}$	$-9.8\pm0.6^{\circ}C$	$-13.9\pm0.4^{\circ}\mathrm{C}$	$-9.8\pm0.8^\circ C$	NA
CT_{MAX}	$43.2\pm0.9^{\circ}C$	$46.8\pm0.8^\circ C$	NA	$49.2\pm0.5^{\circ}C$	CT_{MAX}	$41.6\pm0.9^{\circ}\mathrm{C}$	$47.2\pm0.2^{\circ}\mathrm{C}$	NA	$48.5\pm0.5^{\circ}C$
$F_{ m V}/F_{ m M}$	0.81 ± 0.004	0.77 ± 0.009	0.74 ± 0.008	0.80 ± 0.007	$F_{\rm V}/F_{\rm M}$	0.80 ± 0.004	0.78 ± 0.008	0.74 ± 0.006	0.78 ± 0.013
Exp. 2					Exp. 2				
6°C h ⁻¹		Spec	eies		15°C h ⁻¹		Spec	ies	
rate					rate				
Trait	W. cera	cea	M. citrina	E. rubra	Trait	W. cerace	a M	I. citrina	E. rubra
CT_{MIN}	-14.1 ± 0.5	5°C –1:	$5.2 \pm 0.7^{\circ}\mathrm{C}$	$-11.7\pm0.6^\circ C$	CT_{MIN}	$-14.9\pm0.2^\circ$	C –14.2	$\pm 0.5^{\circ}C$	$-11.6\pm0.5^{\circ}\mathrm{C}$
CT_{MAX}	45.8 ± 1.1	l°C 3	$5.3 \pm 1.1^{\circ}\mathrm{C}$	$46.7\pm0.2^{\circ}C$	CT_{MAX}	$42.8\pm0.5^\circ$	C 38.6	$\pm 1.0^{\circ}C$	$44.0\pm0.3^{\circ}C$
$F_{\rm V}/F_{\rm M}$	0.82 ± 0.0	005 0	$.73\pm0.008$	0.72 ± 0.005	$F_{\rm V}/F_{\rm M}$	0.81 ± 0.00	4 0.74	± 0.006	0.71 ± 0.006
Exp. 2					Exp. 2				
30°C h ^{−1}		Spec	ries		60°C h ⁻¹		Spec	ies	
rate					rate				
Trait	W. cera	cea	M. citrina	E. rubra	Trait	W. cerace	a M	I. citrina	E. rubra
$CT_{\rm MIN}$	-12.7 ± 0.6	5°C −12	$2.5 \pm 0.6^{\circ}\mathrm{C}$	$-12.2\pm0.4^{\circ}C$	$CT_{\rm MIN}$	$-13.8\pm0.5^\circ$	C –16.9	$0 \pm 0.5^{\circ}\mathrm{C}$	$-14.0\pm0.3^{\circ}C$
CT_{MAX}	41.6 ± 0.4	4°C 4	$1.1 \pm 0.5^{\circ}\mathrm{C}$	$44.0\pm0.4^{\circ}C$	CT_{MAX}	$43.5\pm0.3^\circ$	C 42.5	$\pm 0.9^{\circ}C$	$45.3\pm0.4^{\circ}\mathrm{C}$
$F_{\rm V}/F_{\rm M}$	0.83 ± 0.0	006 0	$.73\pm0.006$	0.76 ± 0.007	$F_{\rm V}/F_{\rm M}$	0.82 ± 0.00	6 0.74	± 0.011	0.73 ± 0.007

Table S2. Mean ± standard error values for CT_{MIN} , CT_{MAX} , and F_V/F_M for each species and experimental condition (Experiment 2 heating and cooling rates shown for 6, 15, 30, and 60°C h⁻¹

Response: CT _{MIN}		All species			W. ceracea			M. citrina			E. rubra	
Fixed effects	Estimate	95% CI	Р	Estimate	95% CI	Р	Estimate	95% CI	Р	Estimate	95% CI	Р
Dry surface / <i>E. rubra</i> (intercept)	-18.36	-32.494.22	0.011	Intercept: -5.71	-50.92 - 39.49	0.800	Intercept: -20.36	-35.804.93	0.012	Intercept: -31.26	-54.118.41	0.009
Wet surface	3.81	2.77 - 4.85	<0.001	3.92	1.99 – 5.86	<0.001	2.98	1.31 - 4.65	0.001	3.99	2.34 - 5.63	<0.001
$F_{ m V}/F_{ m M}$	6.19	-12.89 - 25.27	0.521	-9.89	-64.94 - 45.15	0.719	4.72	-16.14 - 25.58	0.645	23.54	-7.53 - 54.60	0.132
M. citrina	-3.50	-4.92 - 2.07	<0.001									
W. ceracea	-0.42	-2.36 - 1.51	0.664									
R ²	0.464			0.288			0.374			0.527		
Response: CT _{MAX}		All species			W. ceracea			M. citrina			Q. phellos	
Response: <i>CT</i> MAX Fixed effects	Estimate	All species 95% CI	Р	Estimate	W. ceracea 95% CI	Р	Estimate	<i>M. citrina</i> 95% CI	Р	Estimate	<i>Q. phellos</i> 95% CI	Р
Response: <i>CT</i> MAX Fixed effects Dry surface / <i>M. citrina</i> (intercept)	Estimate 32.76	All species 95% CI 18.03 – 47.49	<i>P</i> <0.001	Estimate Intercept: 6.90	<i>W. ceracea</i> 95% CI -27.59 - 41.40	P 0.683	Estimate Intercept: 36.31	<i>M. citrina</i> 95% CI 4.91 – 67.71	<i>P</i> 0.025	Estimate Intercept: 47.34	<i>Q. phellos</i> 95% CI 31.89 – 62.79	<i>P</i> <0.001
Response: CT _{MAX} Fixed effects Dry surface / M. citrina (intercept) Wet surface	Estimate 32.76 -0.55	All species 95% CI 18.03 – 47.49 –1.63 – 0.54	P <0.001 0.317	Estimate Intercept: 6.90 -1.47	<i>W. ceracea</i> 95% CI -27.59 - 41.40 -3.93 - 1.00	P 0.683 0.232	Estimate Intercept: 36.31 0.32	<i>M. citrina</i> 95% CI 4.91 – 67.71 –1.33 – 1.97	<i>P</i> 0.025 0.694	Estimate Intercept: 47.34 -0.63	<i>Q. phellos</i> 95% CI 31.89 - 62.79 -2.08 - 0.82	<i>P</i> <0.001 0.379
Response: CT _{MAX} Fixed effects Dry surface / M. citrina (intercept) Wet surface Fv/F _M	Estimate 32.76 -0.55 18.20	All species 95% CI 18.03 – 47.49 –1.63 – 0.54 –0.12 – 36.52	P <0.001 0.317 0.052	Estimate Intercept: 6.90 -1.47 46.02	<i>W. ceracea</i> 95% CI -27.59 - 41.40 -3.93 - 1.00 2.33 - 89.71	<i>P</i> 0.683 0.232 0.040	Estimate Intercept: 36.31 0.32 13.16	<i>M. citrina</i> 95% CI 4.91 – 67.71 –1.33 – 1.97 –26.19 – 52.50	P 0.025 0.694 0.497	Estimate Intercept: 47.34 -0.63 2.32	<i>Q. phellos</i> 95% CI 31.89 - 62.79 -2.08 - 0.82 -17.03 - 21.68	<i>P</i> <0.001 0.379 0.806
Response: CT _{MAX} Fixed effects Dry surface / M. citrina (intercept) Wet surface Fv/F _M Q. phellos	Estimate 32.76 -0.55 18.20 2.01	All species 95% CI 18.03 - 47.49 -1.63 - 0.54 -0.12 - 36.52 0.68 - 3.35	<i>P</i> <0.001 0.317 0.052 0.004	Estimate Intercept: 6.90 -1.47 46.02 	<i>W. ceracea</i> 95% CI -27.59 - 41.40 -3.93 - 1.00 2.33 - 89.71 	<i>P</i> 0.683 0.232 0.040	Estimate Intercept: 36.31 0.32 13.16	<i>M. citrina</i> 95% CI 4.91 – 67.71 –1.33 – 1.97 –26.19 – 52.50 –-	P 0.025 0.694 0.497 	Estimate Intercept: 47.34 -0.63 2.32 	<i>Q. phellos</i> 95% CI 31.89 – 62.79 -2.08 – 0.82 -17.03 – 21.68 	<i>P</i> <0.001 0.379 0.806
Response: CTMAXFixed effectsDry surface / M. citrina (intercept)Wet surfaceFv/FMQ. phellosW. ceracea	Estimate 32.76 -0.55 18.20 2.01 -4.47	All species 95% CI 18.03 - 47.49 -1.63 - 0.54 -0.12 - 36.52 0.68 - 3.35 -5.803.14	<i>P</i> <0.001 0.317 0.052 0.004 <0.001	Estimate Intercept: 6.90 -1.47 46.02 	<i>W. ceracea</i> 95% CI -27.59 - 41.40 -3.93 - 1.00 2.33 - 89.71 	<i>P</i> 0.683 0.232 0.040 	Estimate Intercept: 36.31 0.32 13.16 	<i>M. citrina</i> 95% CI 4.91 – 67.71 –1.33 – 1.97 –26.19 – 52.50 –-	P 0.025 0.694 0.497 	Estimate Intercept: 47.34 -0.63 2.32 	<i>Q. phellos</i> 95% CI 31.89 - 62.79 -2.08 - 0.82 -17.03 - 21.68 	<i>P</i> <0.001 0.379 0.806

Table S3. Full statistical reporting for all species and species-specific effects of wet vs dry filter paper surface on CT_{MIN} and CT_{MAX}

Response: CT _{MIN}	IN All species				W. ceracea			M. citrina		E. rubra			
Fixed effects	Estimate	95% CI	Р	Estimate	95% CI	Р	Estimate	95% CI	Р	Estimate	95% CI	Р	
Dry surface / Rate = $15 \text{ °C } h^{-1}$ / <i>E. rubra</i> (Intercept)	-11.49	-21.772.01	0.019	Intercept: -4.23	-43.83 - 35.37	0.832	Intercept: -12.39	-24.090.69	0.038	Intercept: -20.60	-32.478.74	0.001	
Wet surface	4.72	3.45 - 5.99	<0.001	6.42	3.90 - 8.94	<0.001	4.03	2.10 - 5.95	<0.001	3.73	2.17 - 5.30	<0.001	
Rate = 60 °C h^{-1}	-1.11	-2.140.08	0.034	1.17	-0.77 - 3.11	0.235	-2.69	-4.131.25	<0.001	-2.70	-4.151.26	<0.001	
Wet surface \times rate = 60 °C h ⁻¹	-0.90	-2.53 - 0.73	0.279	-2.53	-5.74 - 0.68	0.121	-0.98	-3.42 - 1.45	0.420	0.34	-1.81 - 2.48	0.754	
$F_{ m V}/F_{ m M}$	-0.55	-14.28 - 13.19	0.938	-13.12	-61.73 - 35.48	0.592	-2.44	-18.29 - 13.41	0.758	12.71	-3.99 - 29.40	0.133	
M. citrina	-3.07	-4.112.02	<0.001										
W. ceracea	-0.95	-2.50 - 0.59	0.225										
Marginal R ²	0.458			0.387			0.538			0.552			

Table S4. Full statistical reporting for effects of wet vs dry surface in combination with cooling rate on CT_{MIN}

Response: CT _{MIN}		All species			W. ceracea			M. citrina			E. rubra	
Fixed effects	Estimate	95% CI	Р	Estimate	95% CI	Р	Estimate	95% CI	Р	Estimate	95% CI	Р
Rate = 3 °C h ⁻¹ / E. rubra (Intercept)	-11.38	-17.015.75	<0.001	-40.89	-70.67 11.10	0.008	-16.82	-25.428.21	<0.001	-11.58	-19.213.96	0.003
Rate = 6 °C h ⁻¹	-0.33	-1.14 - 0.48	0.422	0.62	-0.67 - 1.92	0.343	-1.81	-3.49 0.12	0.036	-0.15	-1.29 - 0.98	0.790
Rate = 15 °C h^{-1}	-0.32	-1.12 - 0.49	0.438	-0.12	-1.42 - 1.19	0.859	-0.80	-2.43 - 0.84	0.335	-0.10	-1.22 - 1.03	0.864
Rate = 30 °C h^{-1}	0.75	-0.05 - 1.55	0.065	1.67	0.37 - 2.97	0.012	0.91	-0.70 - 2.51	0.265	-0.74	-1.93 - 0.45	0.220
Rate = 60 °C h ⁻¹	-1.34	-2.150.53	0.001	0.75	-0.47 - 1.97	0.225	-3.51	-5.191.82	<0.001	-2.47	-3.691.25	<0.001
Rate = 240 °C h^{-1}	-0.80	-1.60 - 0.01	0.052	0.70	-0.62 - 2.02	0.298	-1.74	-3.350.13	0.035	-1.90	-3.110.70	0.002
$F_{ m V}/F_{ m M}$	-0.89	-8.55 - 6.78	0.82	32.04	-4.23 - 68.32	0.083	4.66	-6.84 - 16.16	0.422	0.12	-10.42 - 10.66	0.982
M. citrina	-2.18	-2.761.60	<0.001									
W. ceracea	-1.50	-2.360.63	0.001									
Marginal R ²	0.230			0.126			0.332			0.220		

Table S5. Full statistical reporting for all species and species-specific effects of variable cooling rate on CT_{MIN}

Response: CT _{MAX}		All species			W. ceracea			M. citrina			E. rubra	
Fixed effects	Estimate	95% CI	Р	Estimate	95% CI	Р	Estimate	95% CI	Р	Estimate	95% CI	Р
Rate = 60 °C h ⁻¹ / E. rubra (Intercept)	27.79	20.09 - 35.50	<0.001	Intercept: 14.87	-0.48 - 30.22	0.058	Intercept: 27.79	18.26 - 37.32	<0.001	Intercept: 41.75	31.47 - 52.03	<0.001
Rate = 6 °C h ⁻¹	-0.68	-1.86 - 0.50	0.259	1.60	0.24 - 2.96	0.021	-7.71	-9.485.93	<0.001	1.38	-0.19 - 2.94	0.085
Rate = 15 °C h ⁻¹	-2.43	-3.62 1.24	<0.001	-2.00	-3.47 - 0.52	0.008	-4.68	-6.432.94	<0.001	-1.40	-2.98 - 0.17	0.080
Rate = 30 °C h^{-1}	-1.74	-2.72 - 0.77	0.001	-2.11	-3.181.03	<0.001	-2.10	-3.660.54	0.009	-1.31	-2.610.01	0.048
Rate = 45 °C h^{-1}	-1.48	-2.440.51	0.003	-0.72	-1.80 - 0.36	0.188	-0.95	-2.53 - 0.62	0.232	-2.68	-3.961.40	<0.001
Rate = 120 °C h^{-1}	1.00	-0.06 - 2.07	0.065	1.78	0.62 - 2.95	0.003	2.24	0.48 - 3.99	0.013	-0.45	-1.95 - 1.05	0.554
Rate = 240 °C h^{-1}	2.03	0.95 - 3.12	<0.001	2.78	1.58 - 3.98	<0.001	3.76	1.86 - 5.67	<0.001	-0.13	-1.56 - 1.29	0.853
$F_{ m V}/F_{ m M}$	23.79	12.68 - 34.91	<0.001	38.48	17.91 – 59.05	<0.001	21.98	7.80 - 36.16	0.003	5.15	-9.68 - 19.99	0.492
M. citrina	-1.30	-1.960.63	<0.001									
W. ceracea	-1.24	-2.020.45	0.002									
Marginal R ²	0.429			0.619			0.863			0.319		

Table S6. Full statistical reporting for all species and species-specific effects of variable heating rate on CT_{MAX}

Fig. S1. Various experimental applications of the Peltier plate and chlorophyll fluorescence Maxi-Imaging-PAM system using whole leaves, leaf sections, and leaf discs of multiple species, and the potential application of type-T thermocouples for recording the temperature of individual samples. Images taken by Verónica F. Briceño and Pieter A. Arnold.

Fig. S2. The effect of varying cooling rate (°C h⁻¹) in combination with varying surfaces (dry *vs* wet filter paper) on the *NT* (black circles) and *CT*_{MIN} (light blue circles) estimates (°C). *NT* was measured only on a small, random subset of leaves using the two thermocouples attached to leaves from various species on the Peltier plate (total n = 17, therefore the 95% CIs are much larger than those of *CT*_{MIN}. For consistency in comparison, the *CT*_{MIN} values are also grouped across the three species.

References

- Bilger, H-W, Schreiber, U, Lange, OL (1984) Determination of leaf heat resistance: comparative investigation of chlorophyll fluorescence changes and tissue necrosis methods. *Oecologia* 63, 256–262.
- Braun, V, Buchner, O, Neuner, G (2002) Thermotolerance of photosystem 2 of three alpine plant species under field conditions. *Photosynthetica* **40**, 587–595.
- Buchner, O, Neuner, G (2009) A low-temperature freezing system to study the effects of temperatures to -70 °C on trees in situ. *Tree Physiology* **29**, 313–320.
- Buchner, O, Stoll, M, Karadar, M, Kranner, I, Neuner, G (2015) Application of heat stress in situ demonstrates a protective role of irradiation on photosynthetic performance in alpine plants. *Plant, Cell & Environment* **38**, 812–826.
- Frolec, J, Ilík, P, Krchňák, P, Sušila, P, Nauš, J (2008) Irreversible changes in barley leaf chlorophyll fluorescence detected by the fluorescence temperature curve in a linear heating/cooling regime. *Photosynthetica* 46, 537–546.
- Ilík, P, Kouřil, R, Kruk, J, Myśliwa-Kurdziel, B, Popelková, H, Strzałka, K, Nauš, J (2003) Origin of chlorophyll fluorescence in plants at 55–75°C. *Photochemistry and Photobiology* 77, 68–76.
- Kim, K, Portis, AR, Jr. (2005) Temperature dependence of photosynthesis in *Arabidopsis* plants with modifications in rubisco activase and membrane fluidity. *Plant and Cell Physiology* 46, 522–530.
- Knight, CA, Ackerly, DD (2002) An ecological and evolutionary analysis of photosynthetic thermotolerance using the temperature-dependent increase in fluorescence. *Oecologia* 130, 505–514.
- Macias, M (2011) 'Thermal sensitivity of the photosynthetic apparatus of *Quercus rubra* along a rural to urban transect.' (PhD Thesis: Columbia University)
- Menon, M, Barnes, WJ, Olson, MS (2015) Population genetics of freeze tolerance among natural populations of *Populus balsamifera* across the growing season. *New Phytologist* 207, 710–722.

- Nauš, J, Kuropatwa, R, Klinkovskÿ, T, Ilík, P, Lattová, J, Pavlová, Z (1992) Heat injury of barley leaves detected by the chlorophyll fluorescence temperature curve. *Biochimica et Biophysica Acta (BBA) – Bioenergetics* **1101**, 359–362.
- Neuner, G, Pramsohler, M (2006) Freezing and high temperature thresholds of photosystem 2 compared to ice nucleation, frost and heat damage in evergreen subalpine plants. *Physiologia Plantarum* 126, 196–204.
- O'Sullivan, OS, Heskel, MA, Reich, PB, Tjoelker, MG, Weerasinghe, LK, Penillard, A, Zhu,
 L, Egerton, JJG, Bloomfield, KJ, Creek, D, Bahar, NHA, Griffin, KL, Hurry, V, Meir,
 P, Turnbull, MH, Atkin, OK (2017) Thermal limits of leaf metabolism across biomes. *Global Change Biology* 23, 209–223.
- O'Sullivan, OS, Weerasinghe, KWLK, Evans, JR, Egerton, JJG, Tjoelker, MG, Atkin, OK (2013) High-resolution temperature responses of leaf respiration in snow gum (*Eucalyptus pauciflora*) reveal high-temperature limits to respiratory function. *Plant, Cell & Environment* 36, 1268–1284.
- Pospíšil, P, Skotnica, J, Nauš, J (1998) Low and high temperature dependence of minimum
 F0 and maximum FM chlorophyll fluorescence in vivo. *Biochimica et Biophysica Acta (BBA) Bioenergetics* 1363, 95–99.
- Robberecht, R, Junttila, O (1992) The freezing response of an arctic cushion plant, *Saxifraga caespitosa* L.: acclimation, freezing tolerance and ice nucleation. *Annals of Botany* 70, 129–135.
- Schreiber, U, Armond, PA (1978) Heat-induced changes of chlorophyll fluorescence in isolated chloroplasts and related heat-damage at the pigment level. *Biochimica et Biophysica Acta (BBA) – Bioenergetics* 502, 138–151.
- Schreiber, U, Berry, JA (1977) Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus. *Planta* **136**, 233–238.
- Sierra-Almeida, A, Cavieres, LA (2012) Summer freezing resistance of high-elevation plant species changes with ontogeny. *Environmental and Experimental Botany* **80**, 10–15.

- Smillie, R (1979) Coloured components of chloroplast membranes as intrinsic membrane probes for monitoring the development of heat injury in intact tissues. *Functional Plant Biology* 6, 121–133.
- Smillie, R, Nott, R (1979) Heat injury in leaves of alpine, temperate and tropical plants. *Functional Plant Biology* **6**, 135–141.
- Smillie, RM, Gibbons, GC (1981) Heat tolerance and heat hardening in crop plants measured by chlorophyll fluorescence. *Carlsberg Research Communications* **46**, 395.
- Taschler, D, Neuner, G (2004) Summer frost resistance and freezing patterns measured *in situ* in leaves of major alpine plant growth forms in relation to their upper distribution boundary. *Plant, Cell & Environment* 27, 737–746.
- Tovuu, A, Zulfugarov, IS, Lee, C-H (2013) Correlations between the temperature dependence of chlorophyll fluorescence and the fluidity of thylakoid membranes. *Physiologia Plantarum* 147, 409–416.
- Zhu, L, Bloomfield, KJ, Hocart, CH, Egerton, JJG, O'Sullivan, OS, Penillard, A, Weerasinghe, LK, Atkin, OK (2018) Plasticity of photosynthetic heat tolerance in plants adapted to thermally contrasting biomes. *Plant, Cell & Environment* 41, 1251– 1262.