Supplementary Material

Fred Chow: the contributions of a quiet giant of photoinhibition and photoprotection

Alonso Zavafer^{A,B,D} and Douglas A. Campbell^C

^AResearch School of Biology, the Australian National University, Canberra, ACT 2600, Australia.

^BClimate Change Cluster, University of Technology Sydney, Ultimo, NSW 2001, Australia.

^CMount Allison University, Sackville, NB E4L 1E2, New Brunswick, Canada.

^DCorresponding author. Email: alonso.zavaleta@anu.edu.au

Table S1. Some chemicals used to study photodamage in order of appearance in this work

Chemical name	Abbry.	Activity
Atrazine	-	A PSII inhibitor that binds to the plastoquinone binding
		sites thereby blocking electron transport between between
		Q_A to Q_B .
3-(3,4-Dichlorophenyl)-	DCMU	A PSII inhibitor that binds to the plastoquinone binding
1,1-dimethylurea		sites thereby blocking electron transport between between
		Q_A to Q_B .
Bromoxinil	-	A PSII inhibitor that blocks electron transport between Q _A
		to Q _B .
Lincomycin	-	Antibiotic that inhibits the translation of proteins in the
		chloroplast, thus inhibiting PSII repair.
Nigericin	-	A lipophilic uncoupler that collapses the trans-thylakoid
		ΔpH gradient
Dithiothreitol	DTT	Inhibitor of violaxanthin to zeaxanthin conversion

Table S2. Summary of frequently used parameters in photosynthesis research

Parameter	Concept
Fo	Chlorophyll fluorescence when all traps are open in the dark-adapted state, with
	quinone A (Q _A) in an oxidized state.
F _M	Maximum chlorophyll fluorescence in the dark-adapted state when all reactions
	centres are transiently closed and Q _A is in reduced state.
Fv	Variable fluorescence. Arithmetical difference between F _M and F _O
F _V /F _M	Maximum quantum yield of primary photochemistry.
F _M '	Maximum fluorescence when sample is light adapted.
NPQ	Non-photochemical quenching of excitation independent of photochemical
	reactions and fluorescence emission.
qI	Non-photochemical quenching due to photoinhibition, such as the formation
	of silent centres or photodamaged reaction centres.
qZ	Non-photochemical quenching due to sustained conversion of the xanthophyll
	violaxanthin to zeaxanthin via de-epoxidation to induce sustained quenching
	of excitation.
qE	Non-photochemical quenching caused by the reversible formation of ΔpH
	energization across the thylakoid membranes, which in turn can trigger
	xanthophyll de-epoxidation
1/F _o -1/F _m	The functional fraction of PSII that can perform photochemistry at a given time,
	in a dark-adapted state.
Fs	Fluorescence intensity at steady-state irradiance