Supplementary Material

CAM photosynthesis in desert blooming Cistanthe of the Atacama, Chile

Joseph A. M. Holtum^{A,B,E}, Lillian P. Hancock^C, Erika J. Edwards^D and Klaus Winter^B

^ACollege of Science and Engineering, James Cook University, Townsville, Qld 4811, Australia.

^BSmithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancon, Panama.

^cDepartment of Ecology and Evolutionary Biology, Brown University, Box G-W, Providence RI 02912, USA.

^DDept. of Ecology and Evolutionary Biology, Yale University, PO Box 208105, New Haven, CT 06520, USA.

^ECorresponding author. Email: joseph.holtum@jcu.edu.au

Fig. S1. Twenty-one days of net CO₂ exchange by a shoot of a potted *Cistanthe* aff. *crassifolia* growing in a 0.4 L plastic pot under 12 h light (26°C, 220 μ mol m⁻² s⁻¹)/ 12 h dark (20°C) periods. During this period, the plant was subjected to a drying/re-watering cycle during which watering was withheld on day 3 and recommenced on day 14. Green background = well-watered, white background = not watered. Blue filling = CO₂ exchange at night, and yellow filling = CO₂ exchange during the day.