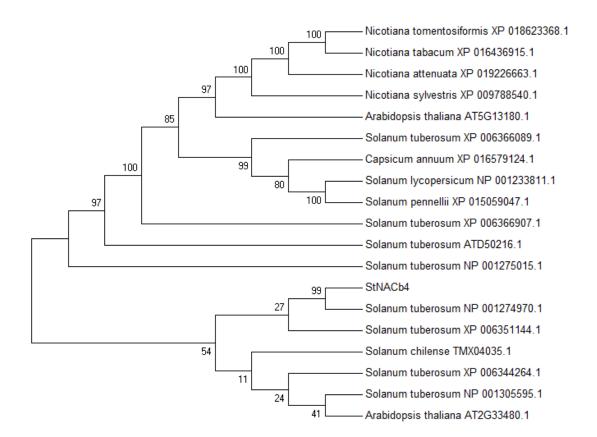
Supplementary Material

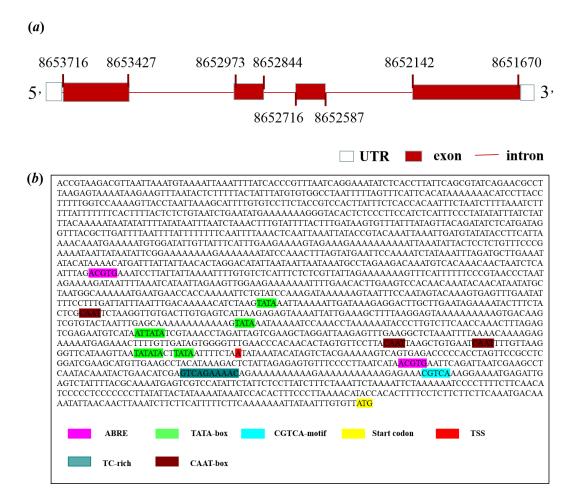
NAC transcription factor involves in regulating bacterial wilt resistance in potato

Yannan Chang^A, Ruimin Yu^A, Jinlin Feng^B, Huize Chen^B, Hemu Eri^C and Gang Gao^{A,D}

^AGenetic Engineering Laboratory, College of Life Science, Shanxi Normal University, Linfen 041000, China.


^BCell Biology Laboratory, College of Life Science, Shanxi Normal University, Linfen 041000, China.

^cFunction Food Laboratory, College of Food Science, Shanxi Normal University, Linfen 041000, China.


^DCorresponding author. Email: ggsxnu@126.com

		10			2	0			30			40			5	0		6	0
GAAAA	AAG	GGA	AGT	TAC	GAA	GAG	TGA	GAA	TTC	ATT	TAT	ACT	TCT	CTA	AATA	ATG	AAA	GCAA	60
																	K		
CCGGA	AAT	CAG	CAA											CCG		GAC	GAC	GAAT	120
T G	N	Q	Q	L	Ε	L	Р	A	G	F	R	F	Н	Р	Τ	D	D	Ε	
TGGTG	CAG	CAT	TAT	CTC	TGC	AGG	AAA	TGT	'CT I	'CTC	ТТТ	CCT	TTG	CCA	GCA	TCA	ATT	ATCC	180
L V	Q	Η	Y	L	С	R	K	С	L	L	F	Р	L	Р	A	S	Ι	Ι	
CTGAA	GTT	GAA	GTT	TAC	AAA	TCT	GAT	CCT	'TGG	GAT	TTG	CCA	GGT	'GAI	ATC	GAG	CAA	GAAA	240
P E	V	Ε	V	Y	K	S	D	Р	W	D	L	Р	G	D	M	Ε	Q	Ε	
AGTAT	TTT	TTT.	AGC	ACT	'AAG	GAA	.GTG	AAG	TAT	'CCA	AAT	GGA	AAC	GGG	TCA	AAT	'AGA	GCAA	300
K Y	F	F	S	T	K	E	V	K	Y	P	N	G	N	G	S	N	R	A	
CAAAT	T'CA	GGA	TAT	'I'GG	AAG	GCA	AC'I'	GGA	l'TA.	GAC	AAG	CAA	A'I'C	G'I'A	ATTA	AGG	GGC	CAAC	360
T N	S	G	Y	W	K	Α	Τ	G	Ι	D	K	Q	Ι	V	L	R	G	Q	
AAGTA	GGA	TTG	AAG	AAA	ACA	CTT	GTC	TTC	TAT	'AGA	GGA	AAA	TCT	CCA	CAT	'GGT	TGT	AGGA	420
Q V	G	L	K	K	Τ	L	V	F	Y	R	G	K	S	Р	Н	G	С	R	
CCAAT	TGG	ATT.	ATG	CAC	GAA	TAT	CGA	СТТ	TCC	AAT	CTC	GAA	TCT	AAC	CAC	CAC	CCA	ATCC	480
T N	M	Ι	M	Η	E	Y	R	\mathbf{L}	S	N	$_{\rm L}$	E	S	N	Η	Η	Р	Ι	
AGGGA	AAT	TGG	GTT	ATC	TGT	AGA	ATT.	TTC	TTG	AAA	AAA	AGA	.GGC	IAA	ACT	'AAA'	AAT	AAGG	540
Q G	N	W	V	I	С	R	I	F	$_{\rm L}$	K	K	R	G	N	T	K	N	K	
AGGAA	AAT	ATG.	ACA	ACA	CAT	GAT	GAG	GTT	'AGA	AAC	AGA	GAA	GTT	'GGI	'AAC	GAC	TCG	CCCC	600
E E	N	M	Τ	T	Η	D	E	V	R	N	R	E	V	G	N	D	S	P	
TTGTT	TCA	GT C	AAA	ACG	AGT	CCT	CGA	TAT	TCT	'GAG	ACA	TTG	GCT	TTC	GCC	AAC	AGT	GAAG	660
L V	S	V	K	T	S	P	R	Y	S	E	Τ	L	A	F	A	N	S	E	
TGAAG	AAG	AAG.	ACA	TCG	ATG	ATA	TTT	TAC	GAT	TTT	ATG	GGA	.GGG	ATA	ATT	'CAA	ATG	GAGT	720
V K	K	K	Т	S	M	I	F	Y	D	F	M	G	G	I	I	Q	M	E	
TGCAG	СТТ	CAT	CGT	CAA	GTA	GT G	GAA	TCA	CTG	ATT	TGA	CAA	CTA	CTA	ATG	AAG	AAT	CTGA	780
L O	$_{\rm L}$	Н	R	Q	V	V	E	S	L	Ι	*								
TGATC	ATG	AAG.	AAA	.GTA	CCT	GCC	CCG	GGC	GGC	CGC	TCG	AAC	AAC	TAC	TAA	TGA	AGA	ATCT	840
GATGA	TCA	TGA	AGA	AAG	TAC	CTG	C 8	64											

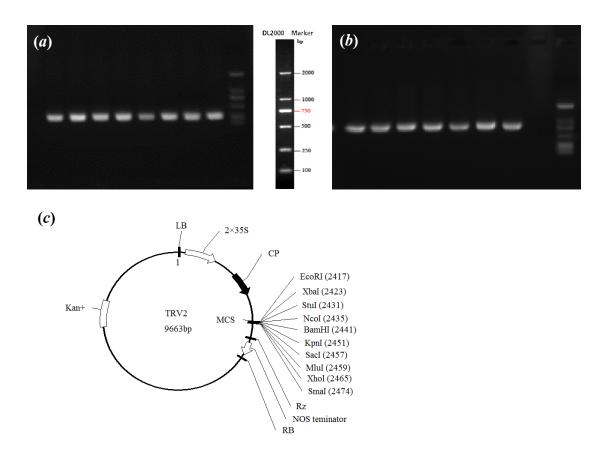

Fig. S1. The nucleic acid sequence and the encoded amino acid sequence of *StNACb4*. Note: Black underlined for the conservative domain NAM superfamily (12-133 aa).

Fig. S2. Evolutionary relationships of taxa. The evolutionary history was inferred using the Neighbor-Joining method. The optimal tree with the sum of branch length = 6.19541166 was shown. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) were shown next to the branches. The evolutionary distances were computed using the p-distance method and were in the units of the number of amino acid differences per site. The analysis involved 19 amino acid sequences. All positions with less than 50% site coverage were eliminated. That was, fewer than 50% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a total of 268 positions in the final dataset. Evolutionary analyses were conducted in MEGA7.

Fig. S3. Gene structure of *StNACb4* and cis-elements in the promoter sequence. (a) Gene structure of *StNACb4*; (b) cis-elements in the promoter sequence.

Fig. S4. Vector construction of VIGS-*NbNACb4* and VOX-*StNACb4*. (a) VIGS-*NbNACb4* colony PCR verification electrophoresis map, DL2000 Marker was used and the interference fragment size of *NbNACb4* gene was 249 bp; (b) VOX-*StNACb4* colony PCR verification electrophoresis map, DL2000 Marker was selected and *StNACb4* gene CDS fragment size was 708 bp; (c) pTRV2 vector map.

>StPR10 promoter

TAATAAGATAATAAAAAACAGGGGATAAAAAGTATTTTATTATAATTTATAATTTAAAGGGGC ATTAAATGTGTATATAGTTCTACAAGCTTAAAAATTTAACGTTTTGATATGTAGTATAATATTTTTA ATAAGGATT<u>GGTTGATATAG</u>TTTATATTATAATAAATATGTATTATTATGAGGGAGATAGGTGAA AATAAACAG<mark>CACGACGCA</mark>AAAAGTTTTTAGTTAAATTGATTAAAAATTTCAATTTAATCTATTGT AATTAAACTATAAAATTTGTTTTTTAAATCTATAAGTTTTTGATAAGTTTTTCATGATAATTTAACGT TGAGATCTTTTCTTTTAGTACTATTGGTTTTAACCTGCCTTTCATAATTTAAAATCGTATATTTCAA TTAATAATTTAAACCCAATATAAATTTGAAACATCTTTTAATGAAAAGAGCTTTACCAAAAAAAGG TTTCGTTCGTACTAGCTAAATTTCAAATTAGTTTATTAATAATACTATATTGATATTTGTTATAACT ATCTATTAAAACTTAAGTTCGTTAATCATAACTAACTATTATTATAGTCCTTTACTTGCAAGAAAA CATGAAAGTCTGAATTATCTTGATAGTTATTCCCAACAACATCTAACCATTCATGAGGAAGTAGA AATTAGTTGTCAATACCTAAACTCAATGAGTCTTATGTTTTAGTGGATACAATCTTATGGAAAATA GGATTACATTCTGAAAAGACATGCTTAAACATAAATTAGCTTAAGATTATTCTTCCTGTGACCTT $\mathsf{TI}\overline{\mathsf{CGTG}}\mathsf{ATGGTGCAACC}\underline{\mathsf{ATCCA}}\mathsf{AGGATGCCAGG}\underline{\mathsf{TTAGT}}\mathsf{TGAATTATAGCACAGTCGTTCGGAAT}$ AAAAATAGCTGGTATTA<mark>CGTA</mark>TTTTAAGAGTGT<mark>TACG</mark>GTGTTGATTGTTTTAATTAATAGTTTCT ATCACTGTGTTGTACATCTTTTTATTTTATTTTTTACCTGTGTTAACAGTTGTAACGTCGAAA AAAGGTTGATGAATATGTGGAAAATCTAATTCTAAATTGCTAAGTAGAATTAAATTTTAAAATATT AGTAATTTTTTATTAAATAAAAAAAAACAAACTATATAAGCAGAAAAACCTAATACTCATTATCCTA TTTAGGTTTTCTAAACTTGTCAAAAATGAATATGACTTATGCTCATTAACATTTGGTGAACAGGT TTCTAAATATAAATATACTGAAAAGTTCCATCCCTGTTTTGATTTATTAGT<u>TGGT</u>TTAGAGTG AGGTAAAAACAGGATATTTATGGTAGATTTTGAAAGTAATATAGTGTGTGTGA<mark>ATG</mark>

Fig. S5. Promoter sequence of *StPR10*. NAC recognition sequence (NACRS) or NAC binding sequences (NACBS) marked with red and borders were found in the promoter sequence of the *StPR10*. Translation Initiation site (ATG) was shown in a yellow box.

Table S1. Primers used in this study

Gene	Forward primer	Reverse primer	Function
StNACb4	F:ATGAAAGCAACCGGAAATCA	R:AATCAGTGATTCCACTACTTGA	Gene cloning of StNACb4
StNACb4	StNACb4-F: CAGGATATTGGAAGGCAACTGG	StNACb4-R: GATTGGGTGGTGGTTAGATTCG	
Actin	Actin-F: TATAACGAGCTTCGTGTTGCAC	Actin-R: ACTGGCATACAGCGAAAGAACA	RT-qPCR in potato
StPR10	StPR10-F: AGACAACAACTGAGTATCACAC	StPR10-R: GGTACGCTTCGATGGCCTTG	
StNACb4	Voxnac-F: ATACGTCCTAATCCCGAGAAGGT TAATTTTGTG (introduce homologous recombination)	Voxnac-R: CACGTCCTTAAATCCTTAATTTTTCTTC TAAAAGTAG (introduce homologous recombination)	StNACb4 overexpression transgenic
pTRV2	EXTRV-F: GGATTTAAGGACGTGAACTC	EXTRV-R: GGGATTAGGACGTATCGGACC	vector
NbNACb4	Xbanac-F: CGGGATCCTGATCCTTGGGATTT GCCAG (introduce XbaI enzyme site)	Bamnac-R: GCTCTAGACGATATTCGTGCATAATCC (introduce BamHI enzyme site)	VIGS of NbNACb4