Supplementary Material

Chloride and amino acids are associated with K⁺-alleviated drought stress in tea (*Camellia sinesis*)

Xianchen Zhang^{A,*}, Honghong Wu^{B,C,*}, Jingguang Chen^{D,*}, Linmu Chen^A and Xiaochun Wan^{A,E}

^AState Key Laboratory of Tea Plant Biology and Utilisation, Anhui Agricultural University, Hefei, 230036, China.

^BCollege of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.

^CCollege of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.

^DCAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural

Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.

^ECorresponding author. Email: wanxiaochun360@163.com.

*These authors contributed equally to this work.

Fig. S1. The phenotypes of two contrasting varieties, Taicha12 and Fuyun6, after drought stress for 7 days with the addition of K^+ .

Fig. S2. The effect of exogenous Gly (a), Lys (b) and Ser (c) on drought resistance in the tea variety of Fuyun6.

Fig. S1. The phenotypes of two contrasting varieties, Taicha12 and Fuyun6, after drought stress for 7 days with the addition of K^+ .

7 d

Lys 0 d 7 d

Fig. S2. The effect of exogenous Gly (a), Lys (b) and Ser (c) on drought resistance in the tea variety of Fuyun6.