Supplementary Material

Promoting pepper (*Capsicum annuum*) photosynthesis via chloroplast ultrastructure and enzyme activities by optimising the ammonium to nitrate ratio

Jing Zhang^A, Jianming Xie^{A,G}, Yantai Gan^B, Jeffrey A. Coulter^C, Mohammed Mujitaba Dawuda^{A,D}, Jihua Yu^A, Jian Lv^A, Jing Li^A, Xiaodang Zhang^A, Chaonan Tang^A, Cheng Wang^A, Tianhang Niu^A and Alejandro Calderón-Urrea^{E,F}

^ACollege of Horticulture, Gansu Agricultural University, Yingmen Village, Anning District, Lanzhou, 730070, P.R. China.

^BAgriculture and Agri-Food Canada, Swift Current Research and Development Centre, Swift Current, SK, S9H 3X2, Canada.

^CDepartment of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA.

^DDepartment of Horticulture, Faculty of Agriculture, University for Development Studies, Post Office Box TL 1882, Tamale, Ghana.

^ECollege of Plant Protection, Gansu Agricultural University, Lanzhou 730070, P.R. China.

^FDepartment of Biology, College of Science and Mathematics, California State University, Fresno, Fresno, CA, USA.

^GCorresponding Author. Email: xiejianming@gsau.edu.cn

Fig. S1: Quantum yield of non-regulated energy dissipation in photosystem II Y(NO), quantum yield of regulated energy dissipation in photosystem II [Y(NPQ)], and actual photosynthetic efficiency of photosystem II Y(II) as affected by ammonium to nitrate (A:N) ratio treatment.

Table S1. Concentration of salts (mM), electrical conductivity (EC) and pH in nutrient solution treatments.

Fig. S1: Quantum yield of non-regulated energy dissipation in photosystem II Y(NO), quantum yield of regulated energy dissipation in photosystem II [Y(NPQ)], and actual photosynthetic efficiency of photosystem II Y(II) as affected by ammonium to nitrate (A:N) ratio treatment. T1, A:N = 0:100; T2, A:N = 12.5:87.5; T3, A:N = 25:75; T4, A:N = 37.5:62.6; T5, A:N = 50:50. Vertical bars represent mean \pm SE (n = 3) and different letters denote significant differences ($P \le 0.05$) among treatments for a given day.

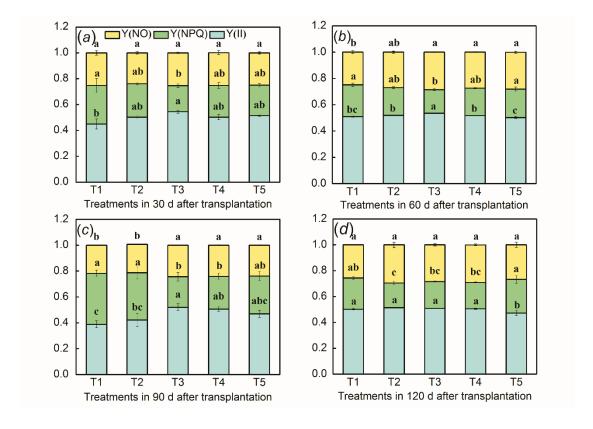


Table S1. Concentration of salts (mM), electrical conductivity (EC) and pH in nutrient solution treatments.

T1, A:N = 0:100; T2, A:N = 12.5:87.5; T3, A:N = 25:75; T4, A:N = 37.5:62.6; T5, A:N = 50:50. A, ammonium; N, nitrate

Salts(mM)	T1	T2	Т3	T4	T5
(NH ₄) ₂ SO ₄	0	0.625	1.25	1.875	2.5
KNO_3	5	5	5	5	5
$Ca(NO_3)_2 \cdot 4H_2O$	2.5	1.875	1.25	0.625	0
$CaCl_2$	0	0.625	1.25	1.875	2.5
KH_2PO_4	1	1	1	1	1
$MgSO_4 \cdot 7H_2O$	1	1	1	1	1
EC(μs/cm)	898	876	884	871	893
рН	7.0	6.9	6.8	6.7	6.8