Supplementary Material

Involvement of OpsLTP1 from *Opuntia streptacantha* in abiotic stress adaptation and lipid metabolism

Mario Rojas^A, *Francisco Jimenez-Bremont*^B, *Claudia Villicaña*^C, *Laura Carreón-Palau*^A, *Bertha Olivia Arredondo-Vega*^A and Gracia Gómez-Anduro^{A,D}

^ACentro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Apdo, Postal 128, 23096 La Paz, B.C.S., México.

^BInstituto Potosino de Investigación Científica y Tecnológica. Camino a la Presa San José 2055, Col. Lomas 4 sección CP. 78216, San Luis Potosí, S.L.P., México.

^cCONACYT-Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a Eldorado Km.
5.5, Apartado Postal 32-A. C. P. 80110, Culiacán, Sinaloa, México.

^DCorresponding author. Email: ggomez@cibnor.mx

Α

Fig. S1. Sequence analysis and genomic characterization of *OpsLTP1* **gene. A**) ORF and predicted amino acid sequence of *Opuntia streptacantha* lipid transfer protein 1 (OpsLTP1). The qRT-PCR primers are shown in bold, italics, and underlined letters. Polyadenylation signals are enclosed in rectangles and stop codon is indicated with an asterisk. **B**) ORF amplification of *OpsLTP1* using cDNA and genomic DNA isolated from *O. streptacantha* cladodes. MW, molecular weight; gDNA, genomic DNA.

Fig. S2. Generation of *OpsLTP1* overexpressing *Arabidopsis* plants. A) Schematic diagram of *OpsLTP1* cloning in pMDC32 binary vector used to generate *OpsLTP1* overexpressing transgenic plants. B) Relative quantification of *OpsLTP1* in overexpressing transgenic lines. Col-0 was used as a control. Expression data was normalized with the housekeeping gen *AtEF1*. Transgenic lines selected for further analysis are indicated by arrows; n=3.

Α			
	AtLTP2	MAGVMKLACLLLACMIVAGPITSNAALSCGSVNSNLAACIGYVLQGGVIPPACCSG	56
	AtLTP1	MAGVMKLACMVLACMIVAGPITANALMSCGTVNGNLAGCIAYLTRGAPLTQGCCNG	56
	AtLTP7	MAGLMKLGCLVFVFVIAAGPITAKAALSCGEVNSNLKPCTGYLTNGGITSPGPQCCNG	58
	AtLTP12	MEGLLKLSTLVIVCMLVTAPMASEAAISCGAVTGSLGQCYNYLTRGGFIPRGCCSG	56
	OpsLTP1	MASSTSFKLACALFLCMVVVAPH-AEAAITCGIVVGKLRPCLAYLKGGPAPPPECCAG	57
	AtLTP3	MAFALRFFTCLVLTVCIVASVDAAISCGTVAGSLAPCATYLSKGGLVPPSCCAG	54
		* : : : : : : * : : * * . * * . * * . * * .	
	AtLTP2	VKNLNSIAKTTPDRQQACNCIQGAARALGSGLNAGRAAGIPKACGVNIPYKISTSTNC	114
	AtLTP1	VTNLKNMASTTPDRQQA <mark>C</mark> RCLQSAAKAVGPGLNTARAAGLPSA <mark>C</mark> KVNIPYKISASTN <mark>C</mark>	114
	AtLTP7	VRKLNGMVLTTLDRRQACRCIKNAARNVGPGLNADRAAGIPRRCGIKIPYSTQIRFNTKC	118
	AtLTP12	VQRLNSLARTTRDRQQACRCIQGAARALGSRLNAGRAARLPGACRVRISYPISARTNC	114
	OpsLTP1	VRQLNAMATTTPDRQTACGCFKSAAASVS-GLNAKNAAALPGKCGVSIPYPISMSVDC	114
	AtLTP3	VKTLNSMAKTTPDRQQACRCIQSTAKSIS-GLNPSLASGLPGKCGVSIPYPISMSTNC	111
		* *: :. ** **: ** *: :* :. **. *: :* * :* * :*	

В

Fig. S3. Comparative analysis of OpsLTP1 and homolog *Arabidopsis thaliana* LTPs and selection of *ltp3* homozygous mutants. A) Multiple sequence alignment. Red rectangles indicate the eight conserved cysteines. B) Schematic representation of the T-DNA insertion in *AtLTP3* gene from *ltp3* mutant plants. T-DNA insertion is represented by an inverted triangle and primers used for amplification are indicated by black arrows. The grey boxes represent exons and a line indicates the unique intron of *AtLTP3* gene. C) Amplification of a 1024 bp product lacking of the T-DNA insertion in *the AtLTP3* gene; thus, only Col-0 plants amplified the expected product. D) Amplification of a 500 bp product indicating the T-DNA insertion in *ltp3* mutant plants. MW, molecular weight; -, negative control.

Fig. S4

Fig. S4. Effects of salt treatments in *OpsLTP1-3* overexpressing line on germination and seedling recovery. A) Root length under different salt treatments on germination. B) Survival rate, and C) growth of *OpsLTP1* overexpressing seedlings after salt treatment recovery in soil pots.

Fig. S5. Effects of osmotic treatments in *OpsLTP1-3* overexpressing line on germination and seedling recovery. A) Root length of seedlings germinated under different osmotic potentials over 15 days. B) Survival rate, and C) growth of *OpsLTP1* overexpressing seedlings after osmotic treatment recovery in soil pots.

Fig. S6. Survival rates of *ltp3*, *OpsLTP1-3* and Col-0 seedlings under freezing stress. One-month seedlings were frozen 2 h at -20°C and recovered 10 days under optimal growth conditions.

 Table S1. Primer sequences used in this study.

Primer name	Gen	Sequence	Use
OpsLTP-5	OpsLTP1	5'-CAGAATGGCTAGCTCAGCGGTT-3'	cDNA and genomic DNA amplification, cloning
OpsLTP-3	OpsLTP1	5'-CATGTAGTTCACCTTGGAGCAGTC-3'	cDNA and genomic DNA amplification, cloning
At5g60390EF1F	AtEF1	5′-CACCACTGGAGGTTTTGA GG-3′	qRT-PCR
At5g60390EF1R	AtEF1	5′-TGGAGTATTTGGGGGTGGT-3′	qRT-PCR
OpsLTPqPCR	OpsLTP1	5'-CCTCGGCCGATCGGAAAAC- 3'	qRT-PCR
OpsLTPqPCRrev	OpsLTP1	5'-GACCTGGAATAGTACCAGCAG-3'	qRT-PCR
SALK_095248LTPF	AtLTP3	5′-TCGATGCATAATCAAATCGTG-3′	ltp3 mutant verification
SALK_095248LTPR	AtLTP3	5'-GTTCAAACACAATGGCTTTCG-3'	ltp3 mutant verification
LBb1.3	T-DNA	5'-ATTTTGCCGATTTCGGAAC-3'	ltp3 mutant verification

Table S2. Identification of OpsLTP1 orthologues in Arabidopsis thaliana.

Chromosome	Location	Locus	Gene	% identity
Chr 5	23928971-23929745 forward	At5g59320	AtLTP3	57
Chr 2	16128378-16129158 forward	At2g38530	AtLTP2	49
Chr 2	1613035016131174 forward	At2g38540	AtLTP1	49
Chr 3	1913566519136675 reverse	At3g51590	AtLTP12	47.2
Chr 2	65188436519360 forward	At2g15050	AtLTP7	43.6

Table S3. Fatty acid composition of triacylglycerols (storage neutral lipids) of wild-type Col-0, *ltp3* mutant *OpsLTP1* overexpressing *Arabidopsis* seeds. NFA, neutral fatty acids.

FAME	Col-0	ltp3	OpsLTP1	F	р
16:0	12.3±2.9ª	10.1±1.8ª	9.9±0.7ª	1.70	0.273
18:0	4.6±0.4ª	3.3±0.1 ^b	3.2±0.5 ^b	15.95	0.007
18:1ω9	14.9±0.9ª	16.7±0.1ª	16.5±1.1ª	3.92	0.095
18:1ω7	1.4±0.2ª	1.6±0.04ª	1.6±0.1ª	1.79	0.260
18:2ω6	26.9±0.04ª	29.0±0.9 ^{ab}	30.6±1.0 ^b	24.3	0.003
18:3ω3	16.4±1.3ª	15.9±0.1ª	14.4±0.8ª	4.35	0.080
20:0	2.1±0.1ª	1.8±0.2 ^{ab}	1.4±0.1 ^b	9.58	0.019
20:1ω9	14.7±1.0ª	14.8±1.8ª	15.7±0.8ª	0.93	0.455
20:1ω7	1.4±0.1ª	1.6±0.1ª	1.7±0.2ª	3.02	0.138
20:2ω6	1.6±0.4ª	1.5±0.2ª	1.5±0.1ª	0.18	0.838
20:3ω3	0.4±0.2ª	0.5±0.02ª	0.3±0.1ª	1.78	0.261
22:1ω9	1.5±0.3ª	1.6±0.4ª	1.6±0.2ª	0.12	0.886
NFA (% dw)	5.1±0.6ª	5.0±1.0ª	5.8±0.6ª	4.63	0.073

FAME	Col-0	ltp3	OpsLTP1	F	р
16:0	34.2±4.9ª	17.4±10.0ª	22.6±7.1ª	5.7	0.051
16:2 ω6	2.4±0.1ª	0.6±0.5 ^b	1.4±0.7 ^b	10.64	0.016
18:0	20.0±3.4ª	5.6±2.6 ^b	11.4±5.4 ^b	9.95	0.018
18:1ω9	6.8±1.4ª	13.3±2.8 ^b	10.8±2.8 ^b	7.10	0.035
18:1ω7	1.2±0.1ª	2.0±0.1 ^b	1.9±0.5 ^b	6.60	0.040
18:2ω6	16.1±2.4ª	32.1±1.0 ^b	25.7±5.6 ^b	13.66	0.009
18:3 ω 3	8.3±1.3ª	13.3±4.2 ^a	10.2±2.3ª	2.83	0.098
20:0	1.2±0.3ª	1.2±0.8ª	1.3±0.3ª	0.60	0.941
20:1ω9	5.9±1.6ª	9.2±5.2ª	9.0±3.1ª	1.41	0.329
20:1ω7	0.4±0.3ª	0.9±1.1ª	1.0±0.5ª	1.35	0.341
20:2ω6	0.4±0.1ª	0.1±0.7ª	0.8±0.5ª	1.85	0.251
20:3ω3	0±0ª	0.2±0.1 ^b	0.3±0.1 ^b	11.26	0.014
22:1ω9	0.3±0.1ª	0.8±0.7ª	0.8±0.6ª	1.18	0.382
GFA (% dw)	0.2±0.1ª	0.5±0.2ª	0.4±0.3ª	0.83	0.489

Table S4. Fatty acid composition of tilacoid membrane galactoglycerolipids of wild-type Col-0, *ltp3* mutant *OpsLTP1* overexpressing *Arabidopsis* seeds. GFA, Galactoglycerolipid fatty acids.

FAME	Col-0	ltp3	OpsLTP1	F	р
16:0	37.1±3.7ª	48.3±0.1 ^b	32.8±8.8ª	8.42	0.037
16:2 ω6	5.8±1.8ª	7.0±0.1ª	5.0±3.5ª	0.67	0.561
18:0	20.5±8.4ª	27.5±1.6 ^a	11.2±1.8ª	4.76	0.088
18:1ω9	6.3±2.3ª	2.8±0.1ª	10.5±4.9ª	5.55	0.070
18:1ω7					
18:2ω6	20.1±5.4ª	10.2±0.3 ^b	30.6±0.6 ^c	18.11	0.010
18:3ω3	4.7±2.0ª	0.8±0.1ª	3.7±2.6ª	3.87	0.116
20:0	0.7±0.3ª	0.8±0.1ª	0.7±0.3ª	0.38	0.708
20:1ω9	3.1±1.9ª	0.4±0.3ª	3.6±2.1ª	1.22	0.387
20:1ω7					
20:2ω6					
20:3ω3					
22:1ω9					
PFA (% dw)	0.06±0.02ª	0.02±0.003ª	0.05±0.01ª	6.20	0.060

Table S5. Fatty acid composition of cellular membrane phospholipids of wild-type Col-0, *ltp3* mutant *OpsLTP1* overexpressing *Arabidopsis* seeds. PFA, phospholipid fatty acids.