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Environmental context. Chlorofluorocarbons (CFCs) are potent greenhouse and stratospheric ozonedepleting
trace gases. Their atmospheric concentrations are in decline, thanks to global production and consumption
controls imposed by the Montreal Protocol. In recent years, the rates of decline of CFC atmospheric
concentrations, especially for CFC-11 (CCl3F), are not as large as anticipated under the Protocol, resulting in
renewed efforts to estimate CFC consumption and/or emissions to possibly identify new or poorly quantified
sources.

Abstract. Australian emissions of chlorofluorocarbons (CFCs) have been estimated from atmospheric CFC observa-
tions by both inverse modelling and interspecies correlation techniques, and from CFC production, import and
consumption data compiled by industry and government. Australian and global CFC emissions show similar temporal
behaviour, with emissions peaking in the late-1980s and then declining by ,10% per year through to the present.

Australian CFC emissions since 1978 account for less than 1% of global emissions and therefore make a correspondingly
small contribution to stratospheric ozone depletion. The current CFC emissions in Australia are likely from ‘banks’ of
closed-cell foams, and refrigeration–air conditioning equipment now more than 20 years old. There is no evidence of

renewed consumption or emissions of CFCs in Australia. The reduction in CFC emissions has made a significant
contribution to reducing Australian greenhouse gas emissions.

Keywords: atmospheric and ‘bottom-up’ emissions estimates, Australian and global chlorofluorocarbon emissions,
emission estimates by inverse calculations and interspecies correlation, impacts on ozone depletion and climate change.
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Introduction

Chlorofluorocarbons (CFCs) have been used extensively over
the past 70 years as refrigerants, aerosol propellants, foam
blowing and foam insulating agents, and solvents. CFCs used in

aerosol cans and as solvents are typically released to the atmo-
sphere within a few years of production, while CFCs in refrig-
eration and air conditioning equipment and in foams are released

over longer time scales, up to decades. CFCs released to the
atmosphere since the mid-20th century are responsible for
,35% of stratospheric ozone depletion arising from natural and

anthropogenic chlorine and bromine-containing ozone deplet-
ing substances (ODSs) and nearly 10%of climate change driven
by long-lived greenhouse gases – GHGs (Molina and Rowland
1974; Ramanathan 1975; Carpenter and Reimann 2014; Myhre

and Shindell 2014).
The global production and consumption of CFCs, which

currently supply 60% of ozone depleting chlorine from the

troposphere to the stratosphere (Rigby et al. 2014), were phased-
out in 2010 under the international obligations of the Montreal
Protocol (UNEP 2012). Under the same Protocol, manufacture

and importation of CFCs within and into Australia were effec-
tively banned at the end of 1995 (95% phase-out), which, at that
time, was well ahead of the requirements of the Montreal
Protocol for developed countries (50% phase-out by 2000;

Environment Australia 2001). Although designed primarily to
control the global production and consumption of ODSs, the
resultant reduction in ODS emissions has had a significant

impact on the mitigation of climate change (Velders et al.
2007; Carpenter and Daniel 2018).

Global emissions of the major CFCs – CFC-12 (CCl2F2),

CFC-113 (CCl2FCClF2) and, in particular CFC-11 (CCl3F) –
have not declined as rapidly as expected under the Montreal
Protocol controls on production and consumption (Engel and
Rigby 2018; Montzka et al. 2018). New, globally significant

CFC-11 emissions, which commenced in,2012 from east Asia,
are a significant driver of the recent increase in global CFC-11
emissions (Montzka et al. 2018; Rigby et al. 2019). If global

CFC-11 emissions were to continue into the future at the recent
enhanced rate of 67 Gg per year, it could delay recovery of mid-
latitude and Antarctic ozone depletion by ,7 and 20 years
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respectively (Carpenter and Daniel 2018). Avoiding these

increased CFC-11 emissions could have a larger positive impact
on stratospheric ozone than any other policy option considered
in the latest assessment of stratospheric ozone depletion, includ-

ing destruction of the CFCs still existing in CFC ‘banks’ found
in foams, refrigeration and air conditioning equipment
(Carpenter and Daniel 2018). However, recent re-evaluations
of the magnitude of global CFC banks, and their related CFC

emissions, indicate they may be underestimated (Lickley et al.
2020) and destruction of the CFC banks may be comparable, in
relation to ozone recovery, to avoiding the increased CFC

emissions from east Asia.
Countries are being encouraged to take action to locate and

dispose of these banks of CFCs (Nature 2020). As with CFC-11,

further, but smaller, delays in Antarctic ozone recoverymight be
anticipated if levels of CFC-12 and CFC-113 in the atmosphere
do not decline as fast as anticipated (Carpenter and Reimann
2014) under Montreal Protocol production and consumption

restrictions.
These findings have encouraged a new focus on the status of

current CFC-11 emissions, and on emissions of other CFCs, at

global and national levels, in both developed and developing
countries. The Scientific Assessment Panel (SAP) to the Mon-
treal Protocol, through SPARC (Stratosphere-troposphere Pro-

cesses And their Role in Climate), is reviewing global CFC-11
research activities and is identifying research and observational
gaps, to more accurately define the CFC-11 problem and

recommend possible measures to address this issue (Harris
et al. 2019). In this paper, we identify CFC emissions from
south-east Australia (Victoria, SE South Australia, southern
NSW, Tasmania) and estimate Australian CFC emission from

their inception in the early 1960s through to 2017, in the context
of this global effort to better understand past and present CFC
emissions.

Australian atmospheric CFC trends and emissions (1983–
2017) are estimated from observations made at Cape Grim,
Tasmania (40.7 8S, 144.7 8E; 1982–2018) and Aspendale,

Victoria (38.0 8S, 145.1 8E; 2004–2018), and, in the absence of
atmospheric observations, from Australian CFC consumption
estimates from production, import and export data for 1962–
1982, compiled by the Australian government and the Austra-

lian refrigeration and air conditioning industries.
Comparisons of total emission and consumption data enable

qualitative estimates of remaining CFC ‘banks’ in Australia and

current and possible future emissions are discussed in terms of
these legacy ‘banks’. Reducing CFC emissions can be signifi-
cant in climate change mitigation. We assess the changes in

Australian CFC emissions in the context of efforts to reduce
total Australian GHG emissions.

Global CFC emissions

Global emissions of major and minor CFCs based on atmo-
spheric observations – so-called ‘top-down’ estimates – peaked
in 1987–88 at over 1100 Gg (k tonnes) per year (Fig. 1),

declining by,90% (10% per year) to 120 Gg in 2015. Global
summed emissions of CFC-11, CFC-12 and CFC-113 from
atmospheric observations peaked at 1090 Gg in 1987–88 and at

1050� 90 (95% confidence interval, CI) Gg in 1987–88 from a
model estimating emissions from CFC production, consump-
tion and ‘banks’ – so-called ‘bottom-up’ estimates (Fig. 1;

Rigby et al. 2014; Engel and Rigby 2018; Prinn et al. 2018;
Lickley et al. 2020). These declining CFC emissions translate
into a significant decline (,90%) in carbon dioxide equivalent

(CO2-e) emissions of 8000 Tg (1 Tg ¼ 103 Gg) over the same
period (Fig. 1).

Emissions of CFC-12 (CCl2F2) have declined approxi-
mately exponentially over this period, as expected under the
Montreal Protocol, whereas emissions of CFC-11, CFC-113
(CCl2FCClF2), SCFC-114 (¼ CClF2CClF2þCCl2FCF3) and

CFC-115 (CClF2CF3) stopped declining by the mid-2000s
(Rigby et al. 2014; Engel and Rigby 2018; Montzka et al.
2018; Prinn et al. 2018; Vollmer et al. 2018). These data suggest

that the emissions of all CFCs, except CFC-12, have not been
responding as anticipated to Montreal Protocol-based restric-
tions on consumption since the mid-2000s. Subsequently, there

has been an unexpected and persistent increase in global CFC-
11 emissions since 2012 (Engel and Rigby 2018; Montzka et al.
2018; Prinn et al. 2018), owing largely to increased emissions
from east Asia (Montzka et al. 2018), in particular from eastern

mainland China (Rigby et al. 2019). South-west and central
China may also be possible source regions for CFC-11 emis-
sions (Lin et al. 2019), but it is not known whether emissions

from these regions have increased in recent years. For the period
1978–2010, global CFC-11 emissions comprised 35� 5 (1s)%
of global CFC emissions; today (2015–2018) the CFC-11 frac-

tion of global CFC emissions has increased to 60 � 2 (1s)%,
largely owing to these increased emissions from China.

The increased emissions of CFC-11 from China are unlikely

to arise from increased rates of release from pre-phase-out
banks of CFC-11 in existing foams and refrigeration equipment,
but are probably the result of new production and consumption
not reported to the United Nations (Montzka et al. 2018;
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Fig. 1. Top panel: global CFC (CFC-11: CCl3F, CFC-12: CCl2F2, CFC-

113: CCl2FCClF2, minor CFCs ¼ sum of CFC-13: CClF3, SCFC-
114 ¼ CFC-114 (CClF2CClF2)þCFC-114a (CCl2FCF3), and CFC-115:

CClF2CF3) emissions (Gg; Rigby et al. 2014; Engel and Rigby 2018) from

AGAGE (Advanced Global Atmospheric Gases Experiment) global atmo-

spheric data (Prinn et al. 2000, 2018); model estimates of global CFC-

11þCFC-12þCFC-113 emissions from CFC production, consumption and

banks, uncertainty 95%CI (Lickley et al. 2020); bottom panel: global CO2-e

emissions (Tg) from the CFC emissions above, using Global Warming

Potentials (GWPs) from the IPCC Fourth Assessment Report (Myhre and

Shindell 2014).
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Rigby et al. 2019). To better quantify themagnitude and location

of CFC-11 emissions in China, enhanced CFC-11 monitoring
activities in China have been foreshadowed (Cyranoski 2019).
There has also been a small but significant increase in global

CFC-115 emissions since 2010, likely from east Asia-China
(Engel and Rigby 2018; Vollmer et al. 2018).

In this paper, estimates of Australian CFC emissions from
early 1960s to 2017 are based on atmospheric CFC observations

at Cape Grim, Tasmania (1982–2018) and, in the absence of
atmospheric data (1960s-early 1980s), are based on CFC con-
sumption data, assuming that CFC emissions are related to CFC

consumption. Australian CFC consumption data are based on
CFC production data, compiled by the Australian CFC produc-
tion industry, and CFC import data, compiled by the Australian

government.

Australian CFC production, imports, exports and
consumption

CFC production and imports

Two companies, Australian Fluorine Chemicals (AFC) and

Pacific Chemicals Industries (PCI), commenced production of
CFC-11/CFC-12 in Sydney, Australia, in the early 1960s. During
1970–1974, 75% of Australian production was for aerosol

products, 15% for refrigeration and 10% for foams (DEHCD
1976); by 1979–1980, the production split was 50% for aerosols,
30% for refrigeration and 20% for foams (AEC/NHMRC 1983).

Assuming 90% of refrigeration was CFC-12 based (10% CFC-
11), foamswere 90%CFC-11 based (10%CFC-12) and aerosols
were 50%/50% CFC-11/CFC-12 (AFEAS 1997), then the over-
all Australian CFC production split would have been 46% CFC-

11/54% CFC-12 in 1970–1980.
The only CFCs known to have been produced in Australia

were CFC-11 and CFC-12, whose productions were reported as

CFC-11þCFC-12. If CFC-113 had been produced in Australia,
it would have been reported along with CFC-11þCFC-12
production. The global CFC-113 market in the 1960s was

,10% of the CFC-11þCFC-12 market and it is unlikely that
the Australian CFC-113 market at that time would have been
large enough to justify the installation of a separate production
facility for CFC-113.

Data on Australian CFC production are limited, but available
for the combined production of CFC-11 and CFC-12 for 1970–
1981 and 1991–1995; scenarios of CFC-11þCFC-12 produc-

tion and their uncertainties (�30%, 1s), based on the phase-out
schedules for CFCs in aerosols, are available for 1982–1985
(Fig. 2; DEHCD 1976; AEC/NHMRC 1983); data are also

available for the separate production of CFC-11 and CFC-12
for 1991–1995, after which production ceased (Environment
Australia 2001). Production is assumed to be zero in 1962. For

the intervening periods (1962–1969, 1986–1990), production
data are obtained by linear interpolation.

The earliest CFC import data for Australia are from 1991.
Once CFC production commenced in Australia, CFC imports

were near zero (AEC/NHMRC 1983); however, pre-1962 (pre-
production), small quantities of CFC imports were likely.

The data on Australian CFC-11þCFC-12 production and

imports follows a similar pattern to global CFC-11þCFC-12
production (Fig. 2), the latter with peaks in 1974 and 1987–1988
(Lickley et al. 2020). Data on Australian production plus

imports show an initial peak in 1974 and a second peak
,1985 (scenario data, AEC/NHMRC 1983), although a later
peak is possible as the scenario data do not extend beyond 1985.

Total Australian production plus imports for 1962–2000 was

345 Gg (k tonnes), assuming no CFC imports before 1962,
which is 1.3% of global production (25.1 Gg; Lickley et al.
2020) over the same period. The Australian gross domestic

product (GDP) was 1.3% of global GDP over the same period
(https://data.worldbank.org/indicator/NY.GDP.MKTP.CD
[verified March 2020]).

If there were Australian CFC imports before 1990 and 1970

such that Australian production plus imports followed the global
production trends reported by Lickley et al. (2020) for 1960–
1970 and 1985–1990, then total Australian production plus

imports for 1960–2000 would have been ,5% larger or 1.4%
of global production.

Australian production plus imports of CFC-11þCFC-12

declined by nearly 50% from 8.3 Gg in 1991 to 4.1 Gg in
1995, 47% CFC-11 and 53% CFC-12 over this 5-year period,
similar to the CFC split described above for 1970–1980 based on

the CFC usage pattern in aerosols, refrigeration and foams.
A 47 : 53 production split for CFC-11þCFC-12 is assumed for
those years where individual CFC production data were not
available.

There are no published estimates of the uncertainties in
Australian CFC production. Historically, CFC producers glob-
ally have estimated the uncertainty in reported CFC production

data at�0.5% (Fisher andMidgley 1994). However, production
of CFC-11 and CFC-12 reported to UNEP (United Nations
Environment Programme) differed from industry estimates in

1989 by ,5%, with an additional 12–25% of unreported
production (Campbell and Shende 2005). A recent (Lickley
et al. 2020) analysis of CFC-11þCFC-12 production, based on
data reported to UNEP, suggest an average uncertainty range

of �20% (95% CI).
It is unlikely that there was unreported CFC production in

Australia. For the 35-year CFC production period (1962–1995),
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Fig. 2. Top panel: Australian production plus imports (Gg) for CFC-11,

CFC-12, CFC-11þCFC-12, CFC-113, minor CFCs (CFC-114þCFC-

114aþCFC-115) (DEHCD 1976; AEC/NHMRC 1983; Environment Aus-

tralia 2001; global production for CFC-11þCFC-12 (Gg) with 95% CI

(Lickley et al. 2020); bottom panel: Australian consumption (Gg) for CFC-

11, CFC-12, CFC-113 and minor CFCs (CFC-114þCFC-114aþCFC-115)

(DEHCD 1976; AEC/NHMRC 1983; Environment Australia 2001); sce-

nario (see text) and interpolated data are shown as dotted and dashed lines.
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there are production data for 18 years (1970–1981, 1991–1995)

and production scenario data for four years (1982–1985), based
on hydrocarbons replacing CFCs as aerosol propellants, result-
ing in the early closure of one CFC production facility (AEC/

NHMRC 1983). If we assume�10% (2s) uncertainty for these
years and�20% (2s) uncertainty for the years when production
is calculated by linear interpolation, this results in an overall
uncertainty of total Australian production of �25% (2s).

Decommissioning of Australian CFC production facilities in
Sydney commenced in the mid-1980s (AFC) and was completed
in 1995 (PCI). To meet CFC demand in Australia, significant

imports of CFC-11 and CFC-12 commenced, or possibly recom-
menced, in the mid-1980s and continued until 2000 when CFC
imports had essentially ceased (Environment Australia 2001).

CFC exports and consumption

During the period 1990–1995, Australia exported 55% of
CFC-11 and 20% of CFC-12 produced and imported

(Environment Australia 2001). CFC-11 and CFC-12 are typi-
cally co-produced (TEAP 2019).

CFC consumption (production plus imports minus exports)
data are available for CFC-11, CFC-12, CFC-113, CFC-114, the

latter likely containing some CFC-114a, and CFC-115 for the
period 1990–2000; the combined consumption of CFCs (CFC-
11, CFC-12) was 14 Gg (14 k tonnes) in 1986, the base year for

phase-out under the Montreal Protocol (Environment Australia
2001). We assume that the contributions of CFC-11, CFC-12,
CFC-113, CFC-114 and CFC-115 to total CFC consumption in

1986 were the same as in 1990. Assuming zero imports and
exports of CFCs into and from Australia in 1974, then the
combined consumption of CFC-11 and CFC-12 in 1974 would
not have exceeded 16 Gg, the amount produced. There have

been no significant imports of CFCs into Australia after 2000.
Since CFC consumption in Australia accounted for 98% of CFC
production, the overall uncertainty in CFC-11þCFC-12 con-

sumption is likely the same as for production i.e. �25% (2s).
In summary, CFC-12 andCFC-11 consumption data, derived

from combined CFC-11 and CFC-12 production and scenario

data, are available for 1970–1985 and individual CFC-11, CFC-
12, CFC-113, CFC-114 and CFC-115 consumption data are
available for 1990–2000. There are no CFC-113, CFC-114 and

CFC-115 consumption data available for pre-1990. CFC-11 and
CFC-12 consumptions are assumed to be zero in 1962, the year
before production commenced in Australia. As indicated above,
there may have been CFC imports before the commencement of

Australian CFC production. It is unlikely that production would
have commenced without the previous demonstration of a
market for products using CFCs. Such a market could only have

been established with CFC imports.
For the periods 1962–1969 and 1986–1989, consumption

data were obtained by linear interpolation of published con-

sumption data (Environment Australia 2001). It could be
assumed that, during these periods, trends in CFC consumption
followed global trends, and this results in small consumption
differences (5% larger) compared with those resulting from

linear interpolation.
TheAustralianCFCconsumption data (1962–2000) are shown

in Fig. 2. Peak consumption for these CFCs occurred in 1974

(CFC-11: 7.5 Gg; CFC-12: 8.5 Gg), followed by a slow decline to
1979 (CFC-11: 5.6 Gg; CFC-12: 6.4 Gg), then increasing to 1985
(CFC-11: 7.1 Gg; CFC-12: 8.0 Gg). From 1985 to 1996, CFC-11

consumption declined rapidly to less than 0.1 Gg. During this

period, Australian CFC-12 consumption declined more slowly
than CFC-11 consumption, falling to 2.8 Gg by 1995, but it then

collapsed to under 0.2Gg in 1996.By 2000, consumption of CFC-
11 and CFC-12 in Australia had virtually been eliminated, each
falling to less than 0.01 Gg per year.

Total Australian consumption for 1962–2000 was 150 �
40 Gg for CFC-11, 175 � 45 Gg for CFC-12 and 5 � 1 Gg for
CFC-113 (1990–2000), for a total of 330 � 85 Gg (all uncer-
tainties 2s). Owing to lack of early import data, it is not possible

to estimate Australian consumption for CFC-113, CFC-114 and
CFC-115 before 1990.

Australian CFC recovery and destruction

In response to obligations under the Montreal Protocol, the
Australian government has required, under the Ozone Protec-

tion and Synthetic Greenhouse Gas Management Act 1989

(DoEE 2018) that the Australian refrigeration and air condi-
tioning industries deal responsibly with ODSs, mandating the
recovery, reprocessing or destruction of refrigerants, including
CFCs and hydrochlorofluorocarbons (HCFCs). In 1993, these

industries established a not-for-profit organisation, Refrigerant
Reclaim Australia (RRA), to recover, reclaim and destroy sur-
plus and unwanted refrigerants (RRA 2018).

In 2003, legislation was enhanced (Ozone Protection and

Synthetic Greenhouse Gas Legislation Amendment Act 2003;
DoEE 2018)making itmandatory for these industries to recover,

return and safely dispose of ozone depleting and synthetic
greenhouse gas refrigerants, including hydrofluorocarbons
(HFCs) and perfluorocarbons (PFCs). In Australia, nearly all
refrigerant recovery, reprocessing and destruction is carried out

in the RRA program. Of the refrigerants recovered, 91% are
destroyed, 6% reclaimed, 2% used as feedstocks and 1% are
stored (RRA 2018).

Since 1993, the RRA program has recovered over 6.5 Gg of
surplus and unwanted refrigerants, including 3.2 Gg of HFCs,
2.6 Gg of HCFCs and 0.8 Gg of CFCs, including 0.4 Gg of CFC-

11 and 0.3 Gg of CFC-12. The cumulative recoveries of CFC-11
and CFC-12 under the RRA program are shown in Fig. 3. Peak
annual CFC-11 recovery occurred in 2010 (25 tonnes, 0.025Gg)

and, for CFC-12, 23 tonnes (0.023 Gg) in 2008. Small amounts
of CFCs are still being recovered with 5 tonnes (0.005 Gg) of
CFC-11 and 2 tonnes (0.002 Gg) of CFC-12 recovered in 2017
(M. Bennett, RRA, pers. comm., August 2018). The amounts of

CFC-11 and CFC-12 recovered since 1993 (0.7 Gg) are small
compared with the total CFC-11þCFC-12 consumption in
Australia (1962–2000) of 325 Gg.
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Experimental

The atmospheric CFC data reported in this paper were obtained
from in situ gas chromatographic (GC) instruments, incorpo-
rating electron capture detection (GC-ECD) and mass spectro-

metric detection (GC-MSD), operating at Cape Grim,
Tasmania, and CSIRO Aspendale (Fig. 4). These activities are
part of an international collaboration tomeasure abundances and

trends of ODSs and non-CO2 greenhouse gases: GAGE (Global
Atmospheric Gases Experiment, 1981–1994, Prinn et al. 2000;
Fraser et al. 2016) and AGAGE (Advanced Global Atmospheric

Experiment, 1994–present, Fraser et al. 2016; Prinn et al. 2018).
Quasi-continuous measurements of CFC-11 (1976–present),

CFC-12 (1978–present), CFC-113 (1983–present), SCFC-114
and CFC-115 (1998–present) have been made at Cape Grim,
using GC-ECD (CFC-11, CFC-12, CFC-113) and GC-MSD
(CFC-113, SCFC-114, CFC-115) techniques (Fraser and Pear-
man 1978; Prinn et al. 2000, 2018; Sturrock et al. 2001;

Krummel et al. 2006). The Cape Grim CFC-113 data were
obtained initially (1983–2011) from GC-ECD instruments and
more recently (2011–present) from a GC-MSD-Medusa instru-

ment (Miller et al. 2008). For the period 2005–2010, a merged
GC-ECD-GC-MSD CFC-113 dataset was used This change in
CFC-113 measurement instrumentation was implemented

because of superior GC-MSD precision compared with GC-
ECD for CFC-113 and GC-ECD CFC-113 analysis problems
(a post-2011 interfering chromatographic peak).

The AGAGE GC-MSD instruments at Cape Grim and
Aspendale do not resolve CFC-114 (CClF2CClF2) and CFC-
114a (CCl2FCF3) and we report their atmospheric abundances
as a sum of CFC-114 and CFC-114a (SCFC-114) measure-

ments. GC-MSD instrumentation at UEA (University of East
Anglia) can separate and measure these CFCs. From analysis of
the CapeGrim air archive at UEA,SCFC-114measurements for

baseline air at Cape Grim (and Aspendale) were a 93 : 7 mixture
of CFC-114 and CFC-114a in 2016, and a 96 : 4 mixture in 1978
(Oram 1999; Sturrock et al. 2002; Laube et al. 2016; Vollmer

et al. 2018).
The initial SCFC-114 data obtained at Cape Grim (1998–

2004) on a GC-MSD-ADS (adsorption-desorption system;
Prinn et al. 2000) were noisy (SCFC-114: �0.3 ppt, �2%;

CFC-115:�0.5 ppt,�6%) and the small pollution episodes for
SCFC-114 and CFC-115 could not be resolved from the
baseline noise. From 2005, these small SCFC-114 (less than

0.3 ppt) and CFC-115 (less than 0.2 ppt) pollution episodes were
detected from more precise data obtained on the GC-MSD-
Medusa instrument with SCFC-114 and CFC-115 precisions of
0.3% and 0.7% respectively (Prinn et al. 2018). Pollution
episodes at Aspendale are typically much larger than at Cape
Grim and, for all CFCs, are well resolved on both GC-MSD

instruments.
The carbon monoxide (CO) data for Cape Grim reported in

this paper (1994–2018) were obtained from a GC instrument
equipped with a mercuric oxide reduction (MRD) detector and

for Aspendale (2018–2019) from a cavity ring-down spectrom-
eter (CRDS).

Extensive details of GC instrumental analytical character-

istics (precisions, linearity, calibration, overall measurement
uncertainties) are given in Prinn et al. (2000, 2018) and Fraser
et al. (2001, 2016). All CFC data are reported in the AGAGE

SIO (Scripps Institution of Oceanography) gravimetric calibra-
tion scale. The CO data are reported in a CSIROCO scale linked
to a NOAA CO gravimetric scale (Novelli et al. 1991). Two

types of GC-MSD instruments have been deployed at both Cape
Grim andAspendale, one using a pre-concentration, adsorption-

desorption system operating at �50 8C (GC-MSD-ADS;
Simmonds et al. 1995), the other using an enhanced cryogenic
pre-concentration system operating at �165 8C (GC-MSD-

Medusa; Miller et al. 2008; Arnold et al. 2012).
The GC-ECD, GC-MSD-ADS and GC-MSD-Medusa preci-

sions (1 standard deviation (s.d.)) for the CFC-11, CFC-12 and

CFC-113 measured at Cape Grim and Aspendale are similar on
all three instruments: CFC-11,�0.2%; CFC-12,�0.1%; CFC-
113,�0.2%. The CFC-114 and CFC-115 precisions on the GC-
MSD-ADS at Cape Grim and Aspendale are �2% and �6%

respectively. The CFC-114 and CFC-115 precisions on the GC-
MSD-Medusa instruments at Cape Grim and Aspendale
are �0.3% and �0.7% respectively. The GC-MRD CO preci-

sion is�1% (Francey et al. 1996). The CRDSCOmeasurement
precisions at Aspendale and Cape Grim are�3% (near-infrared
laser; Zellweger et al. 2019) and �0.3% (mid-infrared laser)

respectively.
The absolute accuracies of the SIO CFC calibration scales

have been estimated at 1–2% (Prinn et al. 2018). Widely-

deployed, independent CFC calibration standards are available
from two USA laboratories (NOAA – National Oceanic and
Atmospheric Administration, Boulder, Colorado, and SIO – La
Jolla, California). The differences between the NOAA and SIO

calibration scales for all five CFCs are less than 0.5%. The
absolute accuracy of the NOAA CO gravimetric scale is
estimated to be �3% (Novelli et al. 1991).

The early CFC-11 GC-ECD measurement frequencies at
Aspendale and Cape Grim were typically 3–4 per day, the
GAGE CFC-11, CFC-12 and CFC-113 GC-ECDmeasurements

at Cape Grim (1981–1994) were 12 per day, the AGAGE CFC-
11, CFC-12, CFC-113 GC-ECD and the AGAGECOGC-MRD
measurements at Cape Grim (1994–present) are 18 per day. The
air sample volume is 5 mL. These measurements are instanta-

neous with no time-averaged sampling.
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The AGAGE CFC-11, CFC-12, CFC-113,
P

CFC-114,

CFC-115 GC-MS measurement frequency at Aspendale
(2005–present) and Cape Grim (1995–present) are 12 per day.
The CFCs from each air sample (2 L) are cryo-trapped over

20 min, so the resultant measurement is a 20-min average,
compared with the instantaneous measurements described
above. At a sampling frequency of 12–18 CFC and CO mea-
surements per day, the CFC and CO pollution episodes at Cape

Grim (see below), which typically last 11–19 h, and Aspendale
(8–24 h) are usually well resolved; the CO measurements at
Aspendale are continuous.

The early atmospheric histories of CFC-113 (pre-1983) and
CFC-114, CFC-115 (pre-1998) at Cape Grim were obtained
from analysis of the Cape Grim air archive. The archive consists

of ,120 baseline or background air samples (1978–present)
collected at Cape Grim in 30–35 L stainless steel tanks at
pressures from 700 to 3000 KPa. Collection and storage infor-
mation, and a compendium of the 40-plus papers published

using Cape Grim air archive data, are in Langenfelds et al.
(1996) and Fraser et al. (2016, 2018). For CFC-114 and
CFC-115, 55 air archive samples, from 43 months within the

1978–1998 timeframe, were analysed at CSIRO Aspendale on
the GC-MS-Medusa instrument by BR Miller, a visiting scien-
tist from SIO. Typically, each air archive sample was analysed

five times; for CFC-114 and CFC-115, the average measure-
ment precisions per sample were � 0.3% and � 0.6% respec-
tively and for the three months when more than one sample was

collected (two samples per month for June 1988 and January
1990, three samples per month for January 1997), the monthly
precisions were �0.9% and �0.6% respectively.

The identification of pollution (local and regional) and

baseline data in the AGAGE program is described in detail by
O’Doherty et al. (2001) and Prinn et al. (2018). An identification
flag (pollution or baseline) is assigned to each measurement

using an objective (statistically based) algorithm. The algorithm
examines the statistical distributions of 4-month bins of mea-
surements (typically more than 4000 GC-ECD and 1400 GC-

MSDmeasurements per bin), centred on one day at a time, after
removing the trend over the bin period. A 3-D Lagrangian back-
trajectory model, driven by re-analysed meteorology, is used to
track the air-mass history of each measurement to confirm the

statistical identification of pollution, e.g. whether the air mass
passes over regions such as cities, which are likely sources of
pollution. In addition, an observation is flagged as polluted if the

atmosphere at the station is stablewith lowwind speeds andwith
known nearby pollution sources. Average annual pollution is a
parameter used in this paper. This is the average in any one year

of all data identified as pollution less a contemporary baseline
value obtained from a best fit to all the baseline data in that year.

The Cape Grim CFC data identified as pollution are used to

calculate regional emissions by interspecies correlation (ISC)
and inverse modelling techniques (see below). The ISC tech-
nique involves using the back trajectories to further select CFC
pollution data from only the regions for which emissions of the

reference species (carbon monoxide – CO, in this study) have
been independently estimated.

The Cape Grim CFC data reported in this paper are available

at the AGAGE MIT webpage (https://agage.mit.edu/data/
agage-data [verified December 2019]) and at the World Data
Centre for Greenhouse Gases (WDCGG) webpage (https://gaw.

kishou.go.jp/ [verified March 2020]). The Cape Grim CO data
(1994–2000) are available from the WDCGG. The Cape Grim
CO data (2001–2018) andAspendale CFC (2005–2018) data are

available on request (paul.krummel@csiro.au); the Aspendale
CO data are preliminary (zoe.loh@csiro.au). The uncertainties

for data in this paper are �1s unless otherwise indicated. The
CFC emissions data are reported annually to the Australian
government and are published in publicly accessible reports

(e.g. Dunse et al. 2019). Long-term wind speed and direction
records are available for Cape Grim but not for Aspendale; wind
speed and direction data from the Bureau of Meteorology site at
MoorabbinAirport, 7 kmNofAspendale, are used as proxy data

for Aspendale, except for 2018–2019, when Aspendale wind
direction data are available.

Results and discussion

CFCs in the Australian atmosphere

The first measurements of a CFC (CFC-11) in the Australian

atmosphere were made at CSIRO, Aspendale, Victoria (Fig. 4),
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CFC-12 (GC-ECD, 1983–present), CFC-113 (GC-ECD, 1983–2004; GC-
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CFC-115 (GC-MSD-ADS, 1998–2005; GC-MSD-Medusa, 2004-present)
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et al. 1983, 1997; Fraser et al. 1996, 2016; 2018; Prinn et al. 2000, 2018;

Rigby et al. 2013, 2014; 2019; Sturrock et al. 2002; Vollmer et al. 2018);

2019 data are preliminary and not used in emissions calculations in this

paper.

P. J. Fraser et al.

530

https://agage.mit.edu/data/agage-data
https://agage.mit.edu/data/agage-data
https://gaw.kishou.go.jp/
https://gaw.kishou.go.jp/


in July 1975 by PJ Fraser (CSIRO) and JE Lovelock

(U. Reading, UK) using GC-ECD techniques (Fraser et al.
2018). The initial CFC-11 measurements at Aspendale (1975)
and at the Australian Baseline Air Pollution Station at Cape

Grim, Tasmania (1976, Fig. 4) were made as part of an inde-
pendent CSIRO research program (1976–1983, Fraser and
Pearman 1978; Fraser et al. 2016, 2018), but later, commencing
in 1978, as part of a global, multi-laboratory, CFCmeasurement

and modelling programs: AGAGE and predecessor programs
(GAGE) and ALE (Atmospheric Lifetime Experiment) from
1978 to the present (Prinn et al. 2000, 2018).

The initial in situ GC-ECDCFC-11 measurements at Aspen-
dale (Fraser et al. 1977) ceased in the late-1970s and were
recommenced, along with measurements of CFC-12, CFC-113,

SCFC-114 and CFC-115, using a GC-MSD-ADS instrument
(2005–2006) and a GC-MSD-Medusa instrument (2006–pres-
ent; Prinn et al. 2018). The Aspendale CFC records are not
continuous, with significant periods of instrument down time in

2007, 2009 and 2012–2015 owing to instrumental and resource
issues.

The CFC-11, CFC-12, CFC-113, SCFC-114, CFC-115 and

CO data collected at Cape Grim and Aspendale are shown in
Fig. 5 and Fig. 6 respectively. The baseline data at Cape Grim
(Fig. 5) respond to global CFC emissions, transport processes

between the northern and southern hemispheres and between the
troposphere and the stratosphere (Ray et al. 2020), while the
enhancements above baseline, so-called pollution events, arise

from emissions of CFCs, largely from SE Australia. Baseline
data for CFC-113, SCFC-114 and CFC-115 between 1978 and
the time when in situ measurements commenced for each CFC
have been obtained from analysis of the Cape Grim air archive

(Fraser et al. 1996, 2018; Vollmer et al. 2018).
For CFC-11 at Cape Grim, maximum baseline concentra-

tions (262.2 � 0.4 ppt, parts per 1012 molar) were observed

in 1995, declining by 14% to 225.6� 0.2 ppt by 2018. The rate
of decline of CFC-11 at Cape Grim has decreased from
�1.9 � 0.1 ppt per year (2006–2009) to �1.4 � 0.3 ppt per

year (2014–2018), the overall rate (2006–2018) being
�1.7 � 0.3 ppt per year.

For CFC-12, the maximum concentration (541.5 � 1.3 ppt)
occurred in 2004, declining by 6.2% to 507.8� 0.4 ppt by 2018.

The average rate of decline (2006–2018) at Cape Grim was
�2.5 � 0.6 ppt per year; unlike CFC-11, the rate of decline has
increased, being �1.8 � 0.3 ppt per year (2006–2009) increas-

ing to �3.1 � 0.4 ppt per year (2014–2018).
For CFC-113, the maximum concentration (82.8 � 0.7 ppt)

occurred in 1997, declining by 15% to 70.4 � 0.1 ppt in 2018.

The rate of decline at Cape Grim has remained approximately
constant: �0.6 � 0.1 ppt per year (2006–2017), �0.7 � 0.1 ppt
per year (2006–2009) and�0.6� 0.1 ppt per year (2014–2018).

ForSCFC-114, the maximum concentration (16.6� 0.1 ppt)
occurred in 2004 declining by 1.9% to 16.3 � 0.1 ppt in 2018;
for CFC-115, baseline concentrations, following a decade
(2004–2013) of zero growth, have commenced to rise again,

increasing overall from 7.8 � 0.1 ppt in 1998 by 10% to
8.6 � 0.1 ppt in 2018.

The Aspendale CFC and CO data are shown in Fig. 6. The

Aspendale data define baselines for all CFCs similar to those
observed at Cape Grim. In 2018, baseline annual concentrations
for CFC-11, CFC-12, CFC-113, SCFC-114 and CFC-115 at

CapeGrimwere 225.6� 0.2, 507.8� 0.4, 70.4� 0.1, 16.3� 0.1
and 8.6 � 0.1 ppt respectively, while for Aspendale they were
227 � 2, 509 � 3, 70.1 � 0.7, 16.2 � 0.1 and 8.6 � 0.1 ppt

respectively. Other years show a similar correspondence
between baseline CFC levels observed at both locations.

The rate of decline of CFC-11 in the atmosphere has slowed

recently, as has been observed globally (Engel and Rigby 2018;
Montzka et al. 2018), being �1.9 � 0.1 ppt per year (2006–
2009) increasing to �1.2 � 0.3 ppt per year (2014–2017). This
slowing of the expected rate of decline of CFC-11 in the

atmosphere arises largely from new emissions of CFC-11 from
east China (Rigby et al. 2019) and their impact on CFC-11
growth rates can be seen at Mauna Loa as well as at Cape Grim

(Fig. 7). The CFC-11 growth rate at Mauna Loa stopped
declining by 2001 and, for the following 13 years, averaged
�2.0� 0.2 ppt per year before increasing around 2014, averag-

ing �1.0 � 0.2 for 2015–2018. For Cape Grim, the CFC-11
growth rate stopped declining around 2002, averaging
�1.9 � 0.1 until 2014, and increasing to �1.1 � 0.2 for

2016–2018. The growth rate data in Fig. 7 suggest that the
impact of the east China CFC-11 emissions is seen at Cape Grim
,1 year later than at Mauna Loa, owing to the 1–2 year
interhemispheric transport time for long-lived tracers between

the mid-latitudes of both hemispheres (Yang et al. 2019).
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As observed at Cape Grim, the recent decline in Aspendale
baseline CFC-11 levels has slowed. For the 3-year period of

2008–2011, background levels of CFC-11 declined by 6.2 ppt at
Cape Grim and 6.7 ppt at Aspendale; for the 3-year period of
2015–2018, the declines were 3.5 ppt at Cape Grim and 3.8 ppt

at Aspendale, with both sites showing a slowing in the rate of
decline of 43–44% over this period. At Aspendale, CFC-11
declined by �2.2 � 0.9 ppt per year (2008–2011) and
�1.3 � 0.9 ppt per year (2015–2018).

Similar to observations at Cape Grim (Fig. 5), the CFC-12
data at Aspendale suggest an increase in the rate of decline, from
�2.1� 0.3 ppt per year (2008–2011) to�3.1� 0.7 ppt per year

(2015–2018), although the 2s uncertainty levels overlap.
Baseline levels of CFC-113 at Aspendale show a significant

decline, approximately constant in time (�0.8 � 0.4 ppt per

year, 2008–2011, �0.6 � 0.2 ppt per year, 2015–2018). Base-
line SCFC-114 levels are approximately constant and baseline
levels of CFC-115 are increasing at Aspendale.

The Aspendale data show, for all CFCs, levels of pollution
and pollution episodes that are observed at a higher frequency
and at a greater magnitude compared with those at Cape Grim.
Over the entire Aspendale record, the ratio of the annual average

pollution data (the average enhancement of all CFC data
identified as pollution above the corresponding baseline data
in a particular year) at Aspendale to annual average pollution

data at Cape Grim (2005–2018) is 10 � 3 for CFC-11, 11 � 2
(CFC-12), 6� 4 (CFC-113), 4� 2 (SCFC-114) and 3� 2 (CFC-
115). This is indicative of the Aspendale instrument being much

closer to the CFC pollution sources, largely from theMelbourne
region, than the Cape Grim instrument. Cape Grim ‘sees’ CFC
pollution, largely from the Melbourne urban complex, as an
approximate point source 300 km away. Aspendale is embedded

in the Melbourne CFC source region and likely ‘sees’ CFC
pollution from 0–50 km away. Some of the pollution episodes

seen at Aspendale are likely from a few 100 m away, so it is not
surprising that they can be relatively large. The continuing
observation of CFC pollution at Cape Grim and Aspendale after

the CFC phase-out date reflects the existence of residual CFC
‘banks’ in the Melbourne region. The lower values for SCFC-
114 and CFC-115 probably reflect the difficulty in identifying

and quantifying pollution for these species in recent years when
the levels of pollution are less than 0.1 ppt.

The CapeGrim andAspendale CFC pollution data are shown

in Fig. 8 and Table 1. The Cape Grim CFC-11 annual average
pollution data show no significant change (�0.002 � 0.004 ppt
per year) from 1996 to 2018. The Aspendale CFC-11 average

pollution data for 2015–2018 are ,20% lower than CFC-11
pollution over the period 2007–2011, with the trend being
�0.3 � 0.2 ppt per year.

The Cape Grim CFC-12 annual average pollution data show

about a 45% decrease from 1996 to 2018, declining by
�0.06 � 0.02 ppt per year. The Aspendale CFC-12 average
pollution for 2015–2018 are ,30% lower than CFC-12 pollu-

tion over the period 2007–2011, although the trend
(�0.2 � 0.3 ppt per year) is not statistically significant.

The Cape Grim CFC-113 annual average pollution data

declined by ,65% from 1996 to 2018, declining by �0.022 �
0.003 ppt per year. The Aspendale CFC-113 data suggest that the
average pollution levels for 2015–2018 are ,60% higher than
for 2007–2011, with a trend of 0.12 � 0.08 ppt per year.
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The Aspendale CFC-113 data are relatively poor quality for
the period 2015–2018 compared with data from 2005–2011,
making the detection of trends in the CFC-113 pollution data

problematic. The Aspendale CFC-113 pollution data from 2006–
2018 show a small, but barely significant, positive trend
(0.10 � 0.09 ppt per year).

The Cape Grim SCFC-114 annual average pollution data

show a 50% decline from 2004 to 2018, declining by
0.004� 0.002 ppt per year. The AspendaleSCFC-114 pollution
data have not changed significantly from 2006 to 2018

(0.001 � 0.015 ppt per year). The Cape Grim average annual
CFC-115 pollution data have also declined by 50% from2004 to
2018, declining by�0.008� 0.002 ppt per year. The Aspendale

CFC-115 data show declining pollution levels but the trend
(–0.03 � 0.04 ppt per year) is not statistically significant.

In summary, CFC-11, CFC-12 and CFC-113 pollution levels

at Cape Grim have declined significantly since 1994, andP
CFC-114 and CFC-115 pollution levels at Cape Grim have

declined significantly since 2004. Aspendale CFC-11 and CFC-
12 pollution levels have declined significantly since 2006, while

Aspendale CFC-113 pollution levels have increased since 2006.P
CFC-114 and CFC-115 pollution levels at Aspendale have

not changed significantly since 2006.

The likely Melbourne origin of CFC pollution observed at
Cape Grim is consistent with the CFC pollution ‘roses’ (Fig. 9)
derived from theCapeGrim data for CFC-11, CFC-12 and CFC-

113 (similar results – not shown – are obtained for SCFC-114
and CFC-115). In 1994–1996, CFC-11 pollution arriving at
Cape Grim showed amaximum of 0.8 ppt in the 15 8–25 8 sector;
by 2014–2016 this pollution maximum had declined by 45%,
consistent with declining emissions from Melbourne (see
below). For CFC-12, the 1994–1996 pollution maximum in
the 15 8–25 8 sectorwas 2.5 ppt, declining by over 90%by 2014–

2016, again consistent with declining emissions (see below). For
CFC-113, the 1994–1996 pollution maximum in the 15 8–25 8
sector was 0.35 ppt, declining to near zero by 2004–2006 and

remaining near zero through 2014–2016.
CFC-11, CFC-12 and CFC-113 pollution ‘roses’ for Aspen-

dale are shown in Fig. 10. Owing to significant gaps in the CFC

records at Aspendale, the pollution episodes are grouped into 2
periods: 2006–2012 and 2016–2018. There has been a 60%
decline in CFC-11 pollution between these periods and an 85%
decline in CFC-12 pollution over the same period, similar to the

reductions in pollution for these CFCs seen at Cape Grim,
indicative of declining emissions from the Melbourne region
(see below).

The Aspendale pollution ‘roses’ show that CFC-11, CFC-12
and CFC-113 emissions in the Melbourne region are largely
from a sector NE of Aspendale. This is the same direction as the

demographic (population) centre for Melbourne and suggests
that the CFC emissions correlate with population density. The
pollution ‘roses’ are not consistent with the locations of the
major land-fill operations in Melbourne (NW, NE and SE of

Aspendale, Fraser et al. 2014). The CFC pollution ‘roses’ are
similar to those observed for the modern refrigerant HFC-134a
(CH2FCF3), with significant population-dependent sources:

automobile and domestic air conditioning and domestic refrig-
eration (Fraser et al. 2014).

Australian CFC emissions by interspecies correlation: 1994–
2017

Atmospheric CFC and CO concentrations at Cape Grim respond

to trace gas source fluxes embedded within a ‘footprint’ domain
(Fig. 11) determined by the SE Australian meteorology. These
‘footprint’ maps are obtained from the UK Met Office NAME
(Numerical Atmospheric dispersion Modelling Environment)

Lagrangian particle dispersion model, described below, run in
backward mode, to estimate the 30-day history of individual air
masses arriving at Cape Grim. These 30-day history maps

describe the surface fluxes in the previous 30 days that impact
the observations at Cape Grim. The ‘footprint’ is a map of the
dilution factors (s m�1) that relate trace gas concentrations

(g m�3) to trace gas fluxes (g m�2 s�1). The annual maps
(Fig. 11) are a sum of the hourly 30-day maps in any one year
(Manning et al. 2011).

Based on these ‘footprint’ maps showing the spatial variation
in these dilution factors and the locations of the population
centres within the Cape Grim ‘footprint’, assuming regional
emissions are proportional to regional population, CFC emis-

sions from theMelbourne-Port Phillip region, includingBallarat
and Bendigo, are calculated to have the largest impact (80%) on
Cape Grim measurements, followed by Sydney (10%), Ade-

laide (4%), Burnie-Launceston (3%), Canberra (1%), Albury-
Wodonga (1%), Hobart (1%) and Brisbane-SEQueensland and
Perth (both,1%). More than 50% of Australia’s population is

in the Melbourne-Albury-Wodonga-Canberra-Sydney corridor.
Fig. 11 shows that the Cape Grim ‘footprint’, and therefore the
meteorology that brings air masses to Cape Grim, has not
changed significantly over the period 2003–2018.

CFC emissions from the Melbourne-Port Phillip region
(Fig. 4) have been estimated from Cape Grim pollution data
by inter-species correlation (ISC; Dunse et al. 2001, 2005;

Table 1. Annual baseline (bl) and annual average pollution (poll, enhancements above bl, ppt) observed at CapeGrim andAspendale; uncertainties

(unc) are expressed as standard deviations (s.d.)

Cape Grim CFC-11 CFC-12 CFC-113 SCFC-114 CFC-115

bl unc poll unc bl unc poll unc bl unc poll unc bl unc poll unc bl unc poll unc

1994 262 1 2.0 1.7 514 1 3.9 3.3 82 1 1.5 1.1

1996–1999 260 2 1.1 0.8 533 4 2.2 2.1 83 1 0.8 0.3

2007–2011 240 3 1.0 0.7 534 4 1.6 0.5 76 1 0.7 0.2 16.4 0.1 0.16 0.07 8.36 0.02 0.21 0.04

2015–2018 227 2 1.0 0.6 512 4 1.5 0.5 71 1 0.3 0.1 16.2 0.1 0.11 0.05 8.50 0.05 0.11 0.04

Aspendale CFC-11 CFC-12 CFC-113 SCFC-114 CFC-115

bl unc poll unc bl unc poll unc bl unc poll unc bl unc poll unc bl unc poll unc

2007–2011 241 4 11 7 536 4 18 11 76 2 2.0 1.3 16.4 0.1 0.5 0.2 8.38 0.01 0.7 0.2

2015–2018 228 1 9 7 513 4 16 11 71 1 3.2 1.6 16.4 0.1 0.4 0.3 8.38 0.04 0.5 0.2
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2019), where pollution episodes for species with unknown
emissions, e.g. the CFCs, are compared with co-incident pollu-
tion episodes for a species with known emissions (e.g. CO;

Fig. 12) within the Port Phillip region, where the source regions
of both species are assumed to be approximately co-located.
CFC and CO sources are not co-located precisely, although both

CO and CFC-12 were both significantly emitted by automobile
transport when CFC-12 was used in mobile air-conditioning.
Both CO and CFC emissions appear to correlate with population
density (see below). The error introduced into ISC emission

calculations by source co-location uncertainty in the Port
Phillip-Melbourne region is assumed to be small, especially as
the resultant CO and CFC plumes are sampled at Cape Grim,

300 km away.
The CFC mass emission for the Melbourne-Port Phillip

region for year x is calculated using Eqns 1 and 2:

MCFC;x ¼ ACFC=CO; x�1; x; xþ1 �MCO;x �MWCFC=MWCO ð1Þ

MCO;x ¼ MCO;2006 � DCOx=DCO2006 ð2Þ

where MCFC,x is the annual Port Phillip CFC mass emission for
year x, MCO,x is the annual Port Phillip CO mass emission for

year x, ACFC/CO, x – 1,x,x þ 1 is the slope of the Cape Grim DCFC
(CFC pollution) versus DCO (CO pollution) regression plot

(Fig. 12) for years x – 1 to x þ 1, MWCFC and MWCO are the
molecular weights of the CFC and CO, DCOx is the annual
averageCOpollution at CapeGrim for year x andDCO2006 is the

annual average CO pollution at Cape Grim for 2006.
The uncertainty in MCFC is the sum of the uncertainties in the

slope term (aCFC/CO, �5%, 1 standard error (s.e.); Dunse 2002;

this work), the CO emission term (MCO, � 25%, 1 s.e.; Dunse
et al. 2005) and the DCOx/DCO2006 term (�15%, 1 s.e.; this
work). The 2006 Port Phillip CO emissions (796 Gg) are
estimated as revisions (Delaney and Marshall 2011) to the Port

Phillip Air Emissions Inventory (EPA 1998). The annual Port
Phillip CO emissions are estimated by scaling the 2006 emissions
by a factor equal to the ratio of the annual average CapeGrimCO

pollution from Port Phillip in a particular year to the annual
average Cape Grim CO pollution from Port Phillip in 2006.

Co-location of the CO and CFC emissions to the Port Phillip

region is favoured by using only those CFC-CO pollution
episodes that are shown to result from Port Phillip emissions
by back trajectory techniques. As discussed above, Port Phillip

emissions drive 80% of all pollution data seen at Cape Grim.
The next largest contributor is Sydney (10%), followed by
Adelaide (4%); back trajectories ensure that no CFC or CO
emissions from Sydney, Adelaide or the Latrobe Valley are

involved in these ISC estimates of Melbourne-Port Phillip CFC
emissions.
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Within the Port Phillip-Melbourne region, CO emissions have

been shown to correlate with population density (EPA 1998). The
CFC (Fig. 10) and CO (Fig. 13) pollution ‘roses’ at Aspendale,
with the dominant lobes pointing to the demographic centre of

Melbourne, suggest that CFC emissions seen at Aspendale come
from the populous NE sector while CO emissions also originate
largely in this sector, probably owing to automobile emissions.
From 350 km away at Cape Grim, the CFC (Fig. 10) and CO

(Fig. 13) sources appear co-located.
Annual emissions, e.g. for 2010, are based on the pollution

episodes for three consecutive years, 2009–2011; this enables

100–120 pollution episodes to be used to derive annual emis-
sions of CFC-11 and CFC-12 and 20–30 pollution episodes used
to derive emissions of CFC-113, SCFC-114 and CFC-115. This
reduces year-to-year variability in emissions owing to variations
in the air mass trajectories that bring polluted air from the Port
Phillip region to Cape Grim.

NOAA air mass back trajectory analyses (Draxler and Hess
1997) and correlations with an urban marker species (HFC-134a,
CH2FCF3) are used to confirm that the CFC pollution events at
Cape Grim, used to derive CFC emissions, originate from the

Melbourne-Port Phillip region. Air-mass back trajectories are
used to exclude air parcels that have passed over the Latrobe
Valley east of the Melbourne-Port Phillip region (Fig. 4), which

has a disproportionately large CO source, with respect to popula-
tion, from coal-fired power stations (EPA 1998).

A satellite-based bushfire-monitoring tool, Sentinel Hotspots

(Geoscience Australia, https://hotspots.dea.ga.gov.au/ [verified
December 2019]), provides dates and locations of fires across
Australia. If available, this information is used to identify CO
pollution events at Cape Grim that are affected by biomass

burning (BMB). An alternative method to identify BMB uses a

marker species, methyl chloride (CH3Cl), emitted significantly
during BMB events. In addition, the intensity and structure of
CO pollution episodes are used to identify BMB events; in

particular, if the fire is in close proximity (e.g. on the Bass Strait
islands) to Cape Grim. Cape Grim CO pollution episodes that
are affected by BMB are excluded from this analysis.

Australian emissions are calculated from theMelbourne-Port

Phillip region emissions, scaled on a population basis, with a
scaling factor of 5.4. The ISC emission domain that impacts on
Cape Grim is well defined by the back trajectories described

above. The population within the domain is well quantified, so
the error in the population ratio is likely to be small. However,
there is an assumption that CFC emissions per capita are the

same for the rest of Australia as they are for the Melbourne-Port
Phillip region.We have no regional, e.g. Sydney, data to test this
assumption.

These ISC-based annual emission estimates for Australia

have been compared favourably to annual emission estimates
from an independent technique – inverse modelling (InTEM,
see below) for carbon tetrachloride (CCl4), where ISC/

InTEM ¼ 1.07 � 0.10, 2002–2011 (Fraser et al. 2014) and
HFC-152a (CH3CHF2), where ISC/InTEM ¼ 0.97 � 0.15,
2003–2011 (Simmonds et al. 2016). The ISC-based emission

estimates for CFC-11, CFC-12 and CFC-113 are discussed
below and shown in Fig. 14, together with emission estimates
by inverse modelling.

Australian CFC emissions by inverse modelling: 2004–2017

The inverse modelling methodology (InTEM: Inversion Tech-
nique for EmissionModelling), used to estimate Australian CFC

emissions, has been developed over the past two decades at the
UK Met Office (Manning et al. 2003, 2011; Arnold et al. 2018)
and derives an emissions distribution map that, when dispersed

by atmospheric mixing processes, produces a time series of
model CFC measurements at Cape Grim that best matches,
through a minimisation technique, the actual CFC observations

at Cape Grim.
The Lagrangian atmospheric transport model NAME simu-

lates the atmospheric processes that disperse these gridded
emissions. NAME has also been developed at the UK Met

Office (Ryall and Maryon 1998; Jones et al. 2007; Manning
et al. 2018) and employs underpinning 3-D meteorology from
the Met Office operational weather forecast model (UM –

Unified Model). NAME follows theoretical particles in the
modelled 3-D atmosphere defined by the UM meteorology.
Insights into how gridded emissions are dispersed and diluted in

the atmosphere can be obtained by following the release ofmany
thousands (,20) of such particles into the specified NAME
model domain. NAME is run backwards in time to estimate the

previous 30-day history of the air before it arrives at Cape Grim.
The UM horizontal and vertical resolutions (40 km, 31 levels in
2002) have improved with time (horizontal: 40 km to 10 km in
2018; vertical: 31 to 59 levels in 2018). The horizontal resolu-

tion of the NAME output is set at 25 km.
InTEM can robustly estimate CFC emissions from regions

that contribute significantly to the atmospheric CFC concentra-

tion observed at Cape Grim. The contributions that different
regions (boxes) make to the observed Cape Grim concentrations
vary. Grid boxes that are distant fromCapeGrim contribute little

to the observed concentrations, whereas those that are close to
Cape Grim have a larger impact. To balance the contributions
from different grid boxes, those that are more distant from Cape
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Grim are grouped together into increasingly larger regions.

There are inherent uncertainties in both the Cape Grim and
meteorological observations and in the temporal-spatial resolu-
tion of the inversemodel. Their magnitudes have been estimated

and are incorporated into the InTEM framework to derive an
overall uncertainty of the resulting model emissions.

In this study, a 3-year inversion period is used which
increments at 1-year intervals. As with the ISC technique above,

use of a 3-year inversion period increases the number of
observations within the inversion period, thereby reducing the
uncertainty in the resultant emissions. However, information on

any possible seasonality of emissions is lost. The inversion
system uses observational data from only one measurement site
(Cape Grim), which means that some likely large emission

source regions in Australia, for example the Brisbane/Gold
Coast/Sunshine Coast and Sydney/Wollongong/Newcastle

regions, with ,40% of Australia’s population, contribute a

very small component of the measured signal on an infrequent
basis.

InTEM CFC emission estimates are made for the SE region

of Australia that incorporates all of Victoria and Tasmania as
well as southern and south-western New South Wales and
eastern South Australia (Fig. 15), with ,38% of Australia’s
population. Assuming CFC emissions are proportional to popu-

lation, Australian CFC emissions are obtained by scaling these
SE Australian emissions on a population basis. InTEM uses a
population-based scaling factor of 2.65 (1/0.378). For this study,

InTEM is initiated with a 1 k tonne repeating annual source for
each CFC for all Australia, distributed on a population basis.

Australian CFC-11, CFC-12, CFC-113,
P

CFC-114 and

CFC-115 emissions from ISC calculations and InTEM inver-
sions of Cape Grim data (1995–2017) are shown in Fig. 16.

0.003 0.001 0.03 0.10 0.30
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Fig. 11. ’Footprint’ domains for trace gas observations at Cape Grim; the ‘footprint’ domain is a map of the dilution factors or inverse

deposition velocities (s m�1) that relate trace gas concentrations (g m�3) measured at Cape Grim to trace gas fluxes (g m�2 s�1) from locations

over the domain; dilution factor ¼ concentration/flux; locations of CSIRO Aspendale (Melbourne, MEL), Victoria, and Cape Grim (CGO),

Tasmania, where the initial (and current) atmospheric CFCmeasurements in Australia were/are made and other major Australian cities that lie

within or just outside the Cape Grim ‘footprint’ region (ADL-Adelaide, ALB-Albury-Wodonga, BRI-Brisbane-SEQueensland, BRN-Burnie,

LNC-Launceston, CAN-Canberra, GEL-Geelong, HOB-Hobart, LNC-Launceston, LVA-Latrobe Valley, PER-Perth, SYD-Sydney-New-

castle-Wollongong).
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CFC-11 emissions declined significantly by 50%, from

0.90 Gg to 0.45 Gg, between 1995 and 1996. A linear fit to
the combined ISC (1997–2017) and ISC-InTEM (2004–2017)
CFC-11 data show emissions declining by 10 � 2 tonnes per

year. From 2005 to 2017, ISC and InTEM emissions agree
reasonably well for CFC-11, within 25%, ISC higher with
overlapping uncertainties at the 1s level. After 2007, the ISC-
InTEM CFC-11 agreement is within 1%. There is no obvious

reason why the ISC-InTEM differences change around 2007–

2008. Since 2010, ISC-InTEM CFC-11 annual emissions have
been approximately constant at 0.32 � 0.04 Gg (320 � 40
tonnes).

CFC-12 emissions declined significantly from 2.0 Gg in

1995 to 0.4 Gg in 2017. A linear fit to the CFC-12 data (2001–
2017) shows emissions declining by 24 � 4 tonnes per year.
Since 2004, the ISC and InTEM emissions agree to within 20%,

ISC lower with overlapping uncertainties. After 2008, the ISC
CFC-12 emissions are consistently lower by 30% than InTEM
CFC-12 emissions. Since 2010, ISC-InTEM CFC-12 annual

emissions have been approximately constant at 0.36 � 0.03 Gg
(360 � 30 tonnes).

CFC-113 emissions declined significantly by ,65%,

0.49 � 0.16 Gg to 0.16 � 0.05 Gg, between 1995 and 1997.
From 1997 to 2017, CFC-113 emissions declined approximately
linearly at 4.5� 1.0 tonnes per year. Prior to 2010, the ISCCFC-
113 emissions are consistently higher, by a factor of 2, than

InTEM CFC-113 emissions; after 2009, the ISC-InTEM CFC-
113 emissions agree to within 8%, ISC higher. Since 2010, ISC-
InTEM CFC-113 annual emissions have been approximately

constant at 0.080 � 0.020 Gg (80 � 20 tonnes).P
CFC-114þCFC-115 emissions averaged 240 � 10 tonnes

(1999–2003), falling rapidly by 65–70% to 80 � 5 tonnes for

2007–2012, falling another 45–50% to 37 � 3 tonnes for 2014–
2017.

P
CFC-114þCFC-115 emissions declined by 4.3� 1.7 ppt

per year over the period 2004–2017. Australian CFC-114 and

CFC-115 emissions in 2017 were both,20 � 7 tonnes.

Australian CFC emissions 1960–2017

Australian CFC emissions have been derived from atmospheric
observations at Cape Grim using ISC, 1994–2017, and InTEM,
2004–2017, methodologies. ISC emissions based on atmospheric
data before 1994 are not available because reliable in situ Cape

Grim CO measurements only commenced in 1994. Currently,
InTEM-based emissions are not available before 2004 because
the 3-Dmeteorology fields that drive theNAMEmodel for the SE

Australian domain are not available before 2004.
To estimate CFC emissions back to 1982, the earliest year

reliable CFC pollution data are available from Cape Grim, it is

assumed that annual CFC emissions are proportional to the
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annual average magnitude of CFC pollution events (Fig. 8).

Prior to 1982, it is assumed that Australian CFC emissions are
proportional to Australian CFC consumption (Fig. 2). This
assumption is likely valid pre-1980 when 50–75% of Australian
CFC consumption was in aerosol products, for which annual

consumption approximately equals annual emissions, but less
valid by 1985 when less than 10% of Australian CFC consump-
tion was for aerosol products (AEC/NHMRC 1983). Unfortu-

nately, CFC consumption data are all that are available to
estimate Australian CFC emissions pre-1983. Correlations of
annual average pollution data with ISC-InTEM estimates of

emissions indicate uncertainties of�25% (1s) for CFC-11 and
CFC-12 and�40% (1s) for CFC-113 emissions estimated from
annual average pollution data. The uncertainties shown for

CFC-11 and CFC-12 emissions estimated from consumption
data are the estimated uncertainties in production data above
(�25%, 1s). Australian CFC-11, CFC-12, CFC-113 and minor
CFC (SCFC-114þCFC-115) emissions are shown in Fig. 14.

Peaks in Australian CFC-11 and CFC-12 emissions likely
occurred in 1974 (2.0 � 0.5 Gg, 3.3 � 0.8 Gg, 1s), based on
consumption data, and 1988 (2.4 � 0.6 Gg, 3.7 � 0.9 Gg, 1s),
based on atmospheric observations. From 1988 to 2017, Austra-
lian CFC-11 emissions fell by 90% (2.4 Gg to 0.27 Gg, 4% per
year since 1994) and CFC-12 emissions by 95% (3.3 Gg to

0.20 Gg, 10% per year since 1988).
These differences in the rates of decline of CFC-11 and CFC-

12 emissions likely reflect their original applications. CFC-11

and CFC-12 were used in aerosol products; this use was phased-

out early and rapidly with a typical emission rate of over 60% per
year. CFC-11 was also used in closed-cell foam plastics account-
ing for 20% of CFC use, which was phased-out later than the
aerosol use and has left a significant residual bank in foams

leaking slowly (2–6% per year, Ashford et al. 2006) to the
atmosphere. CFC-12 was largely used in refrigeration and air
conditioning, accounting for 30% of CFC use, leaving a residual

bank of CFC-12, larger than the CFC-11 bank, leaking to the
atmosphere at a significantly faster rate than CFC-11, owing to
refrigeration and air conditioning leak rates of 5–20% per year

and 7–8% per year respectively. These leak rates are for
hydrofluorocarbon (HFC)-based refrigeration and air condition-
ing and assumed to be similar to the earlier CFC emissions for the

same applications (DoEE 2019). This represents an unknown
uncertainty in estimating ‘bottom-up’ emissions of CFCs.

Current (2010–2017) Australian annual emissions based on
ISC-InTEM calculations are 320 � 40 tonnes for CFC-11 and

360 � 30 tonnes for CFC-12. At current rates of decline
(Fig. 16), CFC-11 and CFC-12 emissions will fall below 20
tonnes per year in ,20–30 years.

Australian CFC-113 emissions peaked in 1988 (1.6 �
0.6 Gg) and again in 1992 (1.8 � 0.7 Gg) declining to just
below 100 tonnes in 2003. Since 2003, Australian CFC-113

emissions have remained approximately constant at ,80 � 20
tonnes per year to 2017. To maintain these CFC-113 emissions,
there must be a significant CFC-113 bank. The early (short
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lifetime, ,1 year) emissions of CFC-113 are from use as a
solvent and in aerosol products; the later (long lifetime emis-
sions, up to 12 years) are from closed cell foams and refrigera-

tion equipment (AFEAS 1997). Presumably, these residual
CFC-113 emissions are from an ‘above ground’ bank of closed
cell foams, refrigeration equipment, stockpiled solvents and

solvent wastes, all potentially containing CFC-113. At current
rates of decline, CFC-113 emissions are anticipated to fall below
20 tonnes per year in ,10 years and SCFC-114þCFC-115

emissions within 5 years.
Australian emissions of CFC-11 and CFC-12 show similar

growth and decline trajectories comparedwith global emissions,

except for the very recent increase in global emissions of CFC-
11 (Fig. 17). Total Australian emissions of CFC-11 and CFC-12

since 1978 (106 Gg) are 0.7% of global emissions (15.3 Tg)
based on atmospheric observations. Total Australian CFC-11
emissions (1960–2017) are 57 Gg and 95 Gg for CFC-12, a total

of 152 Gg for CFC-11þCFC-12, 0.6% of global emissions
(Lickley et al. 2020) based on a ‘bottom-up’ for CFC emissions
from production and ‘bank’ data.

Global CFC-113 emissions (Fig. 18) peaked at just under
250Gg in the late-1980s, declining rapidly to under 10Gg by the
early-2000s. Total Australian CFC-113 emissions since 1978
(16.2 Gg) are 0.6% of global emissions (2.8 Tg) based on

atmospheric observations over the same period.
Since 1999, total Australian minor CFC (SCFC-114þCFC-

115) emissions have been 2.2 Gg, 1% of global emissions

(210 Gg) based on atmospheric observations over the same
period. The residual minor CFC emissions (2017: SCFC-114,
CFC-115, both 20 tonnes) are presumably from their uses with

long-lifetime emissions – refrigerants, closed cell foams and
dielectric fluids (AFEAS 1997).

Australian CFC-11 and CFC-12 ‘banks’

Observed trends in atmospheric abundances and past production

estimates of CFCs have been used to gain ‘top down’ insights
into CFC bank sizes and their roles as global emission sources
for the CFCs. Estimates of global ‘banks’ of CFC-11 and CFC-

12 have been made by comparing total production/consumption
data and total emissions from atmospheric observations (Daniel
et al. 2007; Lickley et al. 2020). Similarly, we compare esti-

mates of total CFC consumption and emissions in Australia
since the early 1960s to the present to gauge the potential
magnitudes of Australian CFC ‘banks’. These ‘banks’ consist of

operational or discarded refrigeration equipment, aerosol pro-
ducts and foams that have not been consigned to landfill, as well
as CFCs from the breakdown of the CFC-containing products
previously consigned to landfill.

CFC emissions from landfills have been measured at three
landfill sites in Italy (Maione et al. 2005), seven landfill sites in
the USA, nine landfill sites in the UK (Hodson et al. 2010), and

from one site in Australia (Allison et al. 2009). The measured
CFC emissions at the USA, UK and Australian sites have been
used to estimate national CFC emissions from landfills. Landfill

emissionswere found to be less than 1%of national CFC-11 and
CFC-12 emissions in the USA, less than 1% of UK emissions
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ISC and CFC-11, CFC-12 and CFC-113 emissions by inverse modelling

(InTEM); dashed black line: ISC-InTEM average emissions; error bars are 1

standard deviation; red lines: linear fits, tonnes per year (CFC-11:�10� 2,

r2 0.51; CFC-12: �24 � 4, r2 0.66; CFC-113: �4.5 � 1.0, r2 0.50; SCFC-
114þCFC-115: �4.3 � 1.7, r2 0.36).
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for CFC-11 and 6% for CFC-12 and less than 2% of Australian

CFC emissions, the latter being quite uncertain as it is based on
emissions measured at only one landfill site. The average CFC-
11 and CFC-12 fluxes from the Italian landfill sites were very

low at 0.15–0.45 and 0.9–1.4 kg per year respectively. Hodson
et al. (2010) conclude that themajority of current CFC emissions
in developed countries are likely coming from refrigeration
equipment, foams and aerosols still in use or discarded, but not

sent to landfill.
Emissions of CFCs frommodern landfills are low because of

robust containment technology and because CFCs in landfills

are substantially biodegraded, in particular CFC-11. Landfill
soil columns have shown significant capacity to destroy CFCs
(CFC-11: 90%, CFC-12: 30%, Scheutz and Kjeldsen 2003). In

anaerobic landfill environments, more than 99% of CFC-11 is
degraded within 15–20 days by reductive de-chlorination,
producing HCFC-21 (CHCl2F) and HCFC-31 (CH2ClF). CFC-
11 degradation rates in landfills are 15 times CFC-12 degrada-

tion rates, 30 times HCFC-22 (CHClF2) rates, and HFC-134a
(CH2FCF3) shows no evidence of biodegradation. The degrada-
tion rate coefficient directly correlates with the number of

chlorine atoms attached to a single carbon atom (CFC-11: 3,
CFC-12: 2, HCFC-22: 1 and HFC-134a: 0; Scheutz et al. 2007).
The small amount of CFC emissions from landfills occur when

the landfill waste is buried under an interim cover, before the
final, impervious cover is in place (1 Australian site, Allison
et al. 2009; 1 USA and 3 European sites, Yesiller et al. 2018).

The faster biodegradation of CFC-11 compared with CFC-12 is
one of the reasons that, in general, landfill gases contain more
CFC-12 than CFC-11 (CFC-12/CFC-11 ¼ 2: USA, 6: UK and
50: Australia), whereas the initial fluxes (before final cover)

from the Australian site, which presumably reflect the CFC
composition of the initial landfill gas, were 5 times higher for
CFC-11 compared with CFC-12. Allison et al. (2009) found that

when landfill gas is used to fuel a modified diesel engine, to
generate electricity at the landfill site, then 99% of CFC-11 and
98% of CFC-12 in the fuel (landfill gas) are destroyed in the

internal combustion diesel engine.
In summary, the legacy CFC-11 and CFC-12 emissions in

developed countries originate from CFC banks that are ‘above
ground’ – landfills make a likely very minor contribution to the

CFC-11 and CFC-12 emissions. The current Australian ‘banks’
(cumulative consumptionminus cumulative emissions) of CFC-
11 and CFC-12 are 95 � 25 Gg and 80 � 30 Gg respectively,

distributed in an unspecified manner between above ground and
landfill ‘banks’.

Assuming that landfills make a negligible contribution to

CFC emissions and that ‘above ground’ CFC-11 is largely in
foams and ‘above ground’ CFC-12 is largely in refrigeration and
air conditioning equipment, then the CFC-11 leak rate and

emissions from foams (2–6% per year, 0.32 Gg per year)
implies a current above ground CFC-11 bank of 5–16 Gg and
the CFC-12 leak rate and emissions from refrigeration and air
conditioning equipment (5–20% per year, 0.36 Gg per year)

implies an above ground CFC-12 bank of 2–7 Gg. For CFC-113
leaking from the above ground bank at 80 � 20 tonnes per year
and the above ground bank is largely foams, then the CFC-113

bank is 0.4 Gg, and, if largely in refrigeration equipment, the
CFC-113 bank is ,0.5–2 Gg.

Conversely, determining how much of Australian CFC

consumption ended up in landfills is the key to estimating
Australian CFC emission factors for the legacy Australian
CFC banks. This represents a significant challenge – perhaps

international data on the distribution of CFC banks between
above ground and landfills at the national level exist. If so, it

could suggest the likely magnitudes of Australian legacy bank
CFC emission factors.

Climate change impact of Australian CFC emissions

AlthoughCFCs are very potent greenhouse gases (e.g. 1 tonne of
CFC-11 emitted has a 100-year integrated climate change
impact of 5000 tonnes of CO2 emissions), CFCs are not included

in the suite of greenhouse gas emissions reported annually by
signatory nations to the United Nations Framework Convention
on Climate Change (UNFCCC), under the Kyoto Protocol
(1997) and the Paris Agreement (2016). This is because CFC

production and consumption (and therefore indirectly
emissions) are regulated under an earlier agreement, the Mon-
treal Protocol (1987), designed to protect the stratospheric ozone

layer. Nevertheless, it is important to consider the climate
change impacts of reducing CFC emissions, nationally and
globally.

Since 1995, Australian CFC emissions (CFC-11, CFC-12,
CFC-113) have fallen (Fig. 16) from 3.4 Gg (29 M tonnes CO2-
e, 6–7% of Australia’s GHG emissions) to 0.65 Gg (3.5 M
tonnes CO2-e, 0.5% of Australia’s emissions) in 2017 (80%

decline), a fall of 25 M tonnes of CO2-e. The CO2-e emissions
resulting from Australian CFC emissions are calculated using
GWPs from the IPCC Fourth Assessment Report (Myhre and

Shindell 2014). This decline in CFC emissions is larger than any
GHG decline in the Australian GHG Inventory over this period
where Australia’s CO2 emissions have increased by 112 M

tonnes (35%), methane (CH4) emissions have fallen by 7 M
tonnes CO2-e (6%), nitrous oxide (N2O) emissions have risen
by 6 M tonnes CO2-e (40%) and HFC emissions have risen by

11 M tonnes CO2-e (factor of 12 increase).
Since 2000, the fall in Australian CFC emissions has approx-

imately matched the rise in emissions of their replacement
gases, the HFCs (Fig. 19). The goal of the Montreal Protocol

was to significantly reduce the consumption (and therefore the
emissions) of the CFCs and the spirit of the Montreal Protocol
was to ensure that the climate impact of the CFC replacement

chemicals (e.g. the HFCs or other replacement chemicals) were
to be less than or no greater than the CFCs they replaced. This
appears to be the situation in Australia, with the combined

climate change impact of CFC and HFC emissions being
approximately constant at 15 � 2 M tonnes of CO2-e per year
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Fig. 19. Australian emissions (M tonnes CO2-e) of CFCs (CFC-11, CFC-

12, CFC-113; this work) and HFCs (HFC-32, HFC-125, HFC-134a, HFC-

143a, several minor HFCs; National Greenhouse Gas Inventory (NGGI):

UNFCCC 2020) from 1995 to the present.
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(2–3% of Australia’s annual GHG emissions) from 2000 to the

present. This combined climate change impact will likely
decline in the future with further reductions in CFC emissions
and a continuation of the already observed slowing of the growth

in emissions of HFCs in the Australian GHG Inventory.

Conclusions

Australian production of CFC-11 and CFC-12 commenced in

the early 1960s. Import data for CFC-11, CFC-12 and CFC-113
are available from 1990; imports ceased by 2000. CFC-11, CFC-
12 and CFC-113 production plus imports totalled 345 Gg for the

period from the early 1960s to 2000. CFC exports totalled 15Gg,
resulting in CFC consumption of 330 Gg over this period.

Significant Australian emissions of CFCs (CFC-11, CFC-12,
CFC-113) commenced in the early 1960s, reaching a peak of

7800 tonnes per year in the late-1980s. Since the late-1980s,
Australian CFC emissions have declined by more than 90% to
,0.7–0.8 Gg per year (2016–2017) thanks to Australia’s early

and effective control of production, imports and consumption of
CFCs in accord with obligations under the Montreal Protocol.
Current (2010–2017)AustralianCFC emissions (tonnes per year)

are 320� 40 (CFC-11), 360� 30 (CFC-12), 80� 20 (CFC-113)
and 20 � 7 (SCFC-114 and CFC-115). CFC-11, CFC-12 and
CFC-113 emissions totalled 170Gg from the early 1960s to 2017.

The temporal pattern of Australian CFC emissions is similar

to that observed in global emissions, with Australian emissions
being,1%of global emissions over the entire emission history.
Substantial reductions in Australian emissions of CFC-11

occurred before 1995, as they did globally. Since 1995, there
has been only a slow decline in Australian CFC-11 emissions,
whereas CFC-12 emissions continue to show a steady decline

since the late-1980s and CFC-113 emissions have remained low
but approximately constant for the last decade.

These differences in the rates of decline of CFC emissions

likely reflect their original usage patterns: CFC-11 was used in
aerosol products (phased-out early and rapidly) and in foam
plastics (phased-out later), but with a residual bank in closed-
cell foams leaking slowly (2–6% per year) to the atmosphere.

CFC-12 was largely used in refrigeration and air conditioning,
creating a large bank of CFC-12, leaking to the atmosphere at
5–20% per year. CFC-113 was used as a solvent and in foams

and refrigeration, with foams uses likely the source of the
current CFC-113 bank. The rates of release of CFC-11, CFC-
12 and CFC-113 (% per year) from their respective banks and

the current emission rates (tonnes per year) enables estimation
of the current Australian CFC banks, CFC-11: 5–16 Gg, CFC-
12: 2–7 Gg and CFC-113: 0.5–2 Gg.

Since 1995, Australian CFC emissions (CFC-11, CFC-12,

CFC-113) have declined by 25 M tonnes of CO2-e. This CFC-
driven decline in CO2-e emissions is larger than any GHG
decline in the Australian GHG Inventory since 1995, but it is

not a component of Australia’s GHG emissions reported to the
UNFCCC.

Australia has achieved significant reductions in emissions of

CFCs in line with its obligations under the Montreal Protocol,
thus making a small contribution to the global efforts to reduce
emissions of these potent ozone depleting and global warming

trace gases. Unlike recent developments in east Asia, there is no
evidence of renewed, illegal consumption of CFCs in Australia.
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