Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Organic fluorine content in aqueous film forming foams (AFFFs) and biodegradation of the foam component 6 : 2 fluorotelomermercaptoalkylamido sulfonate (6 : 2 FTSAS)

Barbara Weiner A B , Leo W. Y. Yeung A , Erin B. Marchington A , Lisa A. D’Agostino A and Scott A. Mabury A C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Toronto, 80 St George Street, Toronto, ON, M5S 3H6, Canada.

B Present address: Department of Environmental Engineering, Helmholtz-Centre for Environmental Research, Permoserstrasse 15, D-04318 Leipzig, Germany.

C Corresponding author. Email: smabury@chem.utoronto.ca

Environmental Chemistry 10(6) 486-493 https://doi.org/10.1071/EN13128
Submitted: 11 July 2013  Accepted: 21 October 2013   Published: 19 December 2013

Environmental context. Total organofluorine and known fluorosurfactants were quantified in 11 aqueous film forming foams (AFFFs) used to extinguish fires in Ontario, Canada, and one commercial AFFF product. By comparing the concentrations of known fluorosurfactants with the total organofluorine, less than 10 % of the fluorosurfactants were identified in half of the samples. Our biodegradation experiment with one of the fluorosurfactants using waste-water treatment plant sludge showed that it was a potential source of perfluoroalkyl carboxylates, which are persistent in the environment.

Abstract. Eleven aqueous film forming foam (AFFF) samples that were used to extinguish fires in Ontario, Canada, and one commercial product, were analysed using a variety of analytical techniques to obtain structural information and quantities of organofluorine and known perfluoroalkyl and polyfluoroalkyl substances (PFASs). The NMR spectra of the foams distinguished the fluorosurfactants that were synthesised by either electrochemical fluorination or telomerisation. Total organofluorine content was quantified using total organofluorine–combustion ion chromatography (TOF-CIC), which revealed that the samples contained from 475 to 18 000 µg F mL–1. The common AFFF component 6 : 2 fluorotelomermercaptoalkylamido sulfonate (FTSAS) was quantified by liquid chromatography tandem mass spectrometry (LC-MS/MS) together with perfluoroalkane sulfonates (PFSAs), perfluoroalkyl carboxylates (PFCAs) and fluorotelomer sulfonates (FTSAs); in five samples, 6 : 2 FTSAS was present in concentrations greater than 1000 µg mL–1. By comparing the concentrations of these quantifiable fluorochemicals with the total organofluorine content, it was evident that in half of the AFFF samples, less than 10 % of the fluorochemicals were identified; in two of the samples, perfluorooctane sulfonate (PFOS) accounted for ~50 % of the total organofluorine content. Our degradation experiment with 6 : 2 FTSAS using waste-water treatment plant sludge showed that 6 : 2 FTSAS was a potential source of FTSAs, fluorotelomer alcohols and PFCAs in the environment.


References

[1]  Fire Fighting Foam Coalition, AFFF update 2003, 3. Available at http://www.fffc.org/images/AFFFupdate3.pdf [Verified 13 December 2013].

[2]  C. A. Moody, G. N. Hebert, S. H. Strauss, J. A. Field, Occurrence and persistence of perfluorooctanesulfonate and other perfluorinated surfactants in groundwater at a fire-training area at Wurtsmith Air Force Base, Michigan, USA. J. Environ. Monit. 2003, 5, 341.
Occurrence and persistence of perfluorooctanesulfonate and other perfluorinated surfactants in groundwater at a fire-training area at Wurtsmith Air Force Base, Michigan, USA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitleqtrk%3D&md5=9e31e1252e94af96a53b84adbf5b09c2CAS | 12729279PubMed |

[3]  C. A. Moody, J. W. Martin, W. C. Kwan, D. C. G. Muir, S. A. Mabury, Monitoring perfluorinated surfactants in biota and surface water samples following an accidental release of fire-fighting foam into Etobicoke Creek. Environ. Sci. Technol. 2002, 36, 545.
Monitoring perfluorinated surfactants in biota and surface water samples following an accidental release of fire-fighting foam into Etobicoke Creek.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptV2nu78%3D&md5=2b89895263905757d629b116200bef8dCAS | 11883418PubMed |

[4]  3M, Fluorochemical use, distribution and release overview. US EPA Public Docket AR226–0550 1999 (US EPA: St Paul, MN).

[5]  3M, Phase-out plan for POSF-based products. USEPA Docket ID OPPT-2002–0043 2000 (US EPA: St Paul, MN).

[6]  Canadian Environmental Protection Act. Perfluorooctane Sulfonate and its Salts and Certain Other Compounds Regulations 1999.

[7]  Fire Fighting Foam Coalition, AFFF update 2004, 4. Available at http://www.fffc.org/images/AFFFupdate4.pdf [Verified 13 December 2013].

[8]  M. M. Schultz, D. F. Barofsky, J. A. Field, Quantitative determination of fluorotelomer sulfonates in groundwater by LC MS/MS. Environ. Sci. Technol. 2004, 38, 1828.
Quantitative determination of fluorotelomer sulfonates in groundwater by LC MS/MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXosl2jtA%3D%3D&md5=be40174b286d2edeed0de32217186fc9CAS | 15074696PubMed |

[9]  A. Hagenaars, I. J. Meyer, D. Herzke, B. G. Pardo, P. Martinez, M. Pabon, W. De Coen, D. Knapen, The search for alternative aqueous film forming foams (AFFF) with a low environmental impact: physiological and transcriptomic effects of two Forafac fluorosurfactants in turbot. Aquat. Toxicol. 2011, 104, 168.
The search for alternative aqueous film forming foams (AFFF) with a low environmental impact: physiological and transcriptomic effects of two Forafac fluorosurfactants in turbot.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnslKitLs%3D&md5=696c1c71b75642c942e908629f3797ebCAS | 21627958PubMed |

[10]  M. K. Moe, S. Huber, J. Svenson, A. Hagenaars, M. Pabon, M. Trümper, U. Berger, D. Knapen, D. Herzke, The structure of the fire fighting foam surfactant Forafac1157 and its biological and photolytic transformation products. Chemosphere 2012, 89, 869.
The structure of the fire fighting foam surfactant Forafac1157 and its biological and photolytic transformation products.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotVaqsro%3D&md5=8de126941143416f39d26a88c49000aaCAS | 22658941PubMed |

[11]  C. A. Moody, W. C. Kwan, J. W. Martin, D. C. G. Muir, S. A. Mabury, Determination of perfluorinated surfactants in surface water samples by two independent analytical techniques: liquid chromatography/tandem mass spectrometry and 19F NMR. Anal. Chem. 2001, 73, 2200.
Determination of perfluorinated surfactants in surface water samples by two independent analytical techniques: liquid chromatography/tandem mass spectrometry and 19F NMR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXis1SlsLs%3D&md5=ba17b3c6bdc930fd71510cb35ab76c91CAS | 11393841PubMed |

[12]  B. J. Place, J. A. Field, Identification of novel fluorochemicals in aqueous film-forming foams used by the US Military. Environ. Sci. Technol. 2012, 46, 7120.
Identification of novel fluorochemicals in aqueous film-forming foams used by the US Military.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotFGlsrc%3D&md5=105e4025dd74102e4616662c5bef23d1CAS | 22681548PubMed |

[13]  S. Achilefu, L. Mansuy, C. Selve, S. Thiebaut, Synthesis of 2H,2H-perfluoroalkyl- and 2H-perfluoroalkenyl carboxylic acids and amides. J. Fluor. Chem. 1995, 70, 19.
Synthesis of 2H,2H-perfluoroalkyl- and 2H-perfluoroalkenyl carboxylic acids and amides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjt1Wjsr0%3D&md5=a00084afd1eec767bb8f8a7f31fca600CAS |

[14]  Y. Miyake, N. Yamashita, P. Rostkowski, M. K. So, S. Taniyasu, P. K. S. Lam, K. Kannan, Determination of trace levels of total fluorine in water using combustion ion chromatography for fluorine: a mass balance approach to determine individual perfluorinated chemicals in water. J. Chromatogr. A 2007, 1143, 98.
Determination of trace levels of total fluorine in water using combustion ion chromatography for fluorine: a mass balance approach to determine individual perfluorinated chemicals in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1Chtrk%3D&md5=6ef1fa9292dc880e2a26ce4539ccbb52CAS | 17229428PubMed |

[15]  Y. Miyake, N. Yamashita, M. K. So, P. Rostkowski, S. Taniyasu, P. K. S. Lam, K. Kannan, Trace analysis of total fluorine in human blood using combustion ion chromatography for fluorine: a mass balance approach for the determination of known and unknown organofluorine compounds. J. Chromatogr. A 2007, 1154, 214.
Trace analysis of total fluorine in human blood using combustion ion chromatography for fluorine: a mass balance approach for the determination of known and unknown organofluorine compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtFOju70%3D&md5=372636047f9c3162bb882dba88ba6ebaCAS | 17416376PubMed |

[16]  A. A. Rand, S. A. Mabury, In vitro interactions of biological nucleophiles with fluorotelomer unsaturated acids and aldehydes: fate and consequences. Environ. Sci. Technol. 2012, 46, 7398.
In vitro interactions of biological nucleophiles with fluorotelomer unsaturated acids and aldehydes: fate and consequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFWqtr0%3D&md5=e71e0614cb5bd040dbaf7e7b4a4c782cCAS | 22582947PubMed |

[17]  H. Lee, J. D’eon, S. A. Mabury, Biodegradation of polyfluoroalkyl phosphates as a source of perfluorinated acids to the environment. Environ. Sci. Technol. 2010, 44, 3305.
Biodegradation of polyfluoroalkyl phosphates as a source of perfluorinated acids to the environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVWltLY%3D&md5=6d6e1d6723f932ebc36913c7aa6d224aCAS | 20355697PubMed |

[18]  M. J. A. Dinglasan-Panlilio, S. A. Mabury, Significant residual fluorinated alcohols present in various fluorinated materials. Environ. Sci. Technol. 2006, 40, 1447.
Significant residual fluorinated alcohols present in various fluorinated materials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntFGhtA%3D%3D&md5=7fceda8c7dc3144c28ac281ff82bb277CAS |

[19]  G. Arsenault, B. Chittim, J. Gu, A. McAlees, R. McCrindle, V. Robertson, Separation and fluorine nuclear magnetic resonance spectroscopic (19F NMR) analysis of individual branched isomers present in technical perfluorooctanesulfonic acid (PFOS). Chemosphere 2008, 73, S53.
Separation and fluorine nuclear magnetic resonance spectroscopic (19F NMR) analysis of individual branched isomers present in technical perfluorooctanesulfonic acid (PFOS).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVWitLzN&md5=d9deb0c54605348d8c7c8ea5057b2c12CAS | 18440586PubMed |

[20]  T. Gramstad, R. N. Haszeldine, Perfluoroalkyl derivatives of sulphur. Part VI. Perfluoroalkanesulphonic acids CF3·[CF2]n·SO3H (n = 1–7). J. Chem. Soc. 1957, 2640.
Perfluoroalkyl derivatives of sulphur. Part VI. Perfluoroalkanesulphonic acids CF3·[CF2]n·SO3H (n = 1–7).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2sXotFShsw%3D%3D&md5=41416839366deb237888b631dd74887dCAS |

[21]  K. A. Gray, O. S. Pogrebinsky, G. T. Mrachko, L. Xi, D. J. Monticello, C. H. Squires, Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat. Biotechnol. 1996, 14, 1705.
Molecular mechanisms of biocatalytic desulfurization of fossil fuels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XnsFWjsrs%3D&md5=a3db53c73f54547721c879235c9d46eeCAS | 9634856PubMed |

[22]  M. W. Dudley, J. W. Frost, Biocatalytic desulfurization of arylsulfonates. Bioorg. Med. Chem. 1994, 2, 681.
Biocatalytic desulfurization of arylsulfonates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitVOjurs%3D&md5=19e120231886815eb62d09c636557c5eCAS | 7858976PubMed |

[23]  J. D. Van Hamme, P. M. Fedorak, J. M. Foght, M. R. Gray, H. D. Dettman, Use of a novel fluorinated organosulfur compound to isolate bacteria capable of carbon-sulfur bond cleavage. Appl. Environ. Microbiol. 2004, 70, 1487.
Use of a novel fluorinated organosulfur compound to isolate bacteria capable of carbon-sulfur bond cleavage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisVKju7s%3D&md5=8ff7d9de04ffa703d18da4050be101f0CAS | 15006770PubMed |

[24]  N. Wang, J. Liu, R. C. Buck, S. H. Korzeniowski, B. W. Wolstenholme, P. W. Folsom, L. M. Sulecki, 6 : 2 fluorotelomer sulfonate aerobic biotransformation in activated sludge of waste water treatment plants. Chemosphere 2011, 82, 853.
6 : 2 fluorotelomer sulfonate aerobic biotransformation in activated sludge of waste water treatment plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFCmug%3D%3D&md5=85389608472292443c735c44ddb9fb8eCAS | 21112609PubMed |

[25]  E. B. Marchington, Identification of known and novel fluorinated compounds in AFFF via 19F-NMR, LC- MS/MS, and LC-Quad-TOFMS, and the aerobic biodegradation of 6 : 2 FtS 2008, MSc. Thesis, Department of Chemistry, University of Toronto.

[26]  J. Liu, N. Wang, B. Szostek, R. C. Buck, P. K. Panciroli, P. W. Folsom, L. M. Sulecki, C. A. Bellin, 6-2 Fluorotelomer alcohol aerobic biodegradation in soil and mixed bacterial culture. Chemosphere 2010, 78, 437.
6-2 Fluorotelomer alcohol aerobic biodegradation in soil and mixed bacterial culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsFCl&md5=7b1dc165f0e9286cf5a1029f2522eb0dCAS | 19931114PubMed |

[27]  J. W. Martin, S. A. Mabury, P. J. O’Brien, Metabolic products and pathways of fluorotelomer alcohols in isolated rat hepatocytes. Chem. Biol. Interact. 2005, 155, 165.
Metabolic products and pathways of fluorotelomer alcohols in isolated rat hepatocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpt1eltLY%3D&md5=c742f19e3de479ebe647fa30631e874dCAS | 16098497PubMed |

[28]  C. M. Butt, D. C. G. Muir, S. A. Mabury, Elucidating the pathways of poly- and perfluorinated acid formation in rainbow trout. Environ. Sci. Technol. 2010, 44, 4973.
Elucidating the pathways of poly- and perfluorinated acid formation in rainbow trout.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVSlsrY%3D&md5=f32ca1f7e81550663159bb8cf0443255CAS | 20518507PubMed |